
18-500 Final Project Report: 12/18/2020

1

Abstract—iRecruit is an interview assistant capable of

providing software engineering jobseekers with the opportunity to

practice for the interview process. Students are challenged with

navigating fully virtual interviews and practicing how to conduct

themselves during behavioral and technical interviews. Although

there exist several written guidelines about common interview

practices and questions, there is a lack of opportunity to practice

a simulated interview with a “real” interviewer. iRecruit aims to

give users a chance to practice for interviews through facial

detection for behavioral interviews and speech recognition (a

combination of signal processing and machine learning) for

technical interviews.

Index Terms—Facial detection, Facial landmark detection, Fourier

transform, Haar Cascades, Machine learning, Neural network,

Gaussian mixture modelling, Signal processing

I. INTRODUCTION

 common task software engineering jobseekers are faced

with when searching for a job is interviewing. There exist

several resources for assisting jobseekers with their interview

process including lists of common behavioral interview

questions and platforms to practice technical problem solving.

Common technical interview platforms include HackerRank

and LeetCode, where users are able to solve problems in a wide

range of Computer Science topics such as linked lists, dynamic

programming, and strings. Additionally, common behavioral

interview questions and techniques are provided in books such

as Cracking the Coding Interview and the Google Resume. We

wanted to improve upon current resources by creating a

centralized platform where users are able to practice for both

behavioral and technical interviews in a simulated environment.

This way, users are able to gain an understanding for what real,

virtual interviews are like.

 For behavioral interviews, users are presented with three

options to practice with and are asked to video record

themselves answering a common behavioral interview

question. During the recording, iRecruit tracks the user’s eye

contact and/or screen alignment, and provides real-time

feedback on these factors. The goal of this facial detection

algorithm is to detect the user’s facial feature coordinates within

five seconds and alert the user of subpar eye contact or screen

alignment within five seconds with 80 percent accuracy. For

technical interviews, users are asked to pick a Computer

Science category from a given list provided on the platform.

The list includes the following eight categories - 1. Array, 2.

Binary Tree, 3. Dynamic Programming, 4. Java, 5. Linked List,

6. Python, 7. Recursion, 8. String. Their choice is then

submitted via an audio recording. iRecruit uses signal

processing techniques on the audio recording to generate a

viable input to feed into a neural network that outputs the

predicted category. A question is displayed on the screen

relevant to the interviewee’s chosen category. The goal of this

speech recognition algorithm is to identify the category spoken

by the user with 65 percent accuracy.

II. DESIGN REQUIREMENTS

We split the design requirements of our web application into

three main components:

• Facial detection

• Signal processing

• Machine learning

Each component had a series of requirements that we aimed

to meet. For overall qualitative requirements, we wanted to

make our code consistent and well-documented. This way,

while all team members had different coding styles, their code

was readable and understandable for other team members. We

also wanted to ensure that the iRecruit web application is usable

and consistent, so that users are able to navigate the web

application easily and understand how the various web pages

are connected.

For the facial detection portion, there were four main

requirements. The first one was that the system should be

accommodating for users of various levels of experience. Users

will likely come to iRecruit with different levels of exposure to

behavioral interviewing, where some will be completely

unfamiliar and others will be moderately or highly experienced.

The system should account for these differences, so that users

are able to practice in an environment that they can benefit the

most from. The second requirement was that the facial detection

system should be quick in detecting the user’s facial features.

This provides the user with an efficient experience, so that they

do not have to wait for an extended period of time for the system

to locate their facial features. More specifically, the system

should detect the user’s facial features within five seconds of

the start of the video recording. The third requirement was that

the system should be reliable in alerting the user of subpar eye

contact or screen alignment. If the user’s eyes are off-center or

face is off-center, then the system should alert the user within

five seconds. Additionally, the alert(s) should be noticeable by

the user, so they can react accordingly. The last requirement

was that the facial detection system should have a high accuracy

to provide the user with a beneficial experience. We aimed to

have an overall accuracy of approximately 80 percent, because

we used the OpenCV library in Python. OpenCV has built-in

Haar Cascades, which are pre-trained classifiers for features

iRecruit

Author: Mohini Banerjee, Shilika Gehlot, Jessica Meng: Electrical and Computer Engineering,

Carnegie Mellon University

A

18-500 Final Project Report: 12/18/2020

2

such as faces, eyes, and smiles[6]. The accuracy of the Haar

Cascades is around mid-90 percent[27], so we thought that

aiming for 80 percent with our system that builds on top of Haar

Cascades was a reasonable accuracy achievement.

For the signal processing portion, there were three main

requirements. The first requirement was formulating the output

of the audio signal from the user. The goal was for each audio

signal to be portrayed as a feature vector in binary format

consisting of an accurate and complete representation of the

original signal. As a result, each input audio signal could be

processed and stored as training data for the machine learning

algorithm. The output was formulated through the use of

different signal processing techniques that are discussed under

the “System Description” section. This would allow us to

manipulate and transform the input to represent each word in a

way that a neural network can understand. The second

requirement was that each input category as an audio file must

have a distinct, unique visual representation. In order to make

the output meaningful, the resulting visual representation of

each audio signal would have characteristics that distinguish a

specific word or phrase from another, while having similar

characteristics for the same word or phrase. This means that the

algorithm had to be flexible in terms of accommodating for

details such as silence and background noise. The third and last

requirement of this portion was in regards to testing the

accuracy of our algorithm. This portion was difficult to test

concretely for two reasons. First, the signal of different people

recording the same word differed due to differences in pitch,

loudness, and frequency. Second, the signal representing the

same person saying the same word varied as well. To ensure

our algorithm was behaving as expected, we required the testing

to be mostly manual and did this through comparing the same

words spoken by the same person and ensuring the

corresponding visual representations were similar.

For the machine learning portion, there were three main

requirements. First, we had to accumulate considerable training

data that was generated from the signal processing algorithm

described above. To build the training data, we reduced the

dimension of each individual data sample in order to improve

the time complexity of the machine learning algorithm.

Ultimately, we created 105 samples of training data -

approximately 13 samples for each of the eight possible output

categories. A subset of our training data was used as validation

data to prevent any overfitting. The second requirement

consisted of the output being a probability distribution across

the different possible categories. The word with the highest

probability was the algorithm’s prediction and was compared to

the true word that the user spoke. Third, we expected for the

machine learning algorithm to have an accuracy of 65 percent.

Speech recognition is a difficult task that many talented

engineers have been working on for years. Since we were three

college students with three months of time, we aimed to

produce a simplified version of the speech recognition

algorithm. In the beginning, our goal was to reach 60 percent

accuracy. However after receiving feedback from our peers to

aim slightly higher, we changed our goal for our model to

correctly determine the category 65 percent of the time.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

We split the architecture of iRecruit’s system into four main

parts:

• Web application

• Facial detection

• Signal processing

• Machine learning

The facial detection, signal processing, and machine learning

components exist within the main web application. The facial

detection portion exists relatively independently, while the

signal processing and machine learning portions were

integrated with each other.

Fig. 1. High-level diagram of the 4 main parts of iRecruit’s system.

The web application is the baseline for the system, as this is

where the user will be able to access the various components.

The web application is split into three main components:

• Behavioral

• Technical

• Profile

When a user registers or logs into the system, they will be led

to the dashboard, where they are able to navigate to these three

pages. Additionally, there is a permanent sidebar menu where

users are able to go to the “Behavioral” and “Technical” pages.

