
Ballbot Design Review Report

Rashmi Anil, Ishaan Gupta, Ryan Stentz
Electrical and Computer Engineering, Carnegie Mellon University

{ranil, ishaang, rastentz}@andrew.cmu.edu

Abstract

After a long and tiring session of serving practice, ten-
nis players currently use a ball hoper – a heavy hand-
held machine - to collect balls. With our new highly
improved autonomous tennis assistant, practice is now
more efficient and less painful. Ballbot is a robot that
uses computer vision to quickly and autonomously col-
lect tennis balls and bring it back to the tennis player.
Since Ballbot collects tennis balls as they are being hit,
players no longer need to allocate time to clean the court
after practice and can instead focusing on improving
their techniques.

Index

Index Terms— Autonomous, Ball-hopper, Computer
Vision, iRobot, Jetson Nano, OpenCV, Tennis

I. INTRODUCTION
In tennis equipment market, there exist very few advanced
electronic devices assisting in the feeding and picking of
tennis balls. In fact, most tennis players spend more time
picking up balls after playing than the amount of time they
spend hitting. Currently the most popular option to pick up
balls is the ball hopper. While this method is functional, it
takes up time and carrying all of the balls around the court
is heavy and cumbersome. With our project, we introduce
Ballbot – an autonomous ball boy that collects tennis balls
while players are practicing or hitting with a ball machine.
Ballbot eliminates the time wasted chasing balls and helps
maximize the players’ time on court. This tennis assistant
allows a tennis player to focus on their technique and skills
while completely eliminating the tedious task of gathering
the tennis balls.

With Ballbot, tennis practice will be more efficient and
less painful. Ballot is an essential tennis assistant that helps
the tennis player collect balls during practice. We aim to
build a robot that can quickly and autonomously collect ten-
nis balls at an average rate of 6 balls per minute and have
a battery life of at least 30 minutes. Our projects scope fo-
cuses on serving practice. This is because many balls will
be clustered together and the majority of the balls will be
on one side of the net. The robot will detect and collect 30
lime-green tennis balls on an debris-free, outdoor hard court
with reasonable amounts of daylight.

II. DESIGN REQUIREMENTS
To ensure that the Ballbot is efficient, good at serving its pur-
pose and easy to use, we have several design specifications
that are critical to the success of our project. Our high-level
user requirements are as follows:
• Quickly and autonomously collect about 30 tennis balls:

The average amount of balls that is served before the
player rests.

• Collect Balls at an average speed of 6 balls per minute:
The average tennis player can serve about 6 balls a minute
so we want to be able to pick up at balls at this speed.

• Has a battery life of at least 30 minutes when being used:
The average tennis player practices their serve for about
30 minutes so the robot needs to be able to last for at least
one practice session.

• Weighs less than 20 pounds: needs to be easy to carry onto
and off the court along with all the other tennis equipment.

All of the requirements above ensure that the robot is func-
tional and at least meets the requirements of existing solu-
tions. To test the speed of ball collection and battery, we plan
to scatter balls throughout the court and time the robot to see
how long it takes for the robot to clear the court and leave
the robot running until the battery dies.
Our next set of requirements involve the technical the tech-
nical aspects of this project. In terms of software, we want a
robot that is:
• Completely Autonomous: This requirement is the most

important idea behind the project.
• Can process video frames at at least 10 frames per second:

In order to easily track balls
• Has a 0% false positive rate for detecting a ball: robot

should not start moving towards a nonexistent ball as this
wastes time and energy.

• Have a less than 5% false negative rate for detecting a
ball: It is rare that a robot does not go after a ball.

