
H4AR: Hearing for AR
Leon Chang

Electrical and Computer Engineering
Carnegie Mellon University

leonc@andrew.cmu.edu

Ramgopal Venkateswaran
Electrical and Computer Engineering

Carnegie Mellon University
ramgopav@andrew.cmu.edu

William Zhang
Electrical and Computer Engineering

Carnegie Mellon University
wz2@andrew.cmu.edu

Abstract—H4AR is a device for assisting hard-of-hearing
people in their everyday lives, by visually alerting them about
the direction of important sources of sound. Specifically, we will
focus on alerting them to human conversation or voices around
them.

The device is a wearable pair of glasses, equipped with an
array of microphones and simple augmented reality in the form
of a small heads up display. This microphone array will identify
human speech, and determine the direction of the sound relative
to the individual. This information will then be displayed as
a visual cue in the form of an arrow on the heads up display,
pointing towards the direction of the source of sound. The aim of
this is to increase the individual’s peripheral awareness, allowing
them to identify and turn towards people talking to them.

I. INTRODUCTION

The two ears on a human being offer a full range of sensory
input where our other senses simply cannot. Our eyes have
a peripheral vision range of only about 120� at any given
point, and our sense of touch is only triggered at extremely
close range. People hard of hearing simply lose this source of
sensory input, and as such experience a much less complete
awareness of their peripheral surroundings. It’s already tough
to communicate their handicap to others, it’s even tougher
when people attempt to talk to you from behind.

We propose our Hearing for AR (H4AR) device as a
solution to this problem. H4AR is a wearable Augmented
Reality device, equipped with an array of microphones that
can identify sources of human speech, localize the speech,
and display a visual cue of the direction of speech onto a
glasses-mounted heads up display. H4AR greatly increases the
peripheral awareness of those hard of hearing by translating
the missing audio perception into a visual perception, thereby
allowing their visual perception to have full peripheral aware-
ness. The device is not only simple to use, with no direct
human-to-device interaction required, but also it is also very
portable, allowing users to wear it throughout the day.

II. DESIGN REQUIREMENTS

We have determined a set of requirements that our project
must satisfy in order to meet its intended purpose. These
include technical benchmarks - the product must determine the
source of speech with good angular resolution, it must be able
to isolate speech from noise, and it must do some with minimal
response time - as well as usability constraints - the image
on the heads-up display must be projected at a comfortable
distance that the user’s eye can focus on, the device must be

easily wearable, portable and have good battery life. We will
now discuss each requirement in further detail and specify the
targets we want to meet for them.

A. Angular Resolution

Angular resolution refers to the precision with which the
product can discern the direction from which sound originates.
From our background research, we found that human hearing
localization has at worst around 15� accuracy to the sides.
Achieving this angular resolution would mean that we can
supplement our users’ hearing to an unimpaired level, and so
we chose this as our target.

In addition to specifying the angular resolution, we also
need to specify the range over which we aim to achieve this
resolution. Since we aim to alert users to conversations outside
their peripheral vision, and our users will already be visually
aware of conversations in the range of about 180�, our goal is
to cover the remaining 180 (at the back of the head) that they
might miss out on - i.e our product should cover the range
beyond that of the human eye’s visual span.

Based on the above information, our product needs to obtain
a 15� angular resolution over a 180� range.

B. Response Time

The response time of our product is the delay between its
receiving of audio input and its visual display of that input.
This time delay will be affected by the rate at which the
product can sample audio, as well as the time taken to evaluate
whether a sample contain a human conversation, determine the
direction of human conversations in that sample, and project
this direction onto the heads up display. Our research informed
us that that a natural human reaction time to aural stimuli
is 0.17 seconds and to visual stimuli is 0.25, seconds which
suggests that responding to visual stimuli is already slower
than audio. We decided that our product should strive to have
a delay on this order of magnitude: at most 0.5 seconds.

C. Noise Isolation and Conversation Identification

Noise isolation and human conversation recognition focuses
on our product’s ability to isolate and recognize certain
conversation forms. Our product should be able to recognize
human conversation at a noise level above 60dB as 60dB is the
noise level of the typical human conversation. Furthermore, as
average home noise is 40dB and 70dB is the average office
noise, our product should also be able to tolerate up to 70dB



of non-human noise. Leveraging telephony’s classification of
voice frequencies, we concentrate on human conversation
that spans 300� 3400 Hz at a noise level of > 60dB
[4], [5]. Due to the additional complexity and resources
involved with discerning two separate speech conversations,
we constrain the product to only support 1 human sound
source - this is a reasonable constraint because only 1 person
will be typically talking to the user at a given time.

D. Usability
The last three requirements are to do with the product’s

portability and physical usability. Noting that the human eye
can only focus on virtual images > 25cm away, we impose
a simple requirement that the image of the sound source we
project onto the heads up display appears at least 25cm away
so that the human eye is able to focus on it. In addition,
as the product is meant to be a wearable (i.e a headset),
our target is 1lbs as popular market headsets are around this
weight. Beyond visual focus and weight, our product also has
a battery life target of 4 hours continuous use based on
the premise of an average workday of working from 8 � 12,
recharging during lunch from 12� 1, and working from 1� 5
before going home at 5.