If they choose to go to the “Behavioral” page, they will be

presented with three possible options to practice with. These

three options are to account for various levels of experience

with behavioral interviewing and are elaborated upon in the

“System Description” section. For each option, the user will be

presented with a randomly generated common behavioral

interview question that they will video record themselves

responding to. iRecruit expects that the user is sitting in front of

the camera and that their face will be visible in the video screen.

When the user is recording, the facial detection portion will

attempt to detect their facial features using Python’s OpenCV

library, specifically Haar Cascades and/or facial landmark

detection. This may require the user to position themselves

accordingly and adjust their angle if necessary, as the Haar

Cascades and facial landmark detection are sensitive to the

angle of the face. The facial detection algorithm allocates five

seconds to an initial setup phase, to allow the user to position

themselves and depending on the option, for the system to

determine the frame(s) of reference of the user’s appropriate

facial feature coordinates. Once the system has the frame(s) of

reference, it will refer back to this for each video frame. If the

user’s facial feature coordinates are not within a range of the

18-500 Final Project Report: 12/18/2020

3

frame(s) of reference coordinates (also known as off-center),

the system will alert the user within five seconds. This alert is a

visual pop-up message box, so it is clear to the user that they

are off-center and to reposition.

If a user chooses to go to the “Technical” page, they will be

presented with a screen that lists the eight categories of

questions that iRecruit offers. Users are then able to audio

record their category of choice, and iRecruit runs its speech

recognition algorithm to provide the user with a randomly

generated technical question from our database. Our backend

database includes questions for each of the following possible

categories - arrays, binary trees, dynamic programming, Java,

linked lists, Python, recursion, and strings which we either

created based on prior knowledge or retrieved from the

LeetCode website[28]. Users are expected to determine and

submit the output of the technical question into the designated

answer form, at which point iRecruit will display the correct

answer on the screen. Each time the user answers a question, it

is stored in a database so that an up-to-date list of questions that

a given user has answered is kept for their convenience.

The user’s past behavioral and technical interview results are

saved in the “Profile” section of the web application. On the

“Profile” page, the user is able to choose to go to either the

“Completed Behavioral Interviews” or “Completed Technical

Interviews” pages. In the “Completed Behavioral Interview”

page, they can review past behavioral interview practices to

look at a summary of the results for each practice. The summary

will consist of the video recording number with the option

practiced with, timestamp of when the practice took place,

subpar eye contact count, and subpar screen alignment count.

In the “Completed Technical Interview” page, users can review

past technical interview practices, which contains a record of

all the technical questions answered so far, as well as the user’s

answer and the correct answer for each question.

Fig. 2. High-level diagram of the web application architecture.

Fig. 2. is a high-level diagram of the web application

architecture that shows the different web pages we have as well

as how the pages connect to each other. The behavioral

interview, technical interview, and profile pages are where most

of the backend processes (facial detection, signal processing,

and machine learning) happen. On the other hand, the home, log

in, register, and dashboard pages are more for sake of

completeness of our web application and to provide an intuitive

flow between different pages.

IV. DESIGN TRADE STUDIES

We considered various approaches to each of the components

of the system and performed an initial research phase to weigh

these approaches. There were a handful of options and

algorithms that we took into account, but ultimately went with

the ones that we believed had the most available documentation

and provided us with a high accuracy.

A. Web Application

For the web application, we chose to use a Python web

framework known as Django to build it. Django is one of the

more popular existing web frameworks. There are four main

reasons we chose to use Django. First, it is based on the Python

programming language, there exists many tutorials and

documentation for us to refer to, and many of the web

components are already developed, allowing us to focus on the

features we are trying to implement. Second, Django is fast and

simple as making changes in the frontend or backend code does

not require the whole system to restart. This allows for separate

testing of backend and frontend components. Third, it is secure

as Django security protects against clickjacking, cross-site

scripting, and SQL injection[13]. Lastly, it is suitable for any web

application project of any size and capacity. Django can handle

large amounts of data, be used on any operating system

including Mac, Windows, and Linux, and incorporate multiple

databases into the project to store information. Due to these

reasons, we did not consider alternate web frameworks to host

our application and believed Django to be the best approach

from the start.

B. Facial Detection

For the facial detection portion, we decided to use the

OpenCV library in Python, particularly for Haar Cascades.

There were two main Python libraries that we were considering

for facial detection, which were dlib and OpenCV. dlib is a

library that contains machine learning algorithms and tools, and

although it is principally a C++ library, it can also be used with

Python[5]. It has a Histogram of Oriented Gradients (HOG)

feature descriptor, which is very powerful and actually more

accurate than OpenCV Haar Cascades[12]. However, we

ultimately chose OpenCV, because OpenCV is much more

commonly used in Python. It also has more documentation and

tutorials available, which we thought would be helpful because

we were not familiar with facial detection before iRecruit. Haar

Cascades also have an accuracy of approximately 95 percent[27],

which we believed was a sufficient baseline accuracy for us to

build on top of for our aim of 80 percent accuracy. We were

originally going to measure three things in the facial detection

portion: eye contact, posture, and screen alignment. However,

we decided to forgo posture, as there was no sufficient way to

measure it. The first measurement we thought of was to attempt

to detect the mouth, and if the mouth disappeared (e.g. user’s

head is down), that constituted subpar posture. However, if

there is no mouth detected, there is also no face detected.

Another measurement we thought of was to attempt to detect

the shoulders and measure the distance between the shoulders

and the center of the face, and if that distance was less than that

of the frame of reference, that constituted subpar posture.

However, if a user has long hair and the hair is covering the

shoulders, shoulder detection would not be possible. Forgoing

this measurement allows us to focus on implementing the eye

contact and screen alignment portions, and making them more

18-500 Final Project Report: 12/18/2020

4

robust to meet accuracy demands. For the facial landmark

portion of the facial detection system, we decided to find and

only use the coordinates of the nose and mouth, so that we

would have definitive coordinates instead of a plethora of

coordinates. This allowed us to find the frame of reference for

subpar screen alignment detection, as elaborated upon in the

“System Description” section. Another decision we made was

to have three possible options to practice with. We wanted the

system to be accommodating for users of different levels of

experience, so that users can select which option suits them

best. While this required separating and combining

implementation on our end, we thought this would be beneficial

from a user perspective. More information on the three options

is provided in the “System Description” section. Facial

detection accuracy was calculated by the following equation[19],

where TP stands for the number of true positive tests, TN stands

for the number of true negative tests, FP stands for the number

of false positive tests, and FN stands for the number of false

negative tests:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

Positive here is defined as detecting subpar eye contact

and/or screen alignment. Therefore, true positive tests occur

when the user has subpar eye contact or screen alignment, and

the system alerts them correctly within 5 seconds. True negative

tests occur when the user does not have subpar eye contact or

screen alignment, and the system does not alert them. False

positive tests are when the user does not have subpar eye

contact or screen alignment, and the system alerts them. False

negative tests occur when the user has subpar eye contact or

screen alignment, and the system does not alert them.

C. Signal Processing

For the signal processing portion, we hit many roadblocks as

we experimented with the best approach to reach the desired

output. There are 4 main decisions we had to make. First, our

initial design process involved letter-by-letter classification.

However, early into the design process, we decided to reduce

the scope of the speech recognition algorithm by implementing

word classification on a predetermined list of eight categories.

