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Abstract—In the time of coronavirus, social distancing has        
become an important aspect of human life. Public spaces that          
once had space for plenty of people must now limit their           
intake because of social distancing. In order to organize the          
availability of different spaces, we introduce Smart Library. In         
this project, we set up a system of cameras in a public space             
which constantly monitor the availability of socially distant        
seating and transmit this information to a public website. This          
is achieved with four cameras sending information to a central          
node, which preprocesses the data and sends it to a server in            
the cloud to perform image recognition and parse the         
information. The information is then transmitted to the public         
through a website.  
 

Index Terms—Camera, Sensor, Machine Learning 

I. INTRODUCTION 
Libraries are a huge part of the lifestyle of a university           

student. It is a haven where students can go to do homework            
or focused studying for an upcoming exam. On the Carnegie          
Mellon University campus, one of these libraries is Sorrell’s,         
which can get very crowded. Finding seats there can be          
difficult, even when you take into account social distancing         
protocols during a pandemic. An existing solution is a project          
called Carrel Corral, which detects the carrels available in         
Hunt Library using a system of sensors and LEDs that send           
information to an app. One problem with design is that it           
physically interferes with the space of the library with wired          
components, which could impede the work of a student. Also,          
this design only works in one place (Hunt Library). 

 
Smart Library is a system that aims to help college students           

find proper seating in a library or public space through          
wireless methods. It consists of a wireless system of cameras          
connected to microprocessors that will take bird’s-eye view        
images of a space and send them to a cloud server to run             
image detection of seats available for use. It also aims to           
analyze daily/weekly behaviors of a library of when seats tend          
to be available. The users of the Smart Library system will           
access the information obtained via a website. Our main goal          
is to use 4 images from 4 cameras to send it and run image              
detection on a cloud, as well as send the information to the            
website in less than or equal to 1 minute. This will translate to             
a camera frame rate of 1 frame per second. We will also aim             
to achieve a battery life of 72 hours and an object detection            
accuracy of 76.5%. 

II. DESIGN REQUIREMENTS 
Since the project was inspired by the lack of availability of           

space at Sorrell’s Library at Carnegie Mellon University, our         
design requirements were derived from this one use case. By          
observation, we know the seats are usually occupied in the          
span of a few minutes after being left vacant. Therefore, it is            
necessary to update information at least once per minute. Our          
design choices were mainly based on this time constraint.         
Additionally, the funds acquired for this project was $600, and          
some design decisions were made to remain under budget. 

 
Besides the time and budget constraints, there were two         

other minor constraints. If the batteries need to be replaced too           
often, it would become inconvenient for the people managing         
the library, and therefore Smart Library would become a         
burden to maintain. In order to ensure that the project remains           
relevant, we require the system to be able to function          
independently for 72 hours without changing the battery.        
Additionally, we have a requirement for the accuracy of image          
recognition for the project. The image recognition is based on          
the YOLO model, which has a top-1 accuracy of 76%. In our            
implementation, we modify this model to detect specific        
objects. Since this is more specialized, we also require the          
implementation to be at least as accurate as the original model           
that is more general. 

 
 

Component Time Allowance for Task 
Completion 

Camera Node 20s 

Central Node 30s 

Cloud 10s 

 

Table 1 

 
In order to ensure the design meets the time specifications,          

the requirements are further divided into three parts. Namely,         
camera nodes, the central node and the cloud. The breakdown          
of the timings for each section is given in Table 1. These            
timings are based on the specific function and hardware         
chosen for each portion, which are described in the         
Architecture and System Description sections.  
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Fig. 1. Block Diagram of Node Network with 1 Camera Node 
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III. DESIGN TRADE STUDIES 
 

A. Camera Node 
One design trade off that was made for the Camera Node           

was for the camera module. Ideally, we would like the highest           
resolution image possible, but we had to balance this with both           
cost and time to upload to the Central Node. We chose the            
OV5642 Camera Shield because it fit within our budget for          
each Camera Node and because the 5MP resolution it provides          
allows us to capture sufficiently high resolution images for the          
Object Detection Model and be able to upload the image over           
Wi-Fi at fast enough speeds to meet the upload time          
requirement. Another design trade off we made was choosing         
an MCU base for each Node. We decided on the Particle           
Argon because it comes with an integrated Wi-Fi chip and has           
sufficient processing power for the work it needs to do. 

