
1
18-500 Design Project Report: 10/19/2020

Smart Library

Authors: Krish Vaswani, Pablo Wilson, Arjun Raguram,
Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—In the time of coronavirus, social distancing has
become an important aspect of human life. Public spaces that
once had space for plenty of people must now limit their
intake because of social distancing. In order to organize the
availability of different spaces, we introduce Smart Library. In
this project, we set up a system of cameras in a public space
which constantly monitor the availability of socially distant
seating and transmit this information to a public website. This
is achieved with four cameras sending information to a central
node, which preprocesses the data and sends it to a server in
the cloud to perform image recognition and parse the
information. The information is then transmitted to the public
through a website.

Index Terms—Camera, Sensor, Machine Learning

I. INTRODUCTION
Libraries are a huge part of the lifestyle of a university

student. It is a haven where students can go to do homework
or focused studying for an upcoming exam. On the Carnegie
Mellon University campus, one of these libraries is Sorrell’s,
which can get very crowded. Finding seats there can be
difficult, even when you take into account social distancing
protocols during a pandemic. An existing solution is a project
called Carrel Corral, which detects the carrels available in
Hunt Library using a system of sensors and LEDs that send
information to an app. One problem with design is that it
physically interferes with the space of the library with wired
components, which could impede the work of a student. Also,
this design only works in one place (Hunt Library).

Smart Library is a system that aims to help college students

find proper seating in a library or public space through
wireless methods. It consists of a wireless system of cameras
connected to microprocessors that will take bird’s-eye view
images of a space and send them to a cloud server to run
image detection of seats available for use. It also aims to
analyze daily/weekly behaviors of a library of when seats tend
to be available. The users of the Smart Library system will
access the information obtained via a website. Our main goal
is to use 4 images from 4 cameras to send it and run image
detection on a cloud, as well as send the information to the
website in less than or equal to 1 minute. This will translate to
a camera frame rate of 1 frame per second. We will also aim
to achieve a battery life of 72 hours and an object detection
accuracy of 76.5%.

II. DESIGN REQUIREMENTS
Since the project was inspired by the lack of availability of

space at Sorrell’s Library at Carnegie Mellon University, our
design requirements were derived from this one use case. By
observation, we know the seats are usually occupied in the
span of a few minutes after being left vacant. Therefore, it is
necessary to update information at least once per minute. Our
design choices were mainly based on this time constraint.
Additionally, the funds acquired for this project was $600, and
some design decisions were made to remain under budget.

Besides the time and budget constraints, there were two

other minor constraints. If the batteries need to be replaced too
often, it would become inconvenient for the people managing
the library, and therefore Smart Library would become a
burden to maintain. In order to ensure that the project remains
relevant, we require the system to be able to function
independently for 72 hours without changing the battery.
Additionally, we have a requirement for the accuracy of image
recognition for the project. The image recognition is based on
the YOLO model, which has a top-1 accuracy of 76%. In our
implementation, we modify this model to detect specific
objects. Since this is more specialized, we also require the
implementation to be at least as accurate as the original model
that is more general.

Component Time Allowance for Task
Completion

Camera Node 20s

Central Node 30s

Cloud 10s

Table 1

In order to ensure the design meets the time specifications,

the requirements are further divided into three parts. Namely,
camera nodes, the central node and the cloud. The breakdown
of the timings for each section is given in Table 1. These
timings are based on the specific function and hardware
chosen for each portion, which are described in the
Architecture and System Description sections.

2
18-500 Design Project Report: 10/19/2020

Fig. 1. Block Diagram of Node Network with 1 Camera Node

3
18-500 Design Project Report: 10/19/2020

III. DESIGN TRADE STUDIES

A. Camera Node
One design trade off that was made for the Camera Node

was for the camera module. Ideally, we would like the highest
resolution image possible, but we had to balance this with both
cost and time to upload to the Central Node. We chose the
OV5642 Camera Shield because it fit within our budget for
each Camera Node and because the 5MP resolution it provides
allows us to capture sufficiently high resolution images for the
Object Detection Model and be able to upload the image over
Wi-Fi at fast enough speeds to meet the upload time
requirement. Another design trade off we made was choosing
an MCU base for each Node. We decided on the Particle
Argon because it comes with an integrated Wi-Fi chip and has
sufficient processing power for the work it needs to do.