Although letter-by-letter classification would give the user the

freedom to choose a category of their choice, instead of from a

predetermined list, we decided that we did not have the capacity

to build such a system in the given time. Another advantage

with word classification is that the user can speak the word

rather than spelling it out, which is impractical and what letter-

by-letter classification would require.

Second, we faced confusion on whether to use the time

domain or frequency domain to represent the signal. The time

domain signal seemed to provide us with more information as

the signal on the graph was raw and not manipulated. However,

the amplitudes of different signals representing the same word

were different. We recognized this was likely due to differences

in pitch, frequency, and loudness. Thus, we tried representing

the signal in the frequency domain through the use of the

Fourier transform. This also caused complications as every

signal, no matter the word, looked similar and each

representation had a peak at the lower frequencies and another

peak at the higher frequencies. The Fourier transform tells us

what frequencies are present in our signal. It also tells us how

much power the time domain signal has at each frequency. By

breaking a signal into its frequency components, it allows us to

block out certain frequencies[22]. We realized that although the

information that the frequency domain gives is less intuitive

than the time domain, it would ultimately help differentiate

between words.

The next decision involved using a windowing function to

analyze the Fourier transform. We decided to split the audio

signal into 20 millisecond (ms) chunks. In theory, this is

equivalent to multiplying the signal by a rectangular window to

extract the 20 ms chunks. Based on research of why windowing

is necessary, we found that taking the Fourier transform of a

signal that is not perfectly periodic results in some

discrepancies. The Fourier transform assumes the time domain

signal is a finite, periodic signal. When this is not the case, the

endpoints of the signal are not continuous, and this

discontinuity is present in the frequency domain as high

frequency components that do not exist in the original signal.

Therefore, the Fourier transform is not accurate, as the different

energy components are leaking onto each other[26]. We found

that windowing can help provide a solution for this problem. It

can reduce the impact of the discontinuity present in the time

signal and thus provide a more accurate representation of the

signal in the frequency domain. It consists of multiplying the

time domain signal by a window of finite size that has a

sinusoidal amplitude that approaches zero at the discontinuous

parts. Out of all the possible windows, we saw that the

Hamming window function best emulates this sinusoidal

pattern, as it has a wide peak but low side lobes[26].

Lastly, we had to decide on the optimal representation of the

training data. The tradeoff was between using the original

spectrogram representation that was the result of the windowing

applied to the Fourier transform (as described above) or

reducing the dimension of the former representation through the

use of the Mel Filter Coefficient Bank approach. We decided to

use the latter, because although the former is a better

representation of the data, it drastically slowed down our

system when the neural network tried to process the data due to

the large size of the data. Additionally, the Mel Filter

Coefficient Bank approach applies frequency scaling that

simulates how the human ear works[24]. Once this decision was

made, we had to decide whether to store the raw data provided

from the Mel Filter Coefficient Bank approach as the training

data or further modify it. We decided to plot the raw data as a

spectrogram representation, save it as an image and use the

pixel values of the image as our training data. This was because

we saw visible differences in the spectrogram between different

words and extreme similarities between different people

speaking the same word.

D. Machine Learning

To implement the machine learning algorithm for the speech

recognition portion, we were debating two main approaches,

neural network and Gaussian mixture modelling. The goal of a

neural network was to program a simulation of connected

human brain cells so eventually it could recognize patterns,

point out similarities and differences, and behave like a human

brain[11]. As discussed in more detail under the “System

18-500 Final Project Report: 12/18/2020

5

Description” section, a complete neural network consists of the

input and output layer, and one or more hidden layers. Varying

details such as the number of hidden layers, hidden units, or

epochs change the amount of time it takes to train the algorithm.

These details were taken into account as we began the

implementation process. The other approach we considered, the

Gaussian mixture model, is a probabilistic model that represents

subpopulations within an overall population that have a normal

distribution[9]. By gathering user input of people speaking

different words, we could create a model that would determine

the probability of likelihood of a specific word being spoken.

This model would predict unknown utterances when the user is

speaking one of the eight possible categories. The Gaussian

mixture model would not require as many training samples as a

neural network would because creating a probabilistic model is

less complex than trying to simulate the human brain.

When deciding which approach to pursue, we considered the

pros and cons of both the neural network and Gaussian mixture

model. Our final decision was most influenced by the fact that

none of us had experience with Gaussian mixture modelling

while two of us had experience with neural networks. We

believed that learning a new algorithm from scratch may not

have been the best use of our time. Therefore, our team decided

to first try the neural network algorithm as we are most familiar

with it. The machine learning algorithm was adapted from the

neural network algorithm Mohini wrote in 10-301: Introduction

to Machine Learning. If the classification was completely

incorrect and time permitting, we would have looked into using

Gaussian mixture modelling. After deciding to go with the

neural network, we discussed exactly what we are trying to

classify within speech recognition. The most advanced

algorithms such as those used to implement Siri, Alexa, and

Google Assistant are able to identify full sentences. Due to our

time constraint, we decided to narrow our scope. Thus, we

decided to make our speech recognition model identify the eight

categories our product offers for technical interview practices.

This way, we are only trying to distinguish between eight

possibilities, and not the plethora of words and phrases that

exist in the English language.

1. Number of Hidden Units and Epochs Trade-offs

With our algorithm and classification decided, we made

decisions on variable factors that would change the accuracy of

our model, such as the number of hidden layers, hidden units,

and epochs. To train our algorithm, we used 105 training data

samples and to validate (or test), we used 50 testing data

samples. We automated the testing process by calculating and

displaying the percent of training and testing data that was

classified incorrectly given each dataset. The first set of

parameters used to test the algorithm were one hidden layer,

four hidden units, and 100 epochs. All the mentioned parameter

values, excluding the number of hidden layers, were easy to

update as we designed our code to allow us to input a specified

value for each of these variables. These parameter values

resulted in an error rate of 73.3 percent for predicting the output

of the training data and 82.6 percent for predicting the output of

the testing data.

As we experimented with different values for the number of

hidden units, we saw that more hidden units led to a larger

accuracy. At a value of 10 hidden units, the error dropped to

approximately 0 percent for the training data and 60.9 percent

for the testing data. Past 10 hidden units, the error for both

training and testing data stayed consistent as shown in the figure

below. When we changed the number of total epochs, we saw a

very similar trend, as the testing accuracy increased until 100

epochs and plateaued for values above that. Therefore, we

decided to use 10 hidden units and 100 epochs to maximize the

probability of our algorithm predicting the correct category and

to minimize the total time it takes to run the algorithm. This is

because with each additional hidden unit or epoch, the amount

of time the neural network takes to learn increases.

Fig. 3. Error rate of training and testing data of number of hidden units

from 4 to 13.

2. Number of Hidden Layers Trade-offs

After finding optimal values for the number of hidden units

and number of epochs, the remaining parameter to alter was the

number of hidden layers. We added an additional hidden layer

to the algorithm, resulting in two hidden layers in between the

input layer and the output layer, each with 10 hidden units. This

process involved restructuring the baseline algorithm.