While we understand that achieving a 0% false positive rate
for detecting tennis balls is very low, we think that this is
achieve achievable due to the way we are constraining this
problem. Since we are focusing on serving practice on a
debris-free court, there shouldn’t be anything aside from ten-
nis balls on the other side of the court and the balls should be

1

clustered together. And since balls should be the only objects
on the court, achieving a 0% false positive rate should not be
too bad. In contrast, we are allowing ourselves to have a 5%
false negative rate because we understand that our computer
vision algorithm is not going to be perfect and we might not
be able to identify some objects as balls in some cases (e.g,
ball is in a dark corner of the court). We plan on testing these
requirements in two different settings: one where we place
the robot in a court scattered with many tennis balls and one
where we place the robot on a court with no tennis balls.
Calculating the number of false positives and false negatives
in these settings should give us a good estimate as to what
the rates are.
Finally, our hardware requirements are as follows:

• Robot can capture tennis balls within 1 ft from the center
of the robot: 1 ft is an ideal number that doesn’t make
the robot too long and unwieldy but also gives us a big
enough radius to collect many balls at once.

• Robot should hold-on to un-launched tennis balls while
turning: This is to make sure that we don’t loose balls we
have in our grasp.

These hardware requirements ensure that the design of our
robot is not flawed. That is, we ensure that once a ball is
within our ”1 ft from the center of the robot” grasp, we do
not loose it. We can test that this is the case by manually
rotating the robot once it has balls in its grasp. If while
turning the balls slip out, then we will know that the design
did not meet the requirements.

III. ARCHITECTURE AND/OR PRINCIPLE
OF OPERATION

The architecture of the Ballbot consists of 2 major parts, the
software doing the compute vision and motor controls, and
the hardware responsible for actually collecting tennis balls.
These sections can be seen clearly in our system diagram
which can be found in the Appendix as figure 1.

Overall, all the software is contained in the Nvidia Jet-
son Nano. This includes the code for tennis ball tracking,
controlling the iRobot Create 2, and controlling the motor
speeds of the tennis ball launch system. The iRobot Create 2
is used as the base of the Ballbot and carries the Tennis Ball
Transport system, Nvidia Jetson Nano, and other hardware
to power all the parts. The tennis ball transport system is
the mechanism designed to funnel tennis balls towards two
spinning wheels that will launch the tennis ball up a ramp
and into a basket on the back of the Ballbot.

The main part of the software is the ball tracking algo-
rithm. The input to this algorithm is image frames received
from the Intel RealSense Camera over UART. These frames
have RGB values for each pixel as well as depth informa-
tion. The ball tracking algorithm first reads each input frame
and stores it as an array. It then converts each from from
the RGB color space to the HSV color space which helps
increase accuracy in computer vision applications. The next
step is to do color thresholding on each of the channels of
the HS color space to detect only tennis balls. This is the

part of the algorithm sensitive to fluctuations in lighting. The
Ballbot automatically adjusts the parameters for threshold-
ing each time it is turned on so that is can account for new
lighting conditions. The thresholding decides which pixels
are part of tennis balls and which ones are not.

The output of the thresholding is sent to the noise filtering
algorithm. The noise filtering algorithm removes the noise
of random pixels that were accidentally classified as being
part of a tennis ball. Once the noise is removed, the algo-
rithm is left with groups of pixels it thinks is a tennis ball.
Each of the groups in thought of as a tennis ball and the algo-
ithm finds the locations of these detected tennis balls in the
frame. Then the algorithm picks which tennis ball to go after
and tracks it between frames. This allows the ball tracking
algorithm to keep track of the position of the tennis ball the
Ballbot needs to collect. This position information is sent to
the software controlling the iRobot Create 2 as well as the
software controlling the Tennis ball launch control motors.

The iRobot controlling software will use the position of
the tennis ball and determine if the iRobot needs to turn or
adjust its speed. These commands will then be sent to the
iRobot Create 2 over UART so the iRobot will keep adjust-
ing its trajectory until the tennis ball is captured, after which
it will go after a new ball. The code controlling the motors
to collect tennis balls will slow down the motors when the
Ballbot is not near a ball and speed them up when the Ball-
bot is close to a ball to conserve power.