B. Central Node
One design trade off that was made for the central node was

using an NVIDIA Jetson Nano instead of using another device
like Raspberry Pi or INTEL NUC or NVIDIA TX2. One of
the reasons is because of the use of image processing on the
central node. As we work with the object detection algorithm
in the cloud, we will have to determine what sort of image
data pre-processing is needed to present the data to the model
in an efficient and correct way. Image processing is generally
faster on an NVIDIA Jetson Nano than on a Raspberry Pi, so
any uncertainty with processing power or time will be
accounted for here. Another reason for choosing the Jetson
Nano over other NVIDIA devices like the TX2 or Jetson
Xavier was due to a combination of portability and cost. The
Jetson Nano is a relatively small computing device that costs
around $99, which is much cheaper than the other NVIDIA
alternatives. We only had a $600 budget in total, so getting
something more expensive would not be ideal especially if we
needed replacements.

The main reason we chose the Edimax 2-in-1 Wifi and

Bluetooth Adapter is because there has been previous projects
and records of it being used with a Jetson Nano and working
properly. When it comes to using external devices, the
computer needs to have the correct drivers available if not
installed already with the operating system. Since the NVIDIA
Jetson Nano does not have the same kind of processor as a
personal laptop or desktop, the operating system and existing
drivers may not be compatible, so it is important to use an
external Wifi adapter where it is more or less confirmed to
work by another individual. The Wifi adapter also has enough
bandwidth and network speed for our purposes too, which was
a necessity.

C. Cloud computing
One of the design trade offs that we needed to make for

cloud computing was the size of the instance. AWS instances

usually come in xlarge, 2xlarge, 4xlarge and 8xlarge sizes,
with each one being roughly two times faster and more
expensive than the last. In our preliminary research, we found
that the machine learning algorithm chosen was designed to
run quickly on a small graphics processing unit (GPU). So, the
smallest instance was sufficient. Additionally, in our
application, we would need to constantly run the model over
an extended period of time. The cheapest option allows us to
run the model for the longest time given a fixed budget.
Therefore, the cheapest option, which is xlarge in this case, is
the most optimal.

IV. SYSTEM DESCRIPTION
As mentioned previously, the system is divided into three

parts, camera nodes, a central node and the cloud. The camera
nodes will take pictures periodically and send them to the
central node, which will aggregate the pictures, perform
preprocessing and send the final product to the cloud. Then,
object detection will be run on the cloud to parse information,
and display it on the website.

A. Camera Nodes
Each Camera Node will consist of three hardware

components: Particle Argon, OV5642 Camera Shield, and a
3.7V 1800mAh rechargeable LiPo battery. We decided to use
the Particle Argon primarily due to its integrated Wi-Fi
module, capable of reaching speeds up to 100Mbps, more than
enough to meet the design requirements for upload speed.
There will also be two software components: a
synchronization protocol and image data conversion. Each
Camera Node will be mounted high on a ceiling or wall to
provide a bird’s eye view.

The main purpose of each Camera Node is to capture
images of the area from a bird’s eye view and upload them to
the Central Node. The Particle Argon will be programmed
with a synchronization protocol capable of synchronously
taking images with the other Camera Nodes, so that images
are taken and fed to the Central Node with minimal
discrepancy. The Particle Argon will also have data
conversion programming to convert the image data from the
camera module to a form that the Central Node wants to
receive.

The other purpose of each Camera Node is to survive at
least 72 hours on its battery life. The synchronization protocol
will be designed to keep the Camera Node active only when
needed to prolong the battery life.

B. Central Node
The central node will consist of two hardware components:

4
18-500 Design Project Report: 10/19/2020

NVIDIA Jetson Nano and Edimax 2-in-1 Wifi and Bluetooth
Adapter (EW-7611ULB). We decided to use the Jetson Nano
instead of another device like a Raspberry Pi because running
high-computational image processing we would use before
sending the images to the cloud would have a better
performance output on a Nano. The Edimax 2-in-1 is a known
adapter to work well with the Jetson Nano drivers and has a
network speed of 26 Mbps, which is enough for the project
since we require 5-6 Mbps to adhere to the design
requirements.

The main purpose of the central node is to receive packets

wirelessly from camera nodes and send packets wirelessly to
the cloud. The Nano will have server-side socket
programming that will receive TCP packets synchronously
and concurrently from the four camera nodes. The reason that
TCP was chosen over UDP is because with TCP, packet loss
is not an issue. Even though UDP offers a faster alternative to
TCP, there still lies the risk of packet loss, and we require the
central node to take a total of 30s of processing time, the speed
of TCP will suffice. For concurrency, the use of pthreads will
be used to parse incoming packets from four camera nodes,
and since the processor on the Nano is quad-core, there will be
one thread running on each core, thus a performance
advantage. We will be designing our own network application
protocol to enable proper synchronous communication
between the central node and camera nodes. The central node
will communicate with the cloud and send data packets via
HTTP requests since the cloud hosts the website as well.