Currently, the algorithm consists of the input, hidden, and

output layers, and the weight matrices, alpha and beta, between

each layer to compute the probability distribution over the eight

classes. With an additional layer, we added another weight

matrix α2 between the first and second hidden layer and

modified the back propagation algorithm so it takes into

account α2 when computing the updated weight matrices. With

this modification, the error increased to 87.3 percent for our

training data and 84.8 percent for our testing data using the

original 105 training samples and 50 testing samples. These

results were surprising, because an additional hidden layer

typically increases training accuracy by overfitting the training

data[2].To improve the accuracy, we tried increasing the number

of training data samples as more data typically results in a

higher accuracy since the algorithm has more information to

learn from . However, the error with 130 training samples and

50 testing samples resulted in a training error of 86.4 percent

and testing error of 87.5 percent. We believe these conflicting

results may have been caused by the fact that with every

additional hidden layer, the input feature vector is further

manipulated. Due to the complexity of the audio inputs that

were processed in the signal processing component of our

18-500 Final Project Report: 12/18/2020

6

project, these significant transformations may have had a

negative effect on learning trends and patterns, as the values in

the output layer were confusing to learn from. Thus, we

ultimately reverted back to our algorithm with a single hidden

layer as it had higher accuracy measures.

3. Number of Training and Testing Data Trade-offs

As mentioned above, the number of training and testing data

samples we used varied our accuracy results. Once we finalized

the parameter values of one hidden layer, 10 hidden units, and

100 epochs, we decided to add additional training data. With

105 training data samples and 50 testing samples, the training

error and testing error was approximately 0.01 percent and 60.9

percent respectively. This model overfit the data because it

classified the training data almost to perfection and was not able

to successfully generalize the unseen testing data. We predicted

that adding additional training data would reduce overfitting,

since the training data would have more diversity and our model

would not try to classify every single training data sample

perfectly[2]. This would allow the algorithm to generalize

unseen data, in turn increasing the testing accuracy. However,

this was surprisingly not the case. With 180 training data

samples and 50 testing data samples, the error rate for training

and testing data were 86.2 percent and 84.8 percent

respectively. Although the training error increased and avoided

overfitting, the margin by which it increased was significantly

higher than expected. Additionally, the testing error increased

by approximately 24 percent which rendered the accuracy of

our model to a mere 15.2 percent. We reverted back to our

original model by only training with 105 training data samples.

We discuss cross-checking the accuracy of this model in the

“System Description” section.

V. SYSTEM DESCRIPTION

A. Facial Detection

The facial detection portion of iRecruit was implemented

utilizing the OpenCV library in Python. The face and eye

detection and facial feature detection parts of it were based off

of two tutorials for eye tracking and facial landmark detection[8,

17]. When a user records themselves answering a practice

behavioral question, the system calls the OpenCV

VideoCapture class to begin a new capture of video frames at a

rate of 30 frames per second[16]. The practice behavioral

question presented to the user comes from a question bank that

is an array of common behavioral interview questions from Top

Echelon[18]. The random library in Python is used to randomly

select one of the questions from the question bank. The question

is displayed to the user through OpenCV’s putText method at

the top of the video screen. The word “RECORD” will appear

in red on the bottom right of the screen when the initial setup

phase is complete, which indicates to the user that they may

begin answering the question. There is a yellow circle in the

middle of the screen to serve as a guideline for users to center

their face. See Fig. 4 for an example of what the behavioral

interview practice platform looks like.

Fig. 4. Example of the video screen presented when the user is practicing.

 For the alerts to the user, this was done through the Python

ctypes library MessageBox function to notify the user visually

with a pop-up message box. iRecruit provides three options for

users to practice with to account for various levels of

experience. The first option is for beginner-level users, who are

unfamiliar with behavioral interviews in general or the iRecruit

behavioral interviewing platform and want as much feedback

as possible. It allows for users to practice with both eye contact

and screen alignment, where iRecruit provides real-time

feedback for both behavioral interviewing tactics. The second

and third options are for intermediate-level to advanced-level

users, who are familiar with behavioral interviewing and

understand what they would like to improve upon. The second

option allows for users to practice with only eye contact, where

iRecruit provides real-time feedback on subpar eye contact. The

third option allows for users to practice with only screen

alignment, where iRecruit provides real-time feedback on

subpar screen alignment. This is useful if a user knows their

strengths and weaknesses with behavioral interviewing and

only desires to practice with feedback on one of the tactics.

 For option 1, there will be 2 parts that exist within the facial

detection portion, one for eye contact and one for screen

alignment.

Fig. 5. Block diagram for facial detection option 1 architecture.

For option 2, there will be one part that exists within the

facial detection portion for eye contact.

18-500 Final Project Report: 12/18/2020

7

Fig. 6. Block diagram for facial detection option 2 architecture.

For option 3, there will be one part that exists within the

facial detection portion for screen alignment.

Fig. 7. Block diagram for facial detection option 3 architecture.

The eye contact and screen alignment parts are further

described in detail, as well as the testing procedure and results.

The implementation of each part is the same regardless of the

option — the main variation is the combination of which parts

exist in each option.

1. Eye Contact

The eye contact portion utilizes OpenCV Haar Cascades as

well as the numpy library. For each frame of the video, the

system will use the frontal face Haar Cascade to detect the

user’s face. The base image (video frame) is transformed into

grayscale in order to detect the face, and the face is found on

the original base image. After the face is retrieved, the system

will use the eye Haar Cascade to detect the user’s eyes. The base

face image is transformed into grayscale in order to detect the

eyes. The height and width of the original face image is

calculated using numpy to make the eye detection easier. This

is because the eyes will always exist on the upper half of the

face, and the left eye will be on the left half of the face, while

the right eye will be on the right half of the face. After the eyes

are retrieved, the system will track the irises/pupils within the

eyes using a blob detector in OpenCV[14]. The eyes are then

transformed into grayscale and a threshold is set to determine

the cutoff of which parts of the eye become black and white,

which allows for the detection of the irises/pupils. When the

irises/pupils are found, OpenCV moments are used to calculate

the centroid[25]. The center is with respect to a specific origin,

which is the left edge of each iris (in alternative wording, 0 is

the left edge of each iris, not the left edge of the screen). Each

eye usually has the same center if the user is facing straight and

forward, because of this origin reference. The center is

calculated every frame, and the X and Y coordinates of the

center are added to arrays over the period of the 5 second initial

setup phase. The average of these coordinates is taken to find

the frame of reference, which is what the system will use as the

baseline of what constitutes as centered for the eyes. In every

video frame following, if the coordinates of the user’s eyes are

not within range of the frame of reference for up to 5 seconds,

iRecruit alerts the user visually of subpar eye contact and to

adjust accordingly. The user’s eye movement must be severe

(e.g. looking completely off screen) for longer than simply an

instant to be detected.

2. Screen Alignment

The screen alignment utilizes OpenCV Haar Cascades and

the Facemark API to perform facial landmark detection. Similar

to the eye contact portion, for each frame of the video, the

system will use the frontal face Haar Cascade to detect the

user’s face. The base image (video frame) is transformed into

grayscale in order to detect the face, and the face is found on

the original base image. After the face is retrieved, the system

will use the Facemark API Local Binary Features (LBF) to

determine the locations of all landmark facial features[15]. This

includes the eyebrows, eyes, nose, mouth, and edges of the face.

We decided to find and pinpoint the coordinates of the nose and

mouth, as this allows for definitive coordinates to use for the

frame of reference. If the nose coordinates are not centered, then

neither are the mouth coordinates, and vice versa. We wanted

to have both the nose and mouth coordinates for points of

reference in case the facial landmark detection for one of them

fails unexpectedly. The X and Y coordinates of the nose and

mouth are calculated every frame and added to arrays over the

period of the 5 second initial setup phase. The average of the

coordinates is taken to find the frame of reference, which is

what the system will use as the baseline of what constitutes

centered for the nose and mouth. In every video frame

following, if the coordinates of the user’s nose (or mouth if the

nose detection fails) are not within range of the frame of

reference for up to 5 seconds, iRecruit alerts the user visually

of subpar screen alignment and to adjust accordingly. The

user’s movement off screen is detected once they pass 150

pixels to the left or right of the frame of reference coordinates.