In the tennis ball transport system, the L298N motor con-
troller is responsible for interfacing with the motors collect-
ing the tennis balls. It receives 12V from the LiPo battery to
power the motor and a PWM signal form the Nvidia Jetson
Nano determining how fast it should spin the motors. The
motor controller uses the power and PWM signal to control
two 755 DC brush motors at the front of the Ballbot.

Each motor has a rubber wheel attached to it that can de-
form to the shape of the tennis ball. The motors are placed in
the front of the Ballbot at a distance apart where the two rub-
ber wheels have slightly less than enough space for a tennis
ball to pass in between them. The motors spin in opposite
directions from each other so that any tennis ball that enters
the middle of the 2 rubber wheels will be pulled in by both
wheels.

The tennis ball will be sped up to 2.2 m/s from the friction
of the rubber wheels. The tennis ball will then travel up the
acrylic ramp right behind the wheels and onto the wooden
runway on top of the iRobot Create 2. Behind the iRobot
will be a basket that the iRobot is dragging along. The bas-
ket will have a capacity of 30 tennis balls and will travel on
swivel wheels. Once the tennis ball reaches the end of the
runway, it will drop into the bsket where all the tennis balls
are being collected.

To power the Nvidia Jetson Nano and the motors in the
tennis ball transport system, we have a 12V rechargable
LiPo Battery. While the battery can be connected directly
to the motor controller board for the batteries, the Nvidia
Jetson Nano needs 5V for which we have a buck converter.
The iRobot Create 2 has its own internal rechargeable bat-
tery that is charged using the iRobot home base. The iRobot
can automatically navigiate to its charging base.

2

IV. DESIGN TRADE STUDIES
During the design phase, we explored multiple approaches
for both the hardware and software solutions for Ballbot.
These different approaches came with their benefits and
tradeoffs. Included below is an analysis of these different
approaches.

Hardware
A. Robot Base

In our final design, we elected to use the iRobot Create 2
base, an off-the-shelf robot base. However, we originally
were considering the idea of designing and building our
own custom robot base. This approach has the benefit of
allowing more control over the mechanical parameters
of our robot. This additional control would allow us to
meet more ambitious requirements. However, designing
and building an entire robot base requires significant ex-
perience in mechanical design, a skill which our group
lacked. Thus, we opted for a premade robot base.

B. Tennis Ball Extraction Mechanism
The tennis ball extraction mechanism is responsible for
picking up tennis balls. The current design is detailed in
the figure below:

Figure 1: CAD Model of Tennis Ball Extraction System

The above design utilizes two T81 compressible rub-
ber wheels attached to two 755 DC brushed motors.
We chose brushed motors over brushless motors for
their lower cost. While brushless motors offer better
speeds and slightly better power efficiency, they cost
around 5-6 times more than their brushed counterparts.
Additionally, we determined that with 4 inch wheels,
our motors would need to spin at a relatively low RPM
600 to accelerate the tennis balls to 3.11 meters a
second. As such, we do not benefit much from a brush-
less motor’s higher RPM and thus chose brushed motors.

For the wheels, we went with T81 compressible
rubberized wheels with a 4 inch diameter. We chose
rubberized wheels to increase traction with the tennis
ball. Also, we wanted the wheels to compress as this
would help alleviate strain on the robot frame.

C. Frame
The robot frame was designed with a focus on maximiz-
ing structural strength and ease of construction while
minimizing weight and cost. We decided to use a com-
bination of 1.5”x2.5” wooden planks and 1/8” acrylic
for the frame’s construction. We decided on 1.5”x2.5”
wooden planks for their high structural rigidity and
low cost. We chose 1/8” acrylic for the ramp base, ball
runway, and robot top plate since it is easy to cut in
circular shapes via a laser cutter. We were originally
planning on constructing the entire robot frame from
1/8” acrylic, but we deemed that acrylic lacked the
required structural strength. Additionally, acrylic is too
thin, meaning we would have to build hallow boxes
from the acrylic, introducing lots of fragile, weak points
in our frame. Thus, we chose to use wood instead of
acrylic for the majority of the frame’s construction.