E. Design Requirement Summary
We conclude this section with a brief summary of the im-

portant metrics and our target objectives for the final product.
The design objectives are summarized below:

• Angular Resolution: 15 degrees
• Response Time: 0.5 seconds
• Max Noise Level: 70 dB
• Min Human Conversation Noise Level: 60dB
• Number of human sound sources: 1
• Human Conversation Frequency: 300 - 3400 Hz
• Min Projection Distance: 25cm
• Max Product Weight: 1lb
• Min Battery Life; 4 hours

III. DESIGN AND SYSTEM DESCRIPTION

We turn our focus to the specific design decisions that we’ve
made and how they allow us to meet the overall product goal
by satisfying the requirements outlined in the previous section.
We give a fuller description of architectural and/or part design
trade-offs, as well as other choices we had considered, in the
section following this one.

A. Hardware Design
The system centers around a microphone array constructed

on top of a headset. The microphone array comprises 4 digital
ST MP34DTO1-M [6] omni-directional microphones, with an
angular spacing of 60� between adjacent microphones (this
corresponds to a straight-line distance of approximately 4
inches). This provides us with approximately 300� of coverage
centered on the back of the individual’s head (definitely
sufficient for our goal of 180�)..

The microphone array is integrated with the “Dragonfly”
microcontroller unit (MCU) board via a digital filter for

Fig. 1. HW Block Diagram

sigma-delta modulator (DFSDM). DFSDM has built-in sinc
filters which can be used to eliminate certain frequency ranges
(i.e noise). It also supports using dedicated DMA channels to
write through to memory.

As seen in Fig. 1, the MCU we have chosen is a “Drag-
onfly” STM32L496 development board. The MCU is of
the STM32L4 series which are designed primarily for low
power consumption operations. It also comes in a small form
factor which allows us to nicely integrate it into the headset
along with reasonably strong hardware specifications: 1024
KB flash, 320 KB SRAM, 80 MHz clock, a floating point unit,
and sufficiently exposed SAI and DFSDM lines to support 4
microphones.

Once the Dragonfly has determined the direction of the
incoming audio source, it can utilize I2C protocol to tell
the OLED screen what to project. The OLED screen is a
Micro SSD1306 IIC I2C OLED which is a lower-power,
small form factor screen with significant driver support. We
chose a monochrome screen to save on power draw (since
color is not a necessary part of our design). Furthermore, the
OLED screen supports individual pixel lighting as compared to
standard LCD backlighting; this is highly desirable as it allows
the reflection of only the image on our projection surface.

The last major component is the battery source. Due to
Dragonfly board restrictions imposed by the on-board voltage
regulator, we are constrained to utilize a lithium polymer bat-
tery. We estimate the system current draw to be approximately
32.4 mA: the Dragonfly board draws around 1̃08µA / MHz
when flash, SRAM, and all peripherals are enabled, the OLED
board averages 20mA, and each mic averages 0.6mA. We
utilize 42.4 mA to provide some slack with the estimation. We
utilize a 3.7V LiPo battery with 500 mAh capacity as the



Dragonfly regulates input voltage to 3.3V and the regulator
only supports 2.2V to 5.5V. With the capacity, we estimate
around at least 13 hours of battery life. On integration of the
hardware, we will take empirical current measurements to get
a more accurate estimate of the battery life.

B. Algorithm Design
Our high-level goal is to estimate the direction of a sound

source given a set of microphones positioned around the user’s
head. Given a pair of microphones lying on a straight line
(assuming that we know which side of the line the sound
source is from), it is possible to use the time difference of
arrival between the signals at the two microphones to estimate
the direction of the sound source.

Note that, with more microphones, this can be done with
additional redundancy by computing the time difference be-
tween the signals at each microphone - the problem can be
formulated as a simple linear system of equations and solving
it gives us the desired direction. However, we also cannot have
too many microphones - this is because we are limited by
our hardware clock frequency (which limits how fast we can
sample them, as well as how fast we can process the samples),
by the number of ports available to us on our board (6 using
the DFSDM), and by our power consumption. Therefore, it
is desirable to minimize the amount of microphones to the
extent that we stay within hardware limitations, and also give
ourselves sufficient breathing room to perform the required
computations on the sample.

Another factor to consider is that it would be most reliable to
use time differences between adjacent pairs of microphones,
because our computations assume that the microphones are
“facing” the source of sound (the sound is not coming from
the other side of the user’s head), and that the sound travels
directly to the microphones - if the user’s head is in the
way of the direct line between the sound source and one
of the microphones, that would affect the accuracy of the
computation. On the other hand, using adjacent microphones
means that the spatial separation between them is lower, and
our sampling rate needs to be high enough to detect time
differences between microphones that are close together - we
verified that we satisfy this requirement too (which we will
explain in a later section).

A final, crucial factor that determines the algorithm we will
use is the level of existing software support for it. As we
will mention in a later section, there is a suitable library
(AcousticSL) that we can use to obtain some rudimentary
algorithms that identify from which direction a sound arrives
using pairs of microphones. In order to minimize the amount
of implementation work we will have to do, it is useful to go
with a design that allows us to capitalize on existing libraries.