3. Testing and Results

The accuracy for each of the three options exceeded our goal

for the overall facial detection system accuracy of 80 percent.

We decided to test and calculate the accuracy for each option

individually, as all of the options are distinct in what part(s) they

are incorporating. The testing was manually performed, as the

facial detection system depends on user interaction and

provides real-time feedback. We looked into automated testing,

and found that it has been and could be done through a robotic

18-500 Final Project Report: 12/18/2020

8

arm that is able to rotate to recognize faces and perform tests[1].

However, this was out of scope for our project, as we did not

have the resources or experience needed to create this

automated testing setup. Therefore, we decided to do manual

testing, where Jessica attempted to test all possible scenarios

users would run into.

For option 1, both eye contact and screen alignment were

tested. A positive test meant providing the user with the correct

alert within 5 seconds if they had subpar eye contact or screen

alignment (True Positive (TP)), or not providing the user with

an alert if they did not have subpar eye contact or screen

alignment (True Negative (TN)). A negative test meant

providing the user with no alert if they had subpar eye contact

or screen alignment (False Negative (FN)), or providing the

user with an alert if they did not have subpar eye contact or

screen alignment (False Positive (FP)). All of these test cases

were covered, where Jessica would have subpar eye contact,

subpar screen alignment, or neither. The most common

negative tests included the system alerting the user of subpar

eye contact when the user did not actually move their eyes (FP

tests), and the system alerting the user of subpar eye contact

when the user actually had subpar screen alignment (FP and FN

tests — FP for eye contact and FN for screen alignment). Each

test constituted for two separate test cases, one for the result of

eye contact and one for the result of screen alignment. For

example, if the user has subpar screen alignment, the system

should have an alert for subpar screen alignment, but no alert

for subpar eye contact. Both behavioral interview tactics

account for one test case each. We kept track of the centered

eye coordinates, whether the eye coordinates of the current

frame were off-center, the eye contact test result (TP, TN, FP,

FN), the centered facial landmark coordinates, whether the

facial landmark coordinates were for the nose or mouth,

whether the nose/mouth coordinates of the current frame were

off-center, and the screen alignment test result (TP, TN, FP,

FN). Part of the test table is shown in Table I. There was a total

of 106 test cases, of which there were 27 TP results, 63 TN

results, 13 FP results, and 3 FN results. Following equation (1)

from the “Design Trade Studies” section, this results in an

accuracy of 84.91 percent.

TABLE I. FACIAL DETECTION OPTION 1 TEST TABLE (PARTIAL)

Centered

Eye

Coordinates

(X, Y)

Eyes

Off-

center?

Eye Contact

Test Result

(TP, TN, FP,

FN)

Centered

Facial

Landmark

Coordinates

(X, Y)

Nose or

Mouth?

Off-

center of

Screen?

Screen

Alignment

Test Result

(TP, TN,

FP, FN)

(24, 25) No TN (305, 239) Nose Yes TP

(24, 25) No TN (305, 239) Nose No TN

(25, 25) Yes TP (345, 263) Nose No TN

(25, 25) No FP (345, 263) Nose Yes FN

(25, 25) No TN (345, 263) Nose No TN

(22, 22) No TN (303, 260) Nose Yes TP

(22, 22) No FP (303, 260) Nose Yes FN

(22, 22) Yes TP (303, 260) Nose No TN

(22, 22) No FP (303, 260) Nose No TN

(21, 21) No TN (328, 282) Nose Yes TP

(21, 21) Yes TP (328, 282) Nose No TN

Centered

Eye

Coordinates

(X, Y)

Eyes

Off-

center?

Eye Contact

Test Result

(TP, TN, FP,

FN)

Centered

Facial

Landmark

Coordinates

(X, Y)

Nose or

Mouth?

Off-

center of

Screen?

Screen

Alignment

Test Result

(TP, TN,

FP, FN)

(21, 21) No FP (328, 282) Nose No TN

For option 2, only eye contact was tested. A positive test

meant providing the user with the correct alert within 5 seconds

if they had subpar eye contact (True Positive (TP)), or not

providing the user with an alert if they did not have subpar eye

contact (True Negative (TN)). A negative test meant providing

the user with no alert if they had subpar eye contact (False

Negative (FN)), or providing the user with an alert if they did

not have subpar eye contact (False Positive (FP)). All of these

test cases were covered, where Jessica would have subpar eye

contact or not. The most common negative tests included the

system alerting the user of subpar eye contact when the user did

not actually move their eyes (FP tests), and the system not

alerting the user of subpar eye contact within 5 seconds (FN

tests). We kept track of the centered eye coordinates, whether

the eye coordinates of the current frame were off-center, and

the eye contact test result (TP, TN, FP, FN). Part of the test table

is shown in Table II. There was a total of 54 test cases, of which

there were 35 TP results, 12 TN results, 5 FP results, and 2 FN

results. Following equation (1) from the “Design Trade

Studies” section, this results in an accuracy of 87.04 percent.

TABLE II. FACIAL DETECTION OPTION 2 TEST TABLE (PARTIAL)

Centered Eye

Coordinates (X, Y)
Eyes Off-center?

Eye Contact Test Result

(TP, TN, FP, FN)

(23, 23) Yes TP

(23, 23) No TN

(23, 23) Yes FN

(21, 21) Yes TP

(21, 21) Yes TP

(24, 24) No FP

(24, 24) No TN

(24, 24) Yes TP

(26, 26) Yes TP

(26, 26) Yes TP

(25, 25) No FP

For option 3, only screen alignment was tested. A positive

test meant providing the user with the correct alert within 5

seconds if they had subpar screen alignment (True Positive

(TP)), or not providing the user with an alert if they did not have

subpar screen alignment (True Negative (TN)). A negative test

meant providing the user with no alert if they had subpar screen

alignment (False Negative (FN)), or providing the user with an

alert if they did not have subpar screen alignment (False

Positive (FP)). All of these test cases were covered, where

Jessica would have subpar screen alignment or not. We kept

track of the centered facial landmark coordinates, whether the

facial landmark coordinates were for the nose or mouth,

whether the nose/mouth coordinates of the current frame were

off-center, and the screen alignment test result (TP, TN, FP,

FN). Part of the test table is shown in Table III. There was a

total of 51 test cases, of which there was only one negative test

18-500 Final Project Report: 12/18/2020

9

case, where the system did not alert the user of subpar screen

alignment (FN test). There were 38 TP results, 12 TN results, 0

FP results, and 1 FN results. Following equation (1) from the

“Design Trade Studies” section, this results in an accuracy of

98.04 percent.

TABLE III. FACIAL DETECTION OPTION 3 TEST TABLE (PARTIAL)

Centered Facial

Landmark

Coordinates (X, Y)

Nose or

Mouth?

Off-center of

Screen?