 

B. Central Node 
One design trade off that was made for the central node was            

using an NVIDIA Jetson Nano instead of using another device          
like Raspberry Pi or INTEL NUC or NVIDIA TX2. One of           
the reasons is because of the use of image processing on the            
central node. As we work with the object detection algorithm          
in the cloud, we will have to determine what sort of image            
data pre-processing is needed to present the data to the model           
in an efficient and correct way. Image processing is generally          
faster on an NVIDIA Jetson Nano than on a Raspberry Pi, so            
any uncertainty with processing power or time will be         
accounted for here. Another reason for choosing the Jetson         
Nano over other NVIDIA devices like the TX2 or Jetson          
Xavier was due to a combination of portability and cost. The           
Jetson Nano is a relatively small computing device that costs          
around $99, which is much cheaper than the other NVIDIA          
alternatives. We only had a $600 budget in total, so getting           
something more expensive would not be ideal especially if we          
needed replacements.  

 
The main reason we chose the Edimax 2-in-1 Wifi and          

Bluetooth Adapter is because there has been previous projects         
and records of it being used with a Jetson Nano and working            
properly. When it comes to using external devices, the         
computer needs to have the correct drivers available if not          
installed already with the operating system. Since the NVIDIA         
Jetson Nano does not have the same kind of processor as a            
personal laptop or desktop, the operating system and existing         
drivers may not be compatible, so it is important to use an            
external Wifi adapter where it is more or less confirmed to           
work by another individual. The Wifi adapter also has enough          
bandwidth and network speed for our purposes too, which was          
a necessity. 

 

C. Cloud computing 
One of the design trade offs that we needed to make for            

cloud computing was the size of the instance. AWS instances          

usually come in xlarge, 2xlarge, 4xlarge and 8xlarge sizes,         
with each one being roughly two times faster and more          
expensive than the last. In our preliminary research, we found          
that the machine learning algorithm chosen was designed to         
run quickly on a small graphics processing unit (GPU). So, the           
smallest instance was sufficient. Additionally, in our       
application, we would need to constantly run the model over          
an extended period of time. The cheapest option allows us to           
run the model for the longest time given a fixed budget.           
Therefore, the cheapest option, which is xlarge in this case, is           
the most optimal. 

 
 

 

IV. SYSTEM DESCRIPTION 
As mentioned previously, the system is divided into three         

parts, camera nodes, a central node and the cloud. The camera           
nodes will take pictures periodically and send them to the          
central node, which will aggregate the pictures, perform        
preprocessing and send the final product to the cloud. Then,          
object detection will be run on the cloud to parse information,           
and display it on the website. 

A. Camera Nodes 
Each Camera Node will consist of three hardware        

components: Particle Argon, OV5642 Camera Shield, and a        
3.7V 1800mAh rechargeable LiPo battery. We decided to use         
the Particle Argon primarily due to its integrated Wi-Fi         
module, capable of reaching speeds up to 100Mbps, more than          
enough to meet the design requirements for upload speed.         
There will also be two software components: a        
synchronization protocol and image data conversion. Each       
Camera Node will be mounted high on a ceiling or wall to            
provide a bird’s eye view. 

The main purpose of each Camera Node is to capture          
images of the area from a bird’s eye view and upload them to             
the Central Node. The Particle Argon will be programmed         
with a synchronization protocol capable of synchronously       
taking images with the other Camera Nodes, so that images          
are taken and fed to the Central Node with minimal          
discrepancy. The Particle Argon will also have data        
conversion programming to convert the image data from the         
camera module to a form that the Central Node wants to           
receive. 

The other purpose of each Camera Node is to survive at           
least 72 hours on its battery life. The synchronization protocol          
will be designed to keep the Camera Node active only when           
needed to prolong the battery life. 

 

B. Central Node 
The central node will consist of two hardware components:         
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NVIDIA Jetson Nano and Edimax 2-in-1 Wifi and Bluetooth         
Adapter (EW-7611ULB). We decided to use the Jetson Nano         
instead of another device like a Raspberry Pi because running          
high-computational image processing we would use before       
sending the images to the cloud would have a better          
performance output on a Nano. The Edimax 2-in-1 is a known           
adapter to work well with the Jetson Nano drivers and has a            
network speed of 26 Mbps, which is enough for the project           
since we require 5-6 Mbps to adhere to the design          
requirements.  