Our current frame design is very front-heavy. To
mitigate this, we decided to add swivel caster wheels to
the end of the frame. We were originally planning on
adding counter weights to the back side of the robot,
but this approach would add more weight overall. As a
consequence, the robot would likely slower and more
sluggishly, so we decided that adding wheels for support
to the front side was a better option.

D. Robot Arms
The robot’s arms exist at the very front of the robot with
the goal of funneling tennis balls towards the ball launch-
ing mechanism. These arms were designed to maximize
the number of tennis balls that can be captured without
changing the robot’s direction. Without robot arms, we
would need higher accuracy in our tennis ball tracker
since there would be very little room for error. The cur-
rent design sports 1.5”x2.5” wooden planks protruding
from the robot at a 45 degree angle. We choose a 45 de-
gree angle to simplify the construction of the robot, as
this angle is fairly easy to cut from wood.

E. Camera
The camera is the most important sensor for Ballbot. We
use the camera to detect and track balls for collection.
If a tennis ball is out of view of our camera or appears
too noisy to be correctly identified, then Ballbot will
miss it. As such, it is important that our camera have
a wide field of view and sufficiently high resolution.
With these requirements in mind, we choose the Intel
RealSense Depth Camera D435. This camera records
at 1080p and has an over 90 degree field of view.
Additionally, this camera has depth-sensing capabilities
which can be used as an additional input to our ball
tracking algorithm. Before deciding on the D435, our
group was considering using the Raspberry Pi Camera
V2. This camera also supports recording at 1080p, but
has a significantly smaller field of view. Additionally,
the Raspberry Pi Camera V2 does not have hardware
support for automatic exposure control, while the D435
supports this feature.

3

However, the D435 is an expensive camera priced
at $180, so we also considered borrowing an iPhone
11 Pro camera. This camera is capable of recording at
1080p with a 120 degree field of view. However, this
solution requires desiging a custom camera mount that’s
easily detachable. Additionally, we would need custom
software to extract video from the iPhone for processing
on the Jetson Nano. When finalizing our parts list, our
TA offered to lend us their D435 camera, so its cost was
no longer a concern. Thus, we chose the D435.

F. Computer
We are currently developing our computer vision algo-
rithms on a NVIDIA Jetson Nano. The Jetson Nano con-
tains a quad core 1.5 GHz processor and a dedicated 128
CUDA core GPU. We considered using the Raspberry Pi
4 as a cheaper solution, but we feared it would not meet
our compute requirements. The Raspberry Pi contains a
similar CPU, but lacks a GPU. Since we plan on run-
ning computer vision algorithms in real time, we would
benefit greatly from having a dedicated GPU. Thus, we
selected the Jetson Nano as our onboard computer.

Software
A. Tennis Ball Tracking

When designing the ball tracking algorithm, we em-
phasized speed and accuracy to meet our overall design
requirements. Our current tennis ball tracking algorithm
utilizes computer vision color thresholding to reduce
an image to only the pixels belonging to a tennis ball.
This algorithm is relatively simple to implement, and
as such, runs relatively quickly. The major drawback to
this algorithm is its sensitivity to lighting changes.

We also explored more sophisticated algorithms for
ball tracking, like a using a deep convolutional neural
network. These types of networks, while very accurate
and robust, perform considerable more calculations on
the input. As a consequence, they may overwhelm the
computing capabilities of our Jetson Nano. Additionally,
these networks require large amounts of data to achieve
high accuracy on general inputs. This amount of data is
hard to collect given the current circumstances of the
world.