Screen Alignment

Test Result (TP,

TN, FP, FN)

(332, 287) Nose Yes TP

(332, 287) Nose Yes TP

(332, 287) Nose No TN

(332, 287) Nose No TN

(298, 266) Nose No TN

(298, 266) Nose Yes TP

(335, 316) Nose Yes TP

(335, 316) Nose Yes TP

(335, 316) Nose Yes FN

(315, 240) Nose Yes TP

(315, 240) Nose No TN

B. Speech Recognition

1. Signal Processing

The signal processing algorithm is implemented using a

Python script. The first step is to record the user speaking a

word from a predetermined list of eight possible categories and

save the recording as an audio file. This is recorded using the

built in sound device module and saved to an output path on our

local desktop. Then, the wav module from the scipy library is

used to translate the saved audio file to a float array which we

can then manipulate and modify. Once we store the audio input,

we apply a pre-emphasis filter to emphasize the higher

frequency components of the signal in order to improve the

signal to noise ratio[7]. This is done by following a simple

equation:

𝑦(𝑡) = 𝑥(𝑡) − 𝛼𝑥(𝑡 − 1) (2)

where x(t) represents the original audio input and α is a filter

coefficient with a value of 0.97.

 Next, we split the data into 20 ms chunks, or frames, with a

10 ms overlap between frames. This is done in order to account

for the fact that frequencies vary greatly over time and to ensure

that the Fourier transform is taken over stationary frequencies.

The original input signal is padded with zeros to ensure that the

length of each frame is the same. Afterwards, as described in

the “Design Trade Studies” section, we apply a Hamming

window to each frame to prevent leakage of the different energy

components when the Fourier Transform is taken[7]. This

consists of performing a dot product between each frame and

the following equation that represents the Hamming window:

𝑤[𝑛] = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁 − 1
) (3)

where N is the window length and in our case was 320 samples.

 In our case, we have 198 frames, each of length 320 samples.

Following this, the 512-point Fourier transform is applied to

each frame using the built in fft function that the scipy library

provides, and the result is stored in a 198 by 257 matrix.

Because the Fourier transform is a symmetric signal, we only

need to store the first half of the signal, hence explaining why

the length of each row in the resultant matrix is half of 512.

When we visualized this resultant 198 by 257 matrix in a

spectrogram, the result is as we expected - similar for similar

words and different for different words.

 While we could end the signal processing here and pass in

the 198 by 512 matrix into the neural network, we decided to

further modify the output. In order to visualize the spectrogram

with time on the x axis and frequency power on the y axis, we

apply the Mel Filter Bank coefficient approach. This is done by

applying triangular filters using a Mel scale to extract the

different frequency components[24]. We create 40 triangular

filters, equally spaced out between the lowest and highest

frequencies and perform matrix multiplication between the

filters and the resultant 198 by 257 matrix. This leads to a 40 by

257 matrix, which we then visualize on the spectrogram (as

shown in Fig. 9.).

 The last step involves creating the training data. As

mentioned in “Design Trade Studies”, we save the spectrogram

as an image and use the pixel values of the image to create the

training data. This is done because the 40 by 257 matrix

described above does not seem to have any apparent differences

between different words. While it is possible that the neural

network can learn patterns that the human eye cannot, we

thought that the neural network would learn better on the

images.

Fig. 8. Block diagram for signal processing.

Fig. 9. Spectrogram representations for the eight different categories; x-axis -
time (ms), y-axis - frequency (kHz).

18-500 Final Project Report: 12/18/2020

10

2. Machine Learning

The machine learning algorithm that we implement is a

convolutional neural network, adapted from Mohini’s neural

network assignment from 10-301: Introduction to Machine

Learning. As described in the signal processing section, the

input is the image of the saved spectrogram representation of

the word spoken by the user. As discussed in “Design Trade

Studies”, we discussed experimenting with 2 hidden layers and

how we found the error was significantly higher. Therefore, the

final model used has one hidden layer to perform the

transformation of the input vector, and an output layer that

represents the probability distribution across the eight possible

categories. The hidden layer consists of 10 hidden units. The

feature vector in the hidden layer is calculated by performing a

weighted linear combination of the input feature vector and the

weights in a matrix α. The result of the linear combination is

passed through a sigmoid function in order to normalize the

vector. Similarly, the probability distribution in the output layer

is calculated by performing a weighted linear combination

between the feature vector in the hidden layer and the weights

in a matrix β. The result of the linear combination is once again

passed through a sigmoid function in order to normalize the

probability distribution[11].

There are two sets of parameters that the algorithm

optimizes. The α matrix has dimension length of input vector

by the number of hidden units in the hidden layer. In our case,

α has dimensions 1500 by 10. It represents the weights that

connect each element in the input vector to each hidden unit in

the hidden layer. The β matrix has dimension number of hidden

units in the hidden layer by number of classes in the output. In

our case, β has dimensions 10 by 8. It represents the weights

that connect each element in the hidden layer to each class in

the output.

To determine the weight matrices α and β, we use a process

called Stochastic Gradient Descent (SGD), which updates the

parameter values for each training example. This means the

model is able to learn and generalize to each sample in the

training data set. The objective of SGD is to minimize the

objective function, or the Mean Squared Error (MSE), by using

a technique called backpropagation to compute the gradient[21].

This requires the use of the Chain Rule as computing the

gradient includes many intermediary variables, and

backpropagation provides an efficient way to keep track of the

intermediary derivatives in order to prevent recomputing them

in a future iteration. Through this information, SGD updates the

parameter values in the opposite direction of the gradient.
Training the model involves finding the optimal parameter

matrices that minimize the Mean Squared Error given by the

following equation:

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌�̂� − 𝑌𝑖)

2𝑛

𝑖=1
 (4)

Y_hat, the predicted classification for each sample in the

dataset, is found through the feedforward propagation described

above with the current weight matrices α and β, which are found

through a process called Stochastic Gradient Descent. Y is the

true classification for each sample in the dataset. N is the total

number of samples. This process updates each of the weights in

α and β by choosing one sample from the dataset and adding the

current weight to the partial derivative of the mean squared

error with respect to each of the weights. This is repeated until

the MSE is successfully minimized.

Fig. 10. Block diagram for neural network. Note: a similar diagram was

used in Mohini and Shilika’s Final Report for 18-794: Pattern Recognition

Theory. Both diagrams were created by Mohini and Shilika.

3. Testing and Results

To determine the accuracy of the speech recognition

algorithm, we performed two different checks. After training

the model with 105 training data samples, we tested the

algorithm with 50 testing data samples. We performed this test

50 times, and, as seen in the figure below, the results had six

outliers. Excluding the outliers, the average error rate for the

training and testing error are 0.05 percent and 64.5 percent

respectively. The outliers are caused because our algorithm is

non-deterministic. Since we are using Stochastic Gradient

Descent to update the weight matrices for every training data

sample within every epoch, our algorithm has an element of

randomness. With every run, the algorithm will create a slightly

different model to predict unseen data, resulting in varying

training and testing error rates[3]. However, as seen in the figure

below, the overwhelming majority of the runs stayed consistent.

Fig. 11. Training and testing error rates for 50 separate runs.

Our second check involved using the same model, but

varying the testing data sample sizes from 50 to 80. We ran each

combination multiple times and plotted the most consistent

result in the figure below. Through this analysis, we were able

to confirm that our testing accuracy was not a fluke based on

the data samples we included and remained steady as we added

more data.

18-500 Final Project Report: 12/18/2020

11

Fig. 12. Training and testing error rate for number of testing samples

ranging from 50 to 80.