Based on the angular coverage requirement mentioned in
a previous section, we chose a set-up with 4 microphones
separated by 60 degrees. We then split these into adjacent
pairs, one on each side. Taking the other factors outlined above
into consideration, our algorithm was designed as follows:
for every adjacent pair of microphones, we compute the

possible angular directions of the sound based on this pair.
For each pair, we will get two possible angles. By some
geometric considerations, we can show that both pairs will
theoretically agree (approximately) at one particular angle,
and this would be the correct angle. So we choose this angle
as a first approximation, and then further refine our estimate
by choosing the microphone pair whose estimate is the most
reliable out of the two based on which microphone pair is
”facing” the approximate direction (that is, which direction
is closest to being directly perpendicular to the line between
the two microphones - the sound signal received by that
microphone will be least affected by the user’s head itself).
At the end of this step of the algorithm, we will either get
an angle estimate (or a placeholder value if there is no clear
audio signal).

We also have one additional step, ”windowing”, that allows
us to stabilize the output angle further and obtain a smooth
signal, to control system and jitter noise. We split the overall
set of possible angles into buckets, where each bucket rep-
resents some range of angles. Every time we get an output
angle from the above part of the algorithm, we put it into the
bucket coresponding to this angle. For every 20 such outputs
(our window size), we find the bucket containing the most
number of angles, and if it contains at least 10 angles (50%
of the angles in our window size), we output it. Otherwise, we
conclude that the signal is not reliable and we do not output
a direction of human conversation.

This last step is a form of smoothing that prevents any
flickering of the end output when it gets brief anomalous
data, and our window size essentially controls how much we
trade off latency for accuracy. The set-up with 4 microphones,
where we only use adjacent pairs, might initially seem to
offer minimal redundancy for a single output computation -
however, by not using even more microphones, we are able to
able to achieve low enough latencies that allow us to use the
the windowing technique above to smooth the signal and this
makes our system more robust.

C. Software Design
The first stage of the software design involves getting

samples from the microphones at sufficient frequency, and
doing some preliminary filtering on them. We can leverage
the DFSDM to take care of the filtering and data conversion
to PCM as we sample, as mentioned above. The DFSDM
transfers the samples from each microphone into particular
memory segments through DMA, and we can simply access
them from there. Therefore, the sampling part of our software
design is mostly painless, partly due to the hardware we
selected.

The second and main stage of the software design involves
computing the direction from which a human voice is arriving.
We did this using a generalized cross-correlation algorithm (we
will discuss it in more depth in the following paragraphs), us-
ing an implementation provided by the osxAcousticSL library,
provided by ST. The library takes in a pair of microphones,
and returns the angle offset of the sound source relative to the



microphones for a 1 ms sound signal. The overall flow is to
call this library function for every pair of adjacent microphones
to get the angle estimates, and then do the post-processing
mentioned above to obtain the overall output.

The calculation of the direction involves two stages - the
main first stage is to estimate the time difference between
samples arriving at the two microphones, and the second
is to use that information (and the known positions of the
microphones) to estimate the direction. The signal processing
in the first stage is where the bulk of the computation takes
place.

To explain our decision to use the GCC-PhaT algorithm,
we will briefly mention two other alternatives that we had
originally considered, and which are also offered by the
AcousticSL library. In all three cases, it works with samples
of 1 ms (note that we need to verify that samples of 1 ms are
sufficient to distinguish at the desired angular resolution - we
will verify this in a later section). The first choice is to run a
simple cross-correlation (XCORR) between them. The second
choice is to perform a generalized cross-correlation, known as
GCC-PhaT (generalized cross correlation - phase transform)
- this does some extra weighting of different frequencies,
to make it more robust to reverberations and noise. The
third choice is a lesser known algorithm called the BMPH
algorithm. We found that GCC-PhaT has been fairly popular in
human sound localization research, and that it generally gives
significantly better performance over regular cross-correlation
in noisy settings. Therefore, this is our preferred method.

One risk in using GCC-PhaT was that it is a computationally
expensive algorithm relative to simple cross-correlation. While
simple cross-correlation can be implemented in both the time
and frequency domains, GCC-PhaT is usually implemented
in the frequency domain (including this library’s implementa-
tion). This involves doing two Fourier transforms (FTs) per the
microphone sample - one to get it into the frequency domain,
and one inverse transform after re-weighting frequencies to
get it back into the time domain. Since FTs are relatively
expensive, especially in a real-time setting, this operation
forms the bulk of the computation.

By cutting down other latencies in our system, such as
the latencies associated with displaying the direction on the
screen and with sampling the microphones, our device is able
to run this relatively powerful algorithm while staying under
the latency requirement (as we will show in a later section).
Additionally, using just 4 microphones also helped us save on
computation here.

D. Communication Design
During our design process, we worked to minimize the

complexity of the overall system, removing modules and
components and opting for the simplest solution. In doing so,
we have our communication interfaces at a minimum. Table I
provides a summary of the communication interfaces as well
as protocols we are using.

1) Microphones: The majority of communication required
for our product solution to function is between the micro-

TABLE I
COMMUNICATION SUMMARY

Component Protocol Hardware Interface # I/O
4x Microphones PDMa DFSDM 3
OLED Display I2C I2C 2

Battery N/A ADCC 1
aConverted to PCM

Fig. 2. PDM Signal [1]

phones and the MCU. Our microphones of choice are digital
microphones, meaning that they have an amplifier as well as
an ADC built into their package. The signal outputted by these
microphones are in a Pulse Density Modulation (PDM) format,
which is conceptually similar to Pulse Width Modulation
(PWM). These digital microphones take a clock signal which
defines the sampling rate as well as the transmission rate, while
outputting a single bit binary stream, see Fig. 2, which can then
further be converted into Pulse Code Modulation (PCM), see
Fig. 3 for use by the CPU.