B. Robot and Motor Control
All of Ballbot’s movements are categorized into two
types controls: the iRobot Create 2 controls and the front
motor controls. The iRobot Create 2 accepts controls via
commands sent over UART. The NVIDIA Jetson Nano
can connect to the UART interface via a special USB
serial cable. With this setup, we can use the NVIDIA
Jetson Nano to issue all iRobot Create 2 controls. The
two 755 DC motors on the front of the robot are con-
trolled by L298N motor controllers. These controllers
accept PWM signals to adjust the motor speed. We con-
sidered adding another microcontroller to handle PWM
generation, but after a bit of research, we discovered that
the NVIDIA Jetson Nano is capable of outputting PWM
signals on its GPIO pins.

V. SYSTEM DESCRIPTION
As shown in the system block diagram which is figure 2 in
the appendix, our system consists of two major subsystems:
the software used for tennis ball tracking, controlling
the iRobot’s movement, and controlling the tennis ball
collection motor speeds as well the hardware responsible
for collecting the balls into the basket behind the iRobot.

A. Intel RealSense Depth Camera
During our design process, we considered several cam-
eras before deciding to use the Intel RealSense Depth
Camera D435. It was important that our camera have
a wide field of view and sufficiently high resolution.
This is because without a wide field of view, the Ballbot
would miss balls that were close to it but slightly out
of the field of view of the camera. Also, without a
high resolution, there would be much more noise in the
computer vision algorithm, causing our false positive
and false negative rates to increase. This camera records
at 1080p and has an over 90-degree field of view so
it would meet our needs for having high quality data
as input to the computer vision algorithm. Also, we
chose the Intel RealSense Depth Camera because we
needed our ball detection to run quickly at 10 frames
per second so the camera needed to be able to record
at least that many frames per second. The RealSense
camera can record at 90 FPS which not only meets
our needs, but goes beyond them, giving us more data
to improve the accuracy of tracking the tennis balls
between frames. What really sets the RealSense camera
aprat from other camers is its depth sensing capabilities.
The depth map of each pixel as an additional input to the
path planning algorithm. We are planning on using this
depth information to find the closest ball to the Ballbot
and go after it to optimize the path. Without the depth
information, we would have to rely on how large the
ball is in out field of view which would fluctuate a lot
depending on noise and slight changes in lighting.

B. Ball Tracking Algorithm
The Ball tracking algorithm reads images from the Intel
Realsense Depth Camera and extracts the location of the
nearest tennis ball. To accomplish this the read images
go through the following pipeline:
1. HSV Color Thresholding

The image read from the Intel RealSense Camera is
an RBG image which isn’t suitable for image pro-
cessing. We initially tried to perform color threshold-
ingg on the RGB image but realized that it was diffi-
cult to narrow down the green channel of the image to
only allow pixels that have the specific green color of
tennis balls. To fix this, we converted the image from
the camera to the HSV color space using OpenCV.
This is because the HSV color space abstracts hue(the
color) into one channel so it is easy to locate the range
of hues that fall into the green that tennis balls usu-
ally have. We predetermined ranges for each of the
3 channels, hue(H), saturation(S) and Brightness(V)

4

that allowed only pixels with the color of a tennis ball
to pass through the filter. To do this, we manually ad-
justed the ranges for each of the channels until we
saw that the filter blocked out all the pixels not part
of a tennis ball.
However, we found that at different times of the day,
these ranges need slight adjustments based on the cur-
rent lighting. We noticed that usually adjusting the
range for the Brightness channel fixed any issues due
to lightning conditions. To solve this, we added a cali-
bration step to the Ballbot where on startup, we would
place a tennis ball in front of it and it would auto
adjust the range of the brightness channel until the
tennis ball was being detected. We determined that
a tennis ball was being detected if an approximately
circular region of pixels was making it through the fil-
ter. Once the HSV color thresholding was applied, we
essentially had an array where each pixel was either
blocked or allowed through by the filter.