As discussed in the “Design Trade Studies'' section, despite

attempting multiple methodologies to increase the accuracy of

the speech recognition model, we were unable to. We achieved

an accuracy of 35 percent, which is 30 percent below our

desired accuracy. In order to cross-check our neural network

accuracy with an accuracy given by another classification

method, we ran our algorithm using python’s in-built Gaussian

Naive Bayes function provided in the sklearn.naive_bayes

library[23]. This model incorrectly predicted 29 out of 50 points,

rendering an error rate of 58 percent. This is seven percent

above the neural network error rate of 65 percent. The

difference in the accuracy between the neural network approach

and Gaussian Naive Bayes approach is not significant. This

analysis leads us to believe that the representation of the audio

signal could have been further fine-tuned, as neither model was

able to classify more than half of the testing data correctly.

Modifications include performing different processing

techniques on the input signal. Additionally, these results show

that a probabilistic approach such as Gaussian Naive Bayes or

Gaussian Mixture Modelling may have been better to use, as

the accuracy is slightly higher when using Gaussian Naive

Bayes rather than a convolutional neural network approach

VI. PROJECT MANAGEMENT

A. Schedule

Our full Gantt chart is in Appendix X. This schedule varies

slightly from the original schedule we included in the Design

Report. From the beginning, we made our schedule very

detailed, so that each part was broken down into several parts.

The schedule was adjusted to account for changes in design

decisions as discussed in the “Design Trade Studies” section. It

includes the tasks that all team members are responsible for

(e.g. abstract, proposal presentation), a research phase, and an

implementation phase. The three main components of the

requirements - facial detection, signal processing, and machine

learning, were divided among each team member. All team

members worked on designing the web application.

B. Team Member Responsibilities

Mohini - Mohini was in charge of the machine learning

algorithm for the technical interview section and ensuring that

the accuracy of the neural network matched our expected

accuracy of 65 percent. She also worked with Shilika to form

the input to the neural network, which was a result of the signal

processing portion of our project.

Shilika - Shilika was in charge of the signal processing

algorithm for the technical interview section. She worked on

ensuring that the output was a reasonable representation of the

audio that was spoken by the user, and continuing to make

enhancements and improvements to hone the output.

Jessica - Jessica was in charge of the facial detection portion

for the behavioral interview section. She worked on researching

and implementing the facial detection algorithm, and providing

real-time feedback to the user. This included detecting facial

features and alerting the user of subpar eye contact and screen

alignment.

C. Budget

 While iRecruit was originally going to require AWS credits

for EC2, we decided to no longer deploy the web application.

This was due to the complex nature of the code layout, where

both Python and Java were used, as well as the Python OS

library to run files from the command line (given the different

setups of Mac versus Windows)[20]. This made it difficult to

deploy iRecruit with the various file paths and languages, and

the requirement of the command line. Since AWS EC2 was not

used, iRecruit did not cost us anything to create.

D. Risk Management

There were a couple of risk factors to consider for each

portion of iRecruit that we needed to consider. For the facial

detection part, the biggest risk factor was the inability to meet

our accuracy expectation of 80 percent. To mitigate this, we

used the OpenCV library Haar Cascades, which historically

have an accuracy rate of about 95 percent[27]. Because the bulk

of the initial facial detection was done using Haar Cascades and

we only used the distinct nose and mouth coordinates from

facial landmark detection, the accuracy continued to stay high,

and the losses in accuracy were likely due to the tracking and

alert portions. We were able to exceed our accuracy goal of 80

percent for all 3 options. Other risk factors included factors that

may have affected performance, such as the contrast between

different facial features, lighting, and background. The contrast

between the iris and the rest of the eye may vary depending on

the user. To account for this, we wanted to allow users to set

their threshold manually instead of having a hard set threshold.

This should have also taken care of the lighting. However, we

were unable to implement the setting threshold feature in time

given our schedules and capacities, and this may have been

another potential reason for losses in accuracy. For the

background, we recommended on the “Behavioral” web page

that the user be positioned in front of an empty background, so

that the face is apparent on the screen. Having an empty

background allows for the system to detect the facial features.

From testing, this detection worked much better on an empty

background as opposed to a non-empty/noisy background.

There are two main risk factors to consider in the signal

processing portion. The first risk factor is not being able to

reach the accuracy expectations we have set for ourselves. We

18-500 Final Project Report: 12/18/2020

12

are aiming for a 65 percent accuracy on the overall speech

processing algorithm. The output of the signal processing

algorithm will have a big impact on the overall accuracy of our

speech recognition implementation. We believe that we weren’t

able to mitigate this risk factor as well as we would have liked,

as we hypothesize this is one reason that the accuracy of our

speech recognition algorithm fell short. The second risk factor

is ensuring that pitch and loudness will not have an effect on

our signal processing algorithm. For example, different people

speak at different volumes and have different pitches. These

factors should not have a major input on the overall output. We

believe we were able to mitigate this risk factor to the best of

our ability as different people speaking the same word resulted

in similar spectrogram representations.

The biggest risk factor for machine learning is that our model

may not work at all. As mentioned previously in this report,

speech recognition is an extremely demanding task which

requires many talented engineers spending many years working

on it. Our speech recognition attempt was not a complete failure

as our accuracy of 35 percent is more than double of the chance

accuracy of 12.5 percent. However, the accuracy was a lot

lower than we hoped to achieve. One possible reason is that the

testing data samples are significantly different from our training

data, and our algorithm did not generalize to unseen data

samples well. There are many factors beyond our control, such

as the pitch, frequency, and volume of the audio signal, that may

contribute to a lower than expected accuracy for the algorithm.

Another risk factor relates to not being able to determine the

optimal parameters for our model. This includes determining

the optimal number of training data samples to build a model

that does not overfit to any particular data. We found it

extremely surprising that adding more than 105 samples of

training data reduced the accuracy of the algorithm. We

hypothesize it is because the added training data did not have

enough variety from the already existing training data. Other

parameters we experimented with are the number of hidden

layers, the number of epochs, and size of training and test

dataset.

VII. RELATED WORK

There are multiple current resources available for practicing

behavioral and technical interviewing. For behavioral

interviews, there are several articles that exist that give tips and

commonly asked behavioral questions. These articles exist

across many platforms, including many job-related sites, such

as Indeed and Glassdoor. For technical interviews, there are

several platforms that allow users to practice their technical and

coding skills. This includes HackerRank and LeetCode, where

users are able to select which topic they want to practice with

and are given a question and an IDE to code on.

VIII. SUMMARY

A. Future Work

If we do choose to continue working beyond the semester,

we have improvements that we would like to make. For the

facial detection portion, as mentioned in the “Risk

Management” section, we would like to allow users to set their

threshold manually instead of having a hard set threshold to

account for contrast differences between facial features and

lighting. This may help improve the accuracy and the

accessibility of the system, as it would provide for better facial

detection and take more into account users of various

backgrounds and circumstances. We would also like to improve

the accuracy of the first option for the facial detection portion,

as this option had the lowest accuracy with the integration of

both eye contact and screen alignment. Several of the negative

tests were due to incorrect alerts of subpar eye contact when the

user actually had subpar screen alignment. To improve this, we

would calculate a new “center” for the eyes as the user moves

off screen, so that the system does not falsely alert them of bad

eye contact. Instead of simply having one initial frame of

reference, we could update the frame of reference regularly, so

that there are new centered eye coordinates to account for

movement. Finally, another improvement would be to test the

facial detection system on more users. Due to scheduling and

time limits, it was difficult to test the system on multiple users,

so Jessica conducted all of the current tests. It would be ideal to

have a larger and more representative set of users test the

system, including users who are non-team members, to get a

better idea of the accuracy and performance.