Fig. 3. PCM Signal [1]

Since we are targeting speech applications, we will be driv-
ing these microphones with a clock frequency between 1 and
1.5MHz as per the datasheet. These microphones also support
a “left” and “right” channel selection which controls whether
the microphone sends data on the rising or falling edge of the
clock. This allows us to have the data of two microphones
on a single data line. We interface these PDM microphones
with the MCU through the DFSDM digital peripheral. For our



target 4 microphones, we interface through the DFSDM with
a minimal amount of I/O: two data lines and one clock line.

As in Fig. 4, the DFSDM will provide the MCU with filtered
samples in Pulse Code Modulation (PCM) format. Samples are
transferred internally through DMA to a system RAM buffer,
with a separate DMA channel per microphone. This data can
then be used by the CPU for the TDOA algorithm.

Fig. 4. Microphone data acquisition for a single mic. using DFSDM [1]

2) OLED Display: Our product solution also communicates
with the OLED display to portray information to the user. This
communication is achieved through the I2C protocol, requiring
only one data line and one clock line for a total of two I/Os.
Our production display has a resolution of 128x32, while our
development display has a resolution of 128x64, as such, to
write out to the display, the image must first be buffered into
the RAM (512 bytes for the production display, 1 Kilobyte
for the development display). The image is then written out
to the display via I2C. The SSD1306 chip can be driven
with different I2C clock rates. In the interest of balancing our
latency requirement of 500ms, as well as saving battery power,
we drove our I2C interface with a clock rate of 400kHz (fast
mode), giving us a 23+ms delay. To further bolster the speed,
we used techniques that reduce the amount of data sent over
the wire for each frame, as we are not refreshing the whole
screen every time - we only update the screen when absolutely
necessary to avoid extra overhead.

3) Battery Module: The final communication interface is
in the battery module. In order for the user to know the
battery level and know when to recharge the battery, we
will need to read information from the battery. This is a
simple communication, achieved using an one of the onboard
ADC channels with one I/O used. The ADC will be used to
intermittently read the voltage of the battery, and calculate the
battery percentage from the voltage, alerting the user when a
recharge is needed.

E. Optical Design
In addition to the software and hardware aspects of our

project, we also need to use some optics to project the image
formed on the OLED screen (likely an arrow indicating the
direction of sound) onto a small plexiglass reflector that will

be positioned in front of the user’s glasses. The set-up for this
can be seen in Fig 5. A double convex lens first forms a virtual
image of the OLED screen, on the same side of the lens as
the OLED screen. The plexiglass reflector then catches this
virtual image, so the image is seen on the reflector.

Fig. 5. Optics System Setup

The reason for this is that the eye needs 25cm+ of “distance”
to focus on an image - by choosing a lens of appropriate focal
length, we are able to achieve this. Our optical design is novel
in that it does not utilize any mirrors, unlike existing designs
- the reason for this is that we were unsatisfied with such
designs as they create a lot of additional bulk. Our setup is a
lot more compact, requiring just under an inch of clearance.
This requires slightly thicker and heavier lenses than most
designs - we bought a few different lenses with different focal
lengths, and found that both theoretically and experimentally,
the one with 22mm was optimal.

F. Physical Design
The product solution has to be portable and wearable on the

user’s head. To get to that goal, we have designed a device
that is meant to be attached to a pre-existing pair of glasses,
be it prescription or fake lens glasses. The device is mounted
on the two legs of a pair of glasses, with a band that wraps
around the back, see Fig. 6. It is designed to be removable
in order to charge without disrupting the normal use of the
user’s eyeglasses. An image of the device is shown in Fig. 7.
Note that, for increased stability and comfort to the user, we
also added some foam padding and an elastic strap that goes
around the user’s head.

G. Overall Feasibility of Our Solution
We now present some approximate calculations that ex-

plain mathematically why our physical positioning of the
microphones, the hardware we have chosen, and our software
solution were sufficient to achieve our design requirement



Fig. 6. Design mounted on glasses

Fig. 7. Top-down view of the device

of 15 degrees angular resolution with at most 500 ms lag
response time. Note that these calculations were done at the
design stage, and so they explain why the design is feasible in
principle - we will turn to the actual measurements we took
and the results we obtained in a subsequent section.

First, we note that working with 1 ms samples is suffi-
cient to distinguish two sound sources. For this, we need
to ensure that there is a good amount of overlap between
the signals received by adjacent microphones. This is im-
portant to calculate the time difference between them - for
instance, if we had completely non-overlapping signals, we
would not be able to tell the difference between them. Since
the microphones are 4 inches apart, the time difference be-
tween the signal reaching the two microphones is at most
(4 inches)/(300ms�1) = 0.3ms. Therefore, we will have at
least 0.7 ms of overlap, which allows our cross-correlation
based algorithms to function as desired.

Next, we need to check that our sampling frequency is high
enough to meet the 15 degree angular resolution requirement.