2. Noise Filtering
After our color thresholding algorithm was working
reasonably well, we saw that pixels that were part of
the tennis ball were almost always being let through
by the filter, but so were other random pixels in differ-
ent parts of the image. To fix this, we decided to add
noise filtering that would essentially blur the signal.
To accomplish this, we first eroded the image using
OpenCV which shrinks each group of pixels slightly.
By doing this, random pixels that got past the thresh-
olding disappear since they shrink down to 0 pixels
while groups of pixels that represented tennis balls
remain since there were many pixels together. Then
we dilate the image which brings any cluster of pix-
els remaining back to its original size. By doing this
process, we lose some of the granularity of the image,
but since we only care about the positions of each
ball, this is not a big issue. The benefit or removing
the noisy pixels is well worth cost of blurring the im-
age.

3. Tracking Between Frames
Once the noise is removed, we have large groups
of pixels for each tennis ball. The center of each
of these groups is found using OpevCv’s moments
function. Then we use the RealSense depth camera
to determine which of the groups of pixels is closest
to the camera. The closest one represents the closest
tennis ball and is the one the Ballbot will go after.
We find the center corresponding to this group of
pixels and assume that is the location of the center of
the tennis ball the Ballot needs to collect. The depth
of the tennis ball is sent to the motor controlling
code and the location of the center of the tennis ball
is sent to the iRobot control system. If at this point
no balls are seen in the frame, then both pieces of
code receive ”None” as the position of the tennis ball.

C. iRobot Create 2 Control System
The code controlling the iRobot Create 2 receives as

input the position of the center in the image read of
the tennis ball the Ballbot needs to go after. The code
employs a simple algorithm of determining how far
from the center of the picture the tennis ball is located.
If the tennis ball is to the right of the center line, the
algorithm sends the command to turn right to the iRobot.
The amount to turn is proportional to the difference
between the center line and the tennis ball position. The
speed of the iRobot is set to be inversely proportional to
the difference so that the Ballbot moves faster when the
tennis ball is closely aligned with the center of the Ball-
bot. If the control system receives as input that no balls
are found, it will tell the Ballbot to rotate in place until a
ball can be seen and the the input will no longer be None.

D. Tennis Ball Collection Motor Control
The tennis ball collection and motor control system is
core to the design of this project. Our design utilizes
two T81 compressible rubber wheels attached to two
755 DC brushed motors. We chose brushed motors over
brush-less motors for their lower cost. While brush less
motors offer better speeds and slightly better power
efficiency, they cost around 5-6 times more than their
brushed counterparts. For the motors to successfully
launch the tennis ball into the basket, they needed to
propel the tennis balls at a speed of 2.2m/s. This is
because the motors launch the tennis ball up a 45 degree
ramp. Once the ball leaves the ramp, it will follow
projectile motion until it lands in the basket. While the
basket is between 2 and 3 feet away from the motors
in our design, we did the calculations for launching the
ball 1 meter away. This way, we know if we can hit our
target speed, the ball can land in the basket since we can
always slow down the motors, but there is a limit to how
fast we can speed them up. To calculate what the initial
x and y velocities in terms of time, we did:

y = y0 + vyt−
1

2
gt2 x = x0 + vxt

0 = vyt−
1

2
gt2 1 = vxt

0 = t(vy −
1

2
gt) vx =

1

t

vy =
1

2
gt

Since the ball was going up a 45 degree ramp, the initial
x and y velocities would be the same. Then to calculate
the time it would take for the ball to land in the basket,
we did:

1

2
gt =

1

t

t2 =
2

g

t = 0.4517 seconds
Finally, to solve for the initial x and y velocities, we
substituted the value for t and got vx = 2.2m/s and

5

vy = 2.2m/s. Combining these, we get that the initial
velocity has to be

√
2.22 + 2.22 = 3.11m/s to launch

the ball successfully into the basket. While we did not
account for air resistance, we saw that it did not have
a significant effect on the calculations and we compen-
sated for any slowdown by aiming to launch the ball fur-
ther away than we needed to.
Once we found the required launch speed of the tennis
ball, we converted that to how fast the wheels on our
motors need to spin. Since we had rubber wheels with
4 inch ≈ 0.1016 meter diameters, the calculations for
RPM were as follows:

3.11

2πr
· 60 =

3.11

0.3192
· 60

= 584.586 RPM

The 755 DC motors provided us with a low enough
RPM to make the wheels spin at around 600 RPM which
should launch the tennis ball into the basket.
For the wheels, we chose compressible runner wheels
with a 4 inch diameter. It was important that the wheels
were compressible so that we could alleviate strain on
the robot frame. Additionally, the rubber helped with the
grip by increasing traction while collecting the tennis
balls. See Figure 1 for a visualization of how the motors
and the wheels interact to collect tennis balls.