 
The main purpose of the central node is to receive packets           

wirelessly from camera nodes and send packets wirelessly to         
the cloud. The Nano will have server-side socket        
programming that will receive TCP packets synchronously       
and concurrently from the four camera nodes. The reason that          
TCP was chosen over UDP is because with TCP, packet loss           
is not an issue. Even though UDP offers a faster alternative to            
TCP, there still lies the risk of packet loss, and we require the             
central node to take a total of 30s of processing time, the speed             
of TCP will suffice. For concurrency, the use of pthreads will           
be used to parse incoming packets from four camera nodes,          
and since the processor on the Nano is quad-core, there will be            
one thread running on each core, thus a performance         
advantage. We will be designing our own network application         
protocol to enable proper synchronous communication      
between the central node and camera nodes. The central node          
will communicate with the cloud and send data packets via          
HTTP requests since the cloud hosts the website as well. 

 
Another purpose of the central node is to conduct image          

pre-processing on packets before sending image data to the         
cloud. This includes any pre-processing that would make the         
data presentation to the YOLO model (discussed in section C)          
sufficient as well as image stitching. Image stitching is an          
algorithm that takes multiple images and connects them        
together to create one image that acts as a map of an entire             
area. For the purpose of Smart Library, it will be used to            
combine 4 images into one overall map of a public space. This            
will help make the AWS model run smoothly. 

 

C. Cloud 
The cloud will run two pieces of software, an object          

detection model and a website. Cloud computing was chosen         
because it enables renting computing resources. This is        
especially helpful with machine learning models like the one         
we use in this project. Cloud computing gives us cheap access           
to a Graphics Processing Unit (GPU), which is required for          
machine learning. 

 
The specific cloud computing resource we chose for this         

project is Amazon Web Services (AWS) and Google Colab.         
Google Colab offers free access to a GPU, making it good for            
development of the machine learning model. However, Colab        
is also inconsistent in giving its resources, so we will have to            
move the project to AWS for the final stages of development           

and for deployment. AWS offers access to an NVIDIA T4          
GPU with the g4dn.xlarge hardware instance. This instance        
costs $0.526 per hour and allows us over 175 hours on the            
budget allocated for cloud computing, which is more than         
what is required for the project. Additionally, g4dn.xlarge has         
a fast network speed of 25 gigabits per second, which will           
reduce latency when communicating with the other parts of         
the project. For software, the Ubuntu Deep Learning AMI will          
be used, because it comes pre configured with common deep          
learning libraries like PyTorch and OpenCV.  

 
The cloud will run a machine learning algorithm which will          

be adapted from the YOLO model [1]. YOLO is a          
convolutional neural network designed for real-time object       
detection. This particular model was chosen because of the         
time constraint. Other state of the art object detection models          
are built for non-real time applications, and therefore sacrifice         
latency for accuracy. Since time is a more important metric in           
this project, we decided to use the YOLO model. 

 

 
  
The YOLO architecture is depicted in the above figure. It          

contains seven convolutional layers followed by two fully        
connected layers and post-processing. For this project, we will         
maintain the architecture and weights of the first few layers          
and change the last few layers. The original model was trained           
to identify 80 classes. For our purpose, however, we need to           
identify only two classes, vacant and occupied seats. The first          
few layers of the model will process the image and output an            
abstract representation from which it is easy to extract         
information about the contents of the image. The model then          
processes this representation to find out which of the 80          
classes are found in the image, along with their locations. For           
this project, we will take the abstract representation and train a           
custom model to process this information to find out which of           
our two classes are found in the image, along with the           
locations. The new architecture will be determined after data         
has been collected, since the number of parameters and the          
quality of parameters is dependent on the quality and variety          
of data available. 

 
Once the locations are determined by the object detection         

model, the data will be abstracted into a map to protect the            
privacy of people in the public space. This map will be           
publicly accessible through a simple website that only        
processes get requests, which will be implemented in Django.  
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V. PROJECT MANAGEMENT 

A. Schedule 
Our Schedule contains primary tasks groups: Camera       

Nodes, Central Node, Object Detection Model, and Website.        
By the nature of the project, the hardware must be complete           
before the Object Detection Model can be properly trained,         
thus the Camera Nodes and Central Node task groups with be           
tackled first, concurrently. After Camera Nodes has achieved        
its milestones, work on the Object Detection Model task group          
will begin in full force. The Website task group is designed so            
that tasks may be worked on between gaps in other task           
groups. All task groups are scheduled to be completed by the           
first week of December. 

We encountered setbacks due to shipping delays of our         
components since the initial phases of our project relies         
heavily on having working nodes to provide our ML algorithm          
trainable data. Since our original schedule was aggressive,        
with a final milestone scheduled for the end of November, our           
timeline shift still has us finishing by the end of the semester. 