Given an angular displacement of ✓ from the center line
between the 2 microphones, we have the following, where
c is the speed of sound:

�distance to mic = (distance between mics) · sin ✓ (1)

sin✓ =
4 inches

c · (time difference)
(2)

As a conservative estimate, say we wanted a time difference
corresponding to at least 10 samples between two angles that
are 15� apart (our angular resolution). Using our formula
above, that means we would want, for all ✓ in the range
[0�, 75�]:

4 inches
c

✓
1

sin ✓
� 1

sin(✓ + 15�)

◆
� 10 · Tsampling (3)

Note that the range is restricted from 0� to 75� because
we’re assuming that the microphones are facing the sound
source (which is the only case in which we will use this
estimate). The LHS is minimized at ✓ = 75�. Then we have
that Tsampling  2.31 · 10�7s, and so our sampling frequency
from each microphone is at least 0.433 MHz. We have 4
microphones, so our overall sampling frequency would just
need to be 1.73 MHz. Both of these figures are fine - we can
sample from the individual microphones at between 1 to 1.5
MHz, and our board has a clock frequency of 80 MHz, both
of which exceed these respective figures.

Note also that this was in fact a very conservative calcula-
tion. We assumed that we needed at least 10 samples spacing
between theta that are 15 degrees apart (in fact, it could even
be possible to do it with less than 1, because we just need
to be able to notice some difference in the signals over the
course of 1 ms worth of samples). We also assumed a worst
case scenario of the sample coming from an angle of 75
degrees to the center between the microphones - our physical
design ensures that there will always be some pair of adjacent
microphones such that this angle is at most 60 degrees.

The library documentation also gives its own formula for the
minimum sampling frequency (under different assumptions,
and using a different method) which comes out to just 18 kHz,
and our sampling frequency far exceeds this amount as well.
Therefore, we were confident that our design would be able to
theoretically achieve the desired angular resolution, and this
was indeed true.

Finally, we verified before implementation that our design
would likely meet the 500 ms response time requirement.
We did this by getting an order-of-magnitude estimate of the
number of clock cycles needed for our processing of each
sample. Even though the library doesn’t provide these details
pertaining to the runtime of the GCC-PhaT algorithm, one of
the papers mentioned we looked at [9] gives the number of
clock cycles used in its frequency domain implementation of
GCC-PhaT - we can use this as an (extremely rough) estimate.
According to the paper, performing GCC-PhaT on two data
blocks of size N = 256 takes 2.1 ⇤ 106 clock cycles. If we
sample at 500 kHz, since the library uses 1 ms blocks, we
would be working on blocks of size N = 500. The complexity



of a Fast Fourier Transform is O(NlogN) so using this scaling,
we get approximately 4.8⇤106 clock cycles (N increases by a
factor of 2, logN from roughly 8 to 9). We do this for 2 pairs of
mics, giving 9.6⇤106 clock cycles. This is the most expensive
computation we will perform - to be conservative, let’s double
our processing time to account for other computations. Then
we take 19.2 ⇤ 106 clock cycles total in our processing, which
is still under 500 ms, our target.

A risk we had planned for was that, while this was still
below our target of 500 ms response, it was fairly tight -
especially given the fact that the internal library’s implemen-
tation of GCC-PhaT is a black box. However, by cutting
down on other latencies, we were eventually able to meet this
comfortably.

IV. DESIGN TRADEOFFS AND TRADE STUDIES

A. Architectural
The product’s initial proposal was based on the architecture

presented in a Euronoise 2018 paper on sound source localiza-
tion in 360 degrees using a circular microphone array [8]. The
architecture presented in the paper utilizes a single board RIO
that combines a FPGA and a real-time processor for fast data
acquisition and calculations. Our proposal also considered the
architecture of several other papers that utilize beamforming
techniques and a single microcontroller unit (MCU). We ulti-
mately decided to go with utilizing only a MCU due to a mix
of various competing factors. Although a FPGA theoretically
could provide faster sampling than a MCU, the sampling
rate of the on-board DFSDM is sufficient. Furthermore, a
FPGA would require additional power consumption and also
has additional hardware constraints that we deemed to be
burdensome: we would have to either use a SoC FPGA which
has a large form factor or manually handle interfacing a FPGA
with a MCU through communication protocols like SPI which
has unnecessary engineering overhead.

B. MCU Evaluation
Due to the hardware constraints imposed by a microphone

array on the board, our process first evaluated the right MCU
to use. Our official requirements stipulate that the MCU must
be able to support at least 4 microphones and up to 8 micro-
phones along with being in board form. Portability was also
a significant consideration; many reference and development
boards exist that give us more than enough I/O, but are much
too large to be integrated in our product solution. Our board
evaluation primarily focused on STM32L4 and STM32F4
boards that could be acquired commercially. We decided on the
Dragonfly STM32L496 Development Board after discarding
several alternative boards. First the STM32L4 series were de-
signed for low-power consumption in comparison to STM32F4
boards which would enable a longer battery life. Although the
Dragonfly only has a 80MHz clock, boards with faster clocks
do not have sufficient microphone interfaces (i.e DFSDM,
SAI) to be considered viable. Furthermore, the Dragonfly
board is optimized for portability with a tiny form factor,
measuring in at only 0.7” x 1.4”, as well as very competitive

flash and SRAM sizes in comparison to other boards. As such,
although we are trading the clock frequency and additional
processing capabilities, we argue that the Dragonfly provides
the best risk mitigation with on-board support of up to 8
microphones and is also designed for low-power scenarios.