E. iRobot Create 2 Base
The iRobot Create 2 base is responsible for the move-
ment of the Ballbot. We decided to use the iRobot Create
2 instead of creating or own base because it extrapolated
the movement of the robot to simply writing the correct
values to a serial port. The Create 2 Open Interface
provides a guide on how to interface with the Create
2. We can send a unique opcode for each command,
followed by parameters for the command. For example,
to drive backwards at a speed of 200 mm/s with a turn
radius of 500 mm, we could send 137 (the opcode for the
drive command), 255 (the upper byte of the velocity), 56
(the lower byte of the velocity), 1 (the upper byte of the
turn radius, and 244 (the lower byte of the turn radius).
Through this interface, we can easily control the Create
2 base by sending commands over UART.

F. Power
We have two major components that need power on
Ballbot: the 755 DC motors and the Jetson Nano. The
Jetson Nano requires 5 volts for its input, and the 755
DC motors require around 12 volts. We wanted to use
a single power source, so we picked a higher voltage
battery, and lowered its voltage using a buck converter
for the Jetson Nano.

Combined, the two 755 DC motors and Jetson Nano
consume 35 watts of power under full load. To meet
our battery life requirement, we choose a 11.1 volt 2200
mAh LiPo battery which provides power to a 35 watt
load for around 40 minutes.

The iRobot Create 2 has its own power source and
does not require additional power. The battery in the
iRobot create can last up to 2 hours.

G. Tennis Ball Transport System
The tennis ball transport system is the mechanical sys-
tem designed to capture tennis balls from the tennis court
and transport them to the basket at the back of the Ball-
bot. A CAD modle of the system using the Create 2 as a
base can be seen below:

Figure 2: CAD Model of Tennis Ball Launch System

The tennis ball transport system is broken down into four
major components:
1. Robot Arms

The robot arms protrude outward at a 45 degree an-
gle. These arms were designed to funnel balls towards
the propulsion mechanism while the robot moves in a
straight line. There are two swivel caster wheels (not
shown) attached to the bottom of each arm for struc-
tural support.

2. Tennis Ball Propulsion
The propulsion mechanism is responsible for accel-
erating tennis balls. It accomplishes this through the
use of two rotating rubber wheels. These wheels
are driven by two 755 DC brushed motors spinning
around 600 rotations per minute. The motors are
mounted on a custom cut wooden frame made from
1.5”x2.5” wooden planks.

3. Tennis Ball Ramp & Runway
The tennis ball ramp and runway are responsible for
guiding the tennis balls up the robot base and into
the basket behind the robot. The ramp is set at a 45
degree angle, which is steep enough to quickly deflect
the ball and shallow enough that the ball stays on the
ramp. The ramp and runway railings are made from
1.5”x2.5” wood, and their surfaces from 1/8” acrylic.

4. Tennis Ball Basket (not shown)
The tennis ball basket receives and stores tennis balls
from the runway. It rests on a free-moving platform
pulled by the robot.

6

VI. PROJECT MANAGEMENT

Over the course of the semester, we have 3 major mile-
stones – establish proof of concept, basic integration
and full implementation. The first three weeks of the
semester were spent finalizing a design and establishing
a proof of concept. During this phase, the group spent
some time learning about the iRobot create and Jetson
Nano and how to interface with it. A basic ball propul-
sion mechanism was also built to ensure that tennis balls
could be picked up and launched into a basket with
two motors and wheels. The second milestone is the
basic integration. In this phase, the robot will be assem-
bled and some basic movement will be programmed.
In the final implementation phase, computer vision
will be used to detect tennis balls and the robot will
be programmed to move towards and collect tennis balls.