 

B. Team Member Responsibilities 
Each team member will take primary responsibility for a         

task group. Pablo will take lead on the Camera Nodes, Arjun           
will take lead on the Central Node, and Krish will take lead on             
the Object Detection Model. Secondary responsibilities      
include integration between task groups and the Website task         
group. Pablo and Arjun will work together to develop the          
communication between the Camera Nodes and the Central        
Node. Arjun and Krish will work together to develop the          
image pre-processing and transferal to the Object Detection        
Model from the Central Node. Krish and Pablo will work          
together to find best image capturing practices to feed to the           
Object Detection Model. Everyone will work on the Website         
in the gaps between Task Groups. For Pablo and Arjun, this is            
anticipated to be after their task groups are complete. For          
Krish, this is anticipated to be before the bulk of his task group             
begins. 

 

C. Budget 
Of the roughly $600 we received, our budget breakdown is          

as follows: Camera Nodes, $100 each, 4 total nodes; Central          
Node, $100 each, 1 total node; AWS credits, $100, 200 hours           
total. The specific costs breakdown are as follows: The         
Camera Nodes each require 3 primary components, the        
Particle Argon, $25; Camera Module, $50; and Battery, $10.         
The Central Node requires 2 components, the Jetson Nano,         
$100; and the WiFi adapter, $15. AWS credits are paid for           
each hour used at a rate of $.526 per hour. 

 

D. Risk Management 
The way we mitigated design risk was to have a generic           

system architecture with clearly defined needed features. No        

single aspect of our design is locked to a specific component;           
our components were chosen solely due to the fact they could           
achieve the features we wanted for the cheapest price and/or          
easiest integration. For example, our Central Node can be         
replaced by any hardware component(s) that can connect to         
the internet and do image processing and our Camera Nodes          
can be replaced by any hardware component(s) that can         
capture images and transmit them to the Central Node. A goal           
of our design was to be able to be as flexible as possible, so              
that it should be near arbitrary to scale up or swap           
components. 

The way we planned for schedule risk was by setting          
ourselves with an aggressive timeline so that we would finish          
early if everything went to plan. We mitigated risk of          
unanticipated delays this way by allowing our schedule to shift          
by a couple weeks and still be on track to finish before the             
deadline. Additionally, we split our tasks into groups so that          
we can easily adapt and adjust when any one task gets behind            
schedule, as well as having primary task groups be staggered,          
so that there is always a team member available to assist if            
needed. 

We managed resource risk by ordering duplicate parts and         
avoiding purchasing all parts at once. Even though our design          
for a fully functioning node network contains at least four          
Camera Nodes, our design will still function with just one,          
albeit with less area covered. Furthermore, full functionality        
can be tested with just two Camera Nodes, so we initially only            
purchased enough components for two Nodes in case we ran          
into a design problem and had to pivot to a different design for             
our Camera Nodes. For our Central Node, due to the high cost            
of the Jetson Nano, we were not able to purchase duplicate           
nodes. However, we only purchased one of the Wifi and          
Bluetooth Adapter, so that Arjun could confirm the part         
worked for our design before Pablo purchased one to be put           
into the Node Network on campus. 

 

VI. RELATED WORK 
One related project was done in Fall 2019 of CMU          

Capstone 18500 by Team A4. The project was called Carrel          
Corral. The main goal of this project was to find available           
study carrels on the third floor of Hunt Library on CMU           
campus. Their approach was to have a system of ultrasonic          
and infrared sensors at each carrel connected to a         
microprocessor to determine whether there was a person there,         
as well as have a mobile app that can communicate this           
information to possible student users. They also considered the         
case where a student places their backpack at a carrel but does            
not actually sit there for a long period of time.  
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VII. SUMMARY 

A. Future work 
Although this project is part of a semester-long course, we          

might continue working on it after the semester ends.         
Throughout the semester, we plan on demonstrating the        
project in Sorrell’s Library at Carnegie Mellon University.        
However, this can be extended to any general space. One          
particular type of space is restaurants, who might want to          
monitor seating availability in order to automatically assign        
tables without the need for a host. This would require          
modifying the system to fit into multiple different        
environments. Specifically for object detection, data would       
have to be collected at a much larger scale from multiple           
locations in order to build a model that can generalize more           
easily. 

 
Another modification that could be made is integration with         

existing hardware. It is common for public spaces to have          
security cameras. For installation in such a space, we could          
remove the requirement for our own cameras in lieu of the           
security cameras that have already been installed. This would         
require a change in hardware along with compatibility with the          
specific security system of the space. The advantage with this          
method is that our system would be less invasive since it           
reduces the requirement of installing additional hardware. 

B. Lessons Learned 
[TBD] 
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