C. Microphone Array

For constructing the microphone array, the first design
decision we made was whether to use analog or digital
microphones. We committed to digital microphones as ana-
log microphones have additional overhead since they would
require supplementary A/D converters and pins on the MCU
board to interface correctly. The particular digital microphone
we ended up selecting was the ST MP34DT01-M. One of the
main benefits to this particular microphone is that it has a
known product viability (as part of the Bluecoin device) and
interface documentation with the STM32L4 low-power board
series. Furthermore, this microphone unlike other considered
microphones is omnidirectional and board-mounted with a
comparable signal to noise ratio of 61 dB and -26 dbFS
sensitivity and an acoustic overload point of 120dbSPL.

D. OLED Screen

Another area of trade-offs we made was in determining
the OLED screen. Our primary constraints motivating this
component focused around dimensions and the existence of
libraries. Considering the possibilities, we finalized on the
Micro SSD1306 IIC I2C OLED with one of its main selling
features being that the screen is only 0.49” as opposed to
common designs of 0.9”. Furthermore, the SSD1306 has many
libraries available and we deem I2C to be adequate enough for
a low resolution screen. An auxiliary benefit derived from this
device is power consumption benefits: the monochrome device
saves power in comparison to color screens and does not rely
on a backlight.

E. Battery

There were not many significant trade-offs made for the
battery. As mentioned previously, the battery voltage is con-
strained by the requirements of the board. As the Dragonfly
has a NCV8170 LDO regulator, the input voltage requirements
are constrained from 2.2 V to 5.5 V which makes the common
3.7 V a de facto option. When it came to evaluating capacity,
we chose the 500 mAh as a compromise between price points
and an estimated use-time exceeding at least 8 hours which can
be satisfied with the 500 mAh capacity assuming the current
draw remains on average below our estimated 42.4 mA.

F. Software

As discussed above, the significant bulk of the software
implementation involves implementing and calculating the
time difference of arrival based on the input microphone
streams. Our design relies on osxAcousticSL / X-CUBE-
MEMSMIC1 libraries which provide implementations of the
XCORR algorithm and GCC-PhaT under certain constraints
(i.e number of microphones, arrangement of microphones,



spacing between microphones). The infrastructure provided by
X-CUBE-MEMSMIC1 also contains a hardware abstraction
layer that supports STM32L4 which serves as a convenient
bootstrap.

Although the ST libraries do have constraints that are
not entirely compatible with our product formulation, (e.g.
ST requires that for a four microphone configuration, the
microphone pairs must be perpendicular, which would not
work for us because the user’s head is in the way). However,
as implementing algorithms like GCC-PhaT has innate com-
plexity, utilizing osxAcousticSL / X-CUBE-MEMSMIC1 still
made sense, since the libraries are developed with integration
of external microphones and within the ST ecosystem as a
whole.

An important software trade-off, also mentioned earlier, is
windowing. We are trading off latency for increased accuracy.
Having cut down other sources of latencies to be able to meet
the latency benchmark comfortably, windowing allowed us to
get a smoother signal and improved accuracy with increased
latency that would still meet the benchmark.

V. IMPLEMENTATION PROCEDURE

A. Hardware Implementation
The hardware implementation plan was characterized by a

modular design that was implemented in stages by priority.
The design is made up of three main hardware components: (1)
microphone array, (2) display module, and finally (3) battery
module. The microphone array, being the highest priority, was
implemented first. This priority was set since the software
implementation requires the microphone array to proceed.
The microphone array was first tested in its predetermined
configuration before being mounted onto our design. This
allowed us to verify the validity of the hardware while we
constructing and implement the microphone module.

The display module implementation efforts followed after
the implementation of the microphone array, as it carries the
second highest priority. The battery module carried the lowest
priority, as it is only important when we are undergoing inte-
gration. As such it was the last module that we implemented.
The completion of the battery module marked the beginning
of the final hardware implementation stage: integration. The
integration stage involved the three hardware components into
a portable package.

B. Software Implementation
The software implementation plan was coupled tightly with

the hardware implementation plan, with multiple stages that
are executed parallel to the hardware implementation stages
to the highest extent possible. The first stage was bootstrap-
ping the MCU. This stage involved setting up the firmware,
deciding on abstraction layers, setting bits in the MCU to
enable peripherals as well as setting up the shared toolchain.
After the completion of this stage and the completion of
the microphone array in hardware, we moved on to the
second stage: interfacing with the microphone array. This stage
involves interfacing with the DFSDM or SPI peripheral in

order to receive microphone readings, as well as manipulating
the data retrieved to be useful. The third stage was using the
microphone array data to implement the localization algorithm,
using generalized cross correlation (GCC-PhaT). We then
spent time on post-processing and fine-tuning the parameters
of the system. After localization, we interfaced with the
I2C OLED display to display date in stage four, and finally
interface with the battery to get battery level readings during
stage five.

VI. METRICS AND VALIDATION

This section focuses on the validation of the product. In
this section, each requirement is re-iterated from the design
requirements section and our validation strategy and obtained
results, are discussed afterwards.