Another purpose of the central node is to conduct image

pre-processing on packets before sending image data to the
cloud. This includes any pre-processing that would make the
data presentation to the YOLO model (discussed in section C)
sufficient as well as image stitching. Image stitching is an
algorithm that takes multiple images and connects them
together to create one image that acts as a map of an entire
area. For the purpose of Smart Library, it will be used to
combine 4 images into one overall map of a public space. This
will help make the AWS model run smoothly.

C. Cloud
The cloud will run two pieces of software, an object

detection model and a website. Cloud computing was chosen
because it enables renting computing resources. This is
especially helpful with machine learning models like the one
we use in this project. Cloud computing gives us cheap access
to a Graphics Processing Unit (GPU), which is required for
machine learning.

The specific cloud computing resource we chose for this

project is Amazon Web Services (AWS) and Google Colab.
Google Colab offers free access to a GPU, making it good for
development of the machine learning model. However, Colab
is also inconsistent in giving its resources, so we will have to
move the project to AWS for the final stages of development

and for deployment. AWS offers access to an NVIDIA T4
GPU with the g4dn.xlarge hardware instance. This instance
costs $0.526 per hour and allows us over 175 hours on the
budget allocated for cloud computing, which is more than
what is required for the project. Additionally, g4dn.xlarge has
a fast network speed of 25 gigabits per second, which will
reduce latency when communicating with the other parts of
the project. For software, the Ubuntu Deep Learning AMI will
be used, because it comes pre configured with common deep
learning libraries like PyTorch and OpenCV.

The cloud will run a machine learning algorithm which will

be adapted from the YOLO model [1]. YOLO is a
convolutional neural network designed for real-time object
detection. This particular model was chosen because of the
time constraint. Other state of the art object detection models
are built for non-real time applications, and therefore sacrifice
latency for accuracy. Since time is a more important metric in
this project, we decided to use the YOLO model.

The YOLO architecture is depicted in the above figure. It

contains seven convolutional layers followed by two fully
connected layers and post-processing. For this project, we will
maintain the architecture and weights of the first few layers
and change the last few layers. The original model was trained
to identify 80 classes. For our purpose, however, we need to
identify only two classes, vacant and occupied seats. The first
few layers of the model will process the image and output an
abstract representation from which it is easy to extract
information about the contents of the image. The model then
processes this representation to find out which of the 80
classes are found in the image, along with their locations. For
this project, we will take the abstract representation and train a
custom model to process this information to find out which of
our two classes are found in the image, along with the
locations. The new architecture will be determined after data
has been collected, since the number of parameters and the
quality of parameters is dependent on the quality and variety
of data available.

Once the locations are determined by the object detection

model, the data will be abstracted into a map to protect the
privacy of people in the public space. This map will be
publicly accessible through a simple website that only
processes get requests, which will be implemented in Django.

5
18-500 Design Project Report: 10/19/2020

V. PROJECT MANAGEMENT

A. Schedule
Our Schedule contains primary tasks groups: Camera

Nodes, Central Node, Object Detection Model, and Website.
By the nature of the project, the hardware must be complete
before the Object Detection Model can be properly trained,
thus the Camera Nodes and Central Node task groups with be
tackled first, concurrently. After Camera Nodes has achieved
its milestones, work on the Object Detection Model task group
will begin in full force. The Website task group is designed so
that tasks may be worked on between gaps in other task
groups. All task groups are scheduled to be completed by the
first week of December.

We encountered setbacks due to shipping delays of our
components since the initial phases of our project relies
heavily on having working nodes to provide our ML algorithm
trainable data. Since our original schedule was aggressive,
with a final milestone scheduled for the end of November, our
timeline shift still has us finishing by the end of the semester.

B. Team Member Responsibilities
Each team member will take primary responsibility for a

task group. Pablo will take lead on the Camera Nodes, Arjun
will take lead on the Central Node, and Krish will take lead on
the Object Detection Model. Secondary responsibilities
include integration between task groups and the Website task
group. Pablo and Arjun will work together to develop the
communication between the Camera Nodes and the Central
Node. Arjun and Krish will work together to develop the
image pre-processing and transferal to the Object Detection
Model from the Central Node. Krish and Pablo will work
together to find best image capturing practices to feed to the
Object Detection Model. Everyone will work on the Website
in the gaps between Task Groups. For Pablo and Arjun, this is
anticipated to be after their task groups are complete. For
Krish, this is anticipated to be before the bulk of his task group
begins.