Team Member Responsibilities
While all the members of the team are responsible for
driving the project forward and making sure that the
team does not fall behind schedule, we each have our
own independent responsibilities to ensure that everyone
have enough work to do. We split up the project into
three major parts: constructing the robot, programming
the iRobot and using OpenCV to do the computer
vision aspects of this project. The table below details
the primary and secondary responsibilities of each team
member.

Team
Member

Primary
Responsibility

Secondary
Responsibility

Rashmi Program the
iRobot create
to respond to
the outputs
from the
computer
vision
algorithm and
plan the path.

Help measure
and cut parts
needed for
mechanism
that will
collect tennis
balls.

Ishaan Designing a
computer
vision
algorithm to
detect and
track tennis
balls.

Integrate
iRobot control
system,
computer
vision, and
motor control
into one
software
component.

Ryan Designing and
constructing a
mechanism to
collect tennis
balls on the
ground and
store it in a
basket.

Help develop
computer
vision and aid
in testing all
parts of the
Ballbot

Budget
The budget table is Figure 3 in the Appendix Section.
It is located on Page 6. The hardware tools that were
used were: the iRobot Create Base, 2 RS555 Motors
to launch the tennis balls, L298N motor driver, Intel
RealSense Depth Camera D435i, buck converter, 12V
Lipo rechargable battery, Nvidia Jetson Nano. For
software we will be using the OpenCV and pycreate2.

Risk Management
Even though we are just a few weeks into building the
robot, we have already encountered many risks with
regards to the design of the project. One of the major dif-
ficulties that we encountered was using acrylic to build
the exterior of the robot. While this would have given the
exterior a sleek finish, cutting necessary shapes proved
to be much more difficult than anticipated. Additionally,
we realized that if we used acrylic, the robot might not
be as sturdy and robust as we want. To mitigate against
this risk, we decided to use wood instead of acrylic. We
had to redesign and simplify several parts of the robot
to make the construction easier. However, since wood is
much heavier than acrylic, we now needed to make sure
that the pieces to build the frame and the ramp of the
robot was not too heavy and that robot could still satisfy
our speed metrics. This meant we had conservative
while redesigning the exterior. Although the wood was
heavier, it made our robot more robust and more likely
to survive a hit from a tennis ball.
Secondly, with regards to the computer vision aspects
of this project, we realized that detecting the tennis balls
using OpenCV, we had to re-threshold the colors every
time we decided to test. This was because the lighting
and time of day the testing was being done was different
each time. To mitigate against this risk, we decided to
add an algorithm that auto-thresholds the color based on
the given lighting. Currently, as part of the initial set-up
process, we need to hold a tennis ball to the camera
so the thresholding can be done and the robot can be
calibrated. The future goal is to be able to store some
color data for a tennis ball so that the user does not need
to hold the ball to the camera for calibration.
In terms of the schedule, we had about 8 weeks from
when all of our parts arrived to finish building the robot.
This was because the majority of our team was going
home for Thanksgiving and not returning. This meant
that our schedule was packed during this time. We had
to ensure that our MVP was working by the end of these
8 weeks. We didn’t want to leave one team member
in charge of trying to get everything to work after
Thanksgiving. To mitigate this risk, we had internal
weekly team goals and met up at least 3 times a week
to ensure that we were on track. Everyone kept a log of
what they were working on and asked for help when it
was required. While each of us had a specific area that
we focused our energy towards, we all worked together
helping each other when it was necessary.

7

APPENDIX

Figure 3: System Block Diagram

8

Fi
gu

re
4:

M
ile

st
on

e
an

d
Sc

he
du

le
C

ha
rt

9

Fi
gu

re
5:

B
ud

ge
ta

nd
Pa

rt
s

L
is

t

10