A. Angular Resolution Validation
A significant goal of our product is to satisfy the angular

resolution requirement of 15�. To verify that our product does
indeed have such a resolution, we placed the device on a table
in a noise-controlled room. One of us then walked around the
device, and at 5� intervals, stopped and talked at the device.
We focus on the rear side of human vision, i.e the 180� outside
of the range of human peripheral vision. We retrieved the angle
computed by our system and checked how it matched up with
the actual angle. From our results, based on 193 samples, we
were within ±15� relative to the true angle 100% of the time,
while we were within ±7.5� relative to the true angle 94.8%
of the time. Therefore, we achieved our angular resolution
benchmark. The graph of obtained angles versus actual angles
is show in Fig. 8.

Fig. 8. Obtained angles vs actual angles; the box represents the 1st to 3rd
quartiles of obtained angles

B. Response Time Validation
The next metric focuses on response time. The target

response time requirement was 0.5 seconds for the system.
In particular, we measured the time from detection to display
- from when a person would speak, to when the corresponding
arrow would be shown on the screen. The set-up had a
person speak from behind (at varying distances and angles);



the wearer would start a clock on hearing speech and stop
the clock on seeing the arrow. Based on 15 samples where
the speaker is 6ft behind, we had a mean latency of 355ms
with standard deviation of 124ms. While this measurement
might seem to depend on the wearer’s reaction time, note
that both starting and stopping the clock has this associated
reaction time delay and, in fact, stopping the clock would
have higher delay since human visual reaction time is greater
than audio reaction time; therefore, this test is actually slightly
conservative and passing this test allows us to verify that we
are definitely hitting the latency benchmark.

C. Noise and Human Conversation Recognition Validation
A followup requirement is handling human conversation

ranging from 300 - 3400 Hz at a voice level of > 60dB
with up to 70dB of non human noise. To verify our product’s
compliance with this requirement, we evaluated the product
in four noise situations: (1) a very quiet room; (2) an “office-
like” environment with AC/fan and keyboard noise; and (3) a
“very-noisy” restaurant environment. In all cases, we verified
that if an individual is speaking, our system is able to identify
such a fact and that the identified signal is within the angular
resolution bounds. However, in cases 2 and 3, when no
individual is speaking, the product sometimes registers the
sound and outputs a direction - while this is usually just some
brief flickering and does not impede the general use case, this
represents a potential area for improvement.

D. Usability Validation
The final three requirements focus on usability which will

be discussed together: > 25cm projection, 1lbs weight, 4
hours battery life, and portability. For the ¿25cm projection,
we visually verified that the image was clear and compared the
apparent distance to known objects as a reference. To validate
portability, we weighed the product - it is only 5 oz, and
very lightweight. Finally, to validate the battery life, we left
the device on with a continuous sound input. We stopped the
test after 12 hours, when it was still running. Analyzing the
current, the peak draw is 17.8 mA with a 28 hours theoretical
usage, which is more than sufficient. We also conducted a
few additional tests. We checked that the product still works
correctly and stably even when the wearer is (1) walking
around on a flat level; (2) walking upstairs and downstairs;
and (3) crouching. We also did a ”head tilt test”, where the
user tilted his head 0 to 45 degrees to verify device secureness
and also correctness.

VII. PROJECT MANAGEMENT

A. Schedule
We were on schedule for the most part, though we experi-

enced a few delays along the way early on in the project - a
delay in the BOM creation led to some part delays, however
due to our previously built in slack time for part shipment of
two weeks, we were not too behind and we eventually caught
up. Towards the end, we did a software rewrite for windowing,
and integration took longer than expected (so we pushed it

back to phase 4). Since we had enough built-in slack time,
we accomplished the project successfully on time. Our Gantt
chart is attached in appendix B.

B. Team Member Responsibilities
Responsibilities were assigned as follows:
1) Leon: Physical Design, Hardware Implementation and

Integration
This involves the CAD design and fabrication of all com-

ponents of the system, as well as the wiring, testing and
implementation of hardware components. Some software tasks
will also be part of Leon’s responsibilities, namely the display
driver, as well as working on setting up the firmware with
Will.

2) Ram: Signal Processing, Algorithm Development
This involves setting up the DFSDM peripheral to apply

digital sinc filter(s) to the audio input, as well as potential fur-
ther processing on the CPU. Algorithm development involves
research and implementation of the time difference calculation
algorithms, as well as iterating on the algorithm to make it
more efficient, in terms of speed and/or battery usage.

3) Will: Algorithm Development, Software Implementation
Algorithm development involves working with Ram to

develop the time difference calculation algorithms, as well
as doing optimizations in parallel. Software implementation
includes setup of our MCU, flashing it with our custom
firmware that enables the peripheral we need to use. It also
includes the implementation of code to read battery levels, as
well as code to integrate all aspects of our software design
together.

C. Budget
We have included in Appendix C our Bill of Materials,

containing the parts we bought. We ended up using all of
the parts, except for the 45mm and 106mm lenses. We bought
extras of some parts, like the microphones, but most of these
extras were used in the course of development as well (so that
all of us could work parallely).

D. Risk Management
Most of the risk in our project was during the implemen-

tation stage, since there was uncertainty associated with the
accuracy and latency of our algorithm.