C. Budget
Of the roughly $600 we received, our budget breakdown is

as follows: Camera Nodes, $100 each, 4 total nodes; Central
Node, $100 each, 1 total node; AWS credits, $100, 200 hours
total. The specific costs breakdown are as follows: The
Camera Nodes each require 3 primary components, the
Particle Argon, $25; Camera Module, $50; and Battery, $10.
The Central Node requires 2 components, the Jetson Nano,
$100; and the WiFi adapter, $15. AWS credits are paid for
each hour used at a rate of $.526 per hour.

D. Risk Management
The way we mitigated design risk was to have a generic

system architecture with clearly defined needed features. No

single aspect of our design is locked to a specific component;
our components were chosen solely due to the fact they could
achieve the features we wanted for the cheapest price and/or
easiest integration. For example, our Central Node can be
replaced by any hardware component(s) that can connect to
the internet and do image processing and our Camera Nodes
can be replaced by any hardware component(s) that can
capture images and transmit them to the Central Node. A goal
of our design was to be able to be as flexible as possible, so
that it should be near arbitrary to scale up or swap
components.

The way we planned for schedule risk was by setting
ourselves with an aggressive timeline so that we would finish
early if everything went to plan. We mitigated risk of
unanticipated delays this way by allowing our schedule to shift
by a couple weeks and still be on track to finish before the
deadline. Additionally, we split our tasks into groups so that
we can easily adapt and adjust when any one task gets behind
schedule, as well as having primary task groups be staggered,
so that there is always a team member available to assist if
needed.

We managed resource risk by ordering duplicate parts and
avoiding purchasing all parts at once. Even though our design
for a fully functioning node network contains at least four
Camera Nodes, our design will still function with just one,
albeit with less area covered. Furthermore, full functionality
can be tested with just two Camera Nodes, so we initially only
purchased enough components for two Nodes in case we ran
into a design problem and had to pivot to a different design for
our Camera Nodes. For our Central Node, due to the high cost
of the Jetson Nano, we were not able to purchase duplicate
nodes. However, we only purchased one of the Wifi and
Bluetooth Adapter, so that Arjun could confirm the part
worked for our design before Pablo purchased one to be put
into the Node Network on campus.

VI. RELATED WORK
One related project was done in Fall 2019 of CMU

Capstone 18500 by Team A4. The project was called Carrel
Corral. The main goal of this project was to find available
study carrels on the third floor of Hunt Library on CMU
campus. Their approach was to have a system of ultrasonic
and infrared sensors at each carrel connected to a
microprocessor to determine whether there was a person there,
as well as have a mobile app that can communicate this
information to possible student users. They also considered the
case where a student places their backpack at a carrel but does
not actually sit there for a long period of time.

6
18-500 Design Project Report: 10/19/2020

VII. SUMMARY

A. Future work
Although this project is part of a semester-long course, we

might continue working on it after the semester ends.
Throughout the semester, we plan on demonstrating the
project in Sorrell’s Library at Carnegie Mellon University.
However, this can be extended to any general space. One
particular type of space is restaurants, who might want to
monitor seating availability in order to automatically assign
tables without the need for a host. This would require
modifying the system to fit into multiple different
environments. Specifically for object detection, data would
have to be collected at a much larger scale from multiple
locations in order to build a model that can generalize more
easily.

Another modification that could be made is integration with

existing hardware. It is common for public spaces to have
security cameras. For installation in such a space, we could
remove the requirement for our own cameras in lieu of the
security cameras that have already been installed. This would
require a change in hardware along with compatibility with the
specific security system of the space. The advantage with this
method is that our system would be less invasive since it
reduces the requirement of installing additional hardware.

B. Lessons Learned
[TBD]

REFERENCES
[1] You Only Look Once: Unified, Real-Time Object Detection,

https://arxiv.org/abs/1506.02640v5
[2] National Semiconductor Inc., www.national.com.
[3] CMU 18500 Capstone Team A4: Carrel Corral,

http://course.ece.cmu.edu/~ece500/projects/f19-teama4/proposal/

IX: Schedule Diagram

https://arxiv.org/abs/1506.02640v5
http://www.national.com/
http://course.ece.cmu.edu/~ece500/projects/f19-teama4/proposal/