Regarding the speech recognition model, there are multiple

factors that can be improved to higher the accuracy. First, we

would reconsider the best techniques used to process the raw

data. This would include exploring options to remove

background noise or a tool to normalize frequencies of the

different energy components. We would also explore various

filter bank options and weigh the pros and cons of each use case.

Second, we would use a probabilistic model such as Gaussian

Mixture Modelling or Gaussian Naive Bayes to classify the

data, instead of a convolutional neural network. One advantage

of using a probabilistic model is that significantly less training

data is needed for classification purposes. Generally,

probabilistic models are faster to compute with and can learn

with less data. Furthermore, we would create our training data

with more variety of pitch, frequency, and volume. This would

involve recording the voices of people of all genders,

ethnicities, and age groups so that our training data can be

representative of the population, as a whole.

B. Lessons Learned

This was an important application to consider as many of us,

as graduating seniors, are experiencing the hardships of the job

recruiting process. Interviewing is rough and based on our

personal experiences, we decided that having a centralized

platform would make practicing for an interview less stressful.

In terms of the design and implementation process of our

project, we suggest having clear goals, deadlines, and visions

for the end product before starting the implementation.

Documenting the small success points along the way helped the

end goal seem more feasible and attainable.

REFERENCES

[1] Banerjee, Debdeep, and Kevin Yu. “Robotic Arm-Based Face
Recognition Software Test Automation.” IEEE Access, vol. 6, 10 July

2018, pp. 37858–37868., doi:10.1109/ACCESS.2018.2854754.

18-500 Final Project Report: 12/18/2020

13

[2] Brownlee, Jason. “How to Avoid Overfitting in Deep Learning Neural
Networks.” Machine Learning Mastery, 6 Aug. 2019,

machinelearningmastery.com/introduction-to-regularization-to-reduce-

overfitting-and-improve-generalization-error/.
[3] Brownlee, Jason. “Why Do I Get Different Results Each Time in

Machine Learning?” Machine Learning Mastery, 26 Aug. 2020,

machinelearningmastery.com/different-results-each-time-in-machine-
learning/.

[4] Dey, Sandipan. Hands-On Image Processing with Python: Expert

Techniques for Advanced Image Analysis and Effective Interpretation of
Image Data. Packt Publishing Ltd., 2018.

[5] “Dlib C++ Library.” Dlib, dlib.net/python/index.html.

[6] “Face Detection Using Haar Cascades.” OpenCV, opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detec

tion/py_face_detection.html.

[7] Fayek, Haytham. Speech Processing for Machine Learning: Filter
Banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-

Between. 21 Apr. 2016, haythamfayek.com/2016/04/21/speech-

processing-for-machine-
learning.html?fbclid=IwAR1jJ1skvbHHXXYoa3aSpxBPCjwgzHACi26

xlIAQc3T4nsh2QUoQ2OA5M0I.

[8] Filonov, Stepan. “Tracking Your Eyes with Python.” Medium, 22 Mar.
2019, medium.com/@stepanfilonov/tracking-your-eyes-with-python-

3952e66194a6.

[9] “Gaussian Mixture Model.” Brilliant Math & Science Wiki,
brilliant.org/wiki/gaussian-mixture-model/.

[10] Guennouni, Souhail, et al. “A Comparative Study of Multiple Object
Detection Using Haar-Like Feature Selection and Local Binary Patterns

in Several Platforms.” Modelling and Simulation in Engineering, vol.

2015, 31 Dec. 2015, pp. 1–8., doi:10.1155/2015/948960.
[11] “How Neural Networks Work - A Simple Introduction.” Explain That

Stuff, 17 June 2020, www.explainthatstuff.com/introduction-to-neural-

networks.html.

[12] Jack, Srujan. “Face Detection Using Dlib HOG.” Medium, 17 July

2020,

medium.com/mlcrunch/face-detection-using-dlib-hog-198414837945.
[13] Lab, Sagara Idea. “What Is Django and Why Is It Used?” Medium,

Medium, 4 Feb. 2020, medium.com/@sagarajkt/what-is-django-and-

why-is-it-used-2dafdc75ce67.
[14] Mallick, Satya. “Blob Detection Using OpenCV (Python, C++).” Learn

OpenCV, 17 Feb. 2015, www.learnopencv.com/blob-detection-using-

opencv-python-c/.
[15] Mallick, Satya. “Facemark : Facial Landmark Detection Using

OpenCV.” Learn OpenCV, 19 Mar. 2018,

www.learnopencv.com/facemark-facial-landmark-detection-using-
opencv/.

[16] Mallick, Satya. “How to Find Frame Rate or Frames per Second (Fps) in

OpenCV (Python / C++) ?” Learn OpenCV, 12 Nov. 2015,
www.learnopencv.com/how-to-find-frame-rate-or-frames-per-second-

fps-in-opencv-python-cpp/.

[17] Oluwatosin, Otulagun Daniel. “Facial Landmarks and Face Detection in
Python with OpenCV.” Medium, 24 Jan. 2020, medium.com/analytics-

vidhya/facial-landmarks-and-face-detection-in-python-with-opencv-

73979391f30e.
[18] “100 Behavioral Interview Questions to Help You Find the Best

Candidates.” Top Echelon, 7 Dec. 2020,

www.topechelon.com/blog/placement-process/top-behavioral-interview-
questions-list-examples/.

[19] “Precision and Recall.” Wikipedia, Wikimedia Foundation, 10 Nov.

2020, en.wikipedia.org/wiki/Precision_and_recall.
[20] “Python | Os.system() Method.” GeeksforGeeks, 20 June 2019,

www.geeksforgeeks.org/python-os-system-method/.

[21] Ruder, Sebastian. An Overview of Gradient Descent Optimization
Algorithms. 20 Mar. 2020, ruder.io/optimizing-gradient-descent/.

[22] Scheidler, Pete. “Understanding the Basics of Fourier Transforms.”

EnDAQ Blog for Data Sensing and Analyzing, blog.endaq.com/fourier-
transform-basics.

[23] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,

pp. 2825-2830, 2011. https://scikit-learn.org/stable/about.html#citing-
scikit-learn.

[24] S. K. Kopparapu and M. Laxminarayana, "Choice of Mel filter bank in

computing MFCC of a resampled speech," 10th International
Conference on Information Science, Signal Processing and their

Applications (ISSPA 2010), Kuala Lumpur, 2010, pp. 121-124, doi:

10.1109/ISSPA.2010.5605491.

[25] “Structural Analysis and Shape Descriptors.” OpenCV 2.4.13.7
Documentation,

docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shap

e_descriptors.html.
[26] Understanding FFTs and Windowing. National Instruments,

download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20W

indowing.pdf.
[27] Viola, Paul, and Michael Jones. “Rapid Object Detection Using a

Boosted Cascade of Simple Features.” Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern
Recognition, 2001, pp. I-I., doi:10.1109/CVPR.2001.990517.

[28] The World's Leading Online Programming Learning Platform.

leetcode.com/.

18-500 Final Project Report: 12/18/2020

14

IX. APPENDIX I. SCHEDULE

18-500 Final Project Report: 12/18/2020

15

X. APPENDIX II. ENLARGED BLOCK DIAGRAMS FOR FACIAL

DETECTION AND MACHINE LEARNING