To mitigate the risk associated with accuracy, we planned
to use up to 8 microphones for increased redundancy, and
selected a board with the capability to support these many
microphones. We chose the Dragonfly because it provided
the best risk mitigation with on-board support of up to 8
microphones - particularly, in the possible eventuality that
we would have required 8 microphones,instead of using the
DFSDM (which only supports up to 6 microphones), we would
have used the serial audio interface (SAI) to interface the
microphone array with the Dragonfly board. SAI supports up
to 8 microphones (four pairs of mics where for each pair, one
is rising-edge triggered and the other is falling-edge triggered).
However, SAI would require additional MCU support to de-
interleave the data stream from pairs of microphones and also



filtering; this fact, along with the filtering capabilities of the
DFSDM, made it our first choice [7].

Thankfully, the accuracy did not end up being an issue -
we achieved sufficient accuracy using 4 microphones coupled
with some post-processing techniques like windowing.

The other significant risk was the latency of the system -
because the details of AcousticSL’s internal implementation
of the GCC-PhaT algorithm are not public, we relied on the
latencies reported by papers using this algorithm to arrive
at our estimate and conclude that the design would work.
We also prepared ourselves for the case where, if it was
too slow, we would implement GCC-PhaT ourselves; again,
we were careful in choosing our board to ensure that it had
good support for digital signal processing (DSP), and that
there were existing libraries that we could use with it that
contained important primitives (like bandpass filtering, Fourier
transforms, etc.)

Finally, there was some additional risk to do with schedul-
ing, in particular in terms of our access to Techspark resources
and being able to iterate on our physical design. We negotiated
these risks by getting an early prototype out very early in
the implementation stage, as seen in our Gantt chart; this
insulated us from having to worry too much about this issue,
especially since our early prototype was designed very flexibly
to support anywhere from 4 to 8 microphones - so even if some
parts of our software design would have changed, we would
still have been able to use the same physical design. This
early prototyping also turned out to be very useful from the
standpoint of tuning the parameters of our device and ensuring
our implementation works well during development.

VIII. RELATED WORK

Our product is in a unique space - we have not come
across other devices that attempt to perform human voice
localization with an AR display in a portable form factor. In
terms of sound localization functionality alone, one existing
device on the market with similar capabilities is Bluecoin
[10]. Note, however, that we did not use this because it also
contains several other functionalities that are not necessary
to us, allowing for less fine-grained control and giving extra
overhead, potentially compromising our latency requirement.
In the research space, there has also been a lot of interest
in developing techniques devoted to accurate human sound
localization in the face of noisy environments - for examples,
see [8] and [9]. These are not as constrained in terms of
portability and form factor as ours, and are more focused
on optimizing for accuracy as far as possible, with minimal
latency.

IX. SUMMARY

Our system was able to meet almost all of our design
specifications, apart from one set of tests where we wanted it
to be completely able to ignore all noises even in very noisy
environments when there is no human sound altogether - as
mentioned earlier, note that this does not really show up in

general use (in particular, we still can recognize human speech
and focus on that in the presence of background noise).

Two things that worked in our favor were that power
consumption was not as issue, and that we could achieve lower
latencies than expected by eliminating a lot of overhead when
sampling from the microphone and displaying the visual cues
to the user. This enabled us to focus on accuracy. This also
leads us to some areas for improvement include potentially
performing some extra filtering, in order to perform better in
noisy environments, and perhaps even looking at more sophis-
ticated techniques like machine learning to focus on human
sound recognition. We know that because our latency and
power consumption are low enough, these would be interesting
and feasible avenues to explore, to improve our accuracy even
further. Other extension areas include distinguishing between
different classes of useful sound (e.g. vehicular/traffic sounds),
and being able to identify multiple sources of human sound
at the same time.

The main lesson learned was that planning out our design
in detail before the implementation was exceedingly useful
- even though there were still some surprises that emerged
during implementation, the fact that we had a good working
knowledge of the system and what we wanted to do before
we got our parts enabled our development to proceed very
smoothly. Another helpful lesson was that we streamlined the
project early on, to focus on human voices and particularly
the case of one human voice - this was helpful, because from
then on, we could set concrete metrics and our device could
focus on doing just a few things, but doing them well.

REFERENCES

[1] “AN 5027 Application note Interfacing PDM digital microphones using
STM 32 32-bit Arm Cortex MCUs”, July 2019.

[2] “https://en.wikipedia.org/wiki/Vision span”
[3] “Passive Eye Monitoring, Algorithms, Applications and Experiments”
[4] “https://myhealth.alberta.ca/Health/Pages/conditions.aspx?hwid=tf4173”
[5] “https://www.its.bldrdoc.gov/fs-1037/dir-039/ 5829.htm”
[6] “https://cdn-learn.adafruit.com/assets/assets/000/049/977/original/MP34DT01-

M.pdf”
[7] “https://www.st.com/resource/en/application note/dm00380469-

interfacing-pdm-digital-microphones-using-stm32-mcus-and-mpus-
stmicroelectronics.pdf”

[8] “http://www.euronoise2018.eu/docs/papers/432 Euronoise2018.pdf”
[9] “https://ieeexplore.ieee.org/document/6532229”

[10] “https://www.st.com/en/evaluation-tools/steval-bcnkt01v1.html”



APPENDIX A
ARCHITECTURE BLOCK DIAGRAM



APPENDIX B
GANTT PLANNING CHART



APPENDIX C
BILL OF MATERIALS



APPENDIX D
TRADE STUDIES


