
18-500 Final Project Report: 10/19/2020

1

Abstract—An interview assistant capable of providing software

engineering jobseekers with the opportunity to practice for the

interview process. Students are challenged with navigating fully

virtual interviews and practicing how to conduct themselves

during behavioral and technical interviews. Although there exist

several written guidelines about common interview practices and

questions, there is a lack of opportunity to practice a simulated

interview with a “real” interviewer. iRecruit aims to give users a

chance to practice for interviews through facial detection for

behavioral interviews, and signal processing and machine learning

for technical interviews.

Index Terms—Facial detection, Fourier transform, Haar

cascades, Machine learning, Neural network, Signal processing

I. INTRODUCTION

 common task people are faced with when searching for a

job is interviewing. There exist several resources for

assisting jobseekers with their interview process, such as lists

of common behavioral interview questions and platforms to

practice solving technical problems. Common technical

interview platforms include HackerRank and LeetCode, where

users are able to solve problems in a wide range of Computer

Science topics such as Linked Lists, Dynamic Programming,

and Strings. We want to improve upon current resources by

creating a centralized platform where users are able to practice

for both behavioral and technical interviews in a simulated

environment. This way, users are able to gain an understanding

for what real, virtual interviews are like.

 For behavioral interviews, users are asked to video record

themselves answering common behavioral questions. During

the recording, iRecruit will provide real-time feedback on the

user’s eye movement and screen alignment. The goal is to

detect the user’s facial feature coordinates within 10 seconds,

and alert the user after 5 seconds of subpar eye contact or screen

alignment. For technical interviews, users are asked to audio

record their skills, letter by letter. iRecruit will create a speech-

to-text model to feed into a neural network that generates a

technical question relevant to the interviewee’s skillset. The

goal is to identify the letter spoken with 60% accuracy and

generate a question within 1 minute of post-processing.

II. DESIGN REQUIREMENTS

We have split the design requirements of our web application

into 3 main components:

• Facial detection

• Signal processing

• Machine learning

Each component has a series of requirements that we are

aiming to meet. For overall qualitative requirements, we want

to make our code is consistent and well-documented. It should

follow a coding standard that is readable and understandable for

all team members. We also want to make sure that the iRecruit

web application is able to save and remember a user’s

information, so that they are able to use a single profile each

time they want to practice interviewing.

For the facial detection portion, there are three main

requirements. The first one is the requirement for the initial

setup phase. This initial setup phase is to allow the user to

position themselves accordingly, and for the system to calculate

a frame of reference that it will use for future off-center

detection. The frame of reference should be calculated within

10 seconds, which should allow enough time for the user to find

a position that is comfortable for them. A time less than 10

seconds may result in an insufficient frame of reference

calculation, particularly for first-time users who are unaware of

how the system works. The second requirement pertains to

alerting the user of subpar eye contact or screen alignment. If a

user’s eyes or face is off-center, then the system should alert the

user within 5 seconds. We did not want an immediate alert,

because there are times where a user needs to look away from

the screen for a very short period of time (1-2 seconds); for

instance, for a screen break or to look at the time. The last

requirement is for the accuracy of the facial detection portion.

We aim to have approximately 80 percent accuracy, because we

will be using the OpenCV library in Python. OpenCV has built-

in Haar Cascades, which are pre-trained classifiers for features

such as faces, eyes, and smiles. The accuracy of the Haar

Cascades is around mid-90 percent, so we thought that aiming

for 80 percent with our system that builds on top of Haar

Cascades was a reasonable accuracy achievement.

For the signal processing portion, there are three main

requirements. The first requirement is modifying the initial

input. Our signal processing algorithm takes in an audio

recording of the user speaking a single letter. The modification

process will take two steps. First, we will remove the initial

silence before the user starts speaking from the original file.

This will get rid of unnecessary data (background noise) and

shorten the input. Second, we will represent the remaining data

as a feature vector. This will allow us to manipulate and

transform the input to represent each letter in a way that a

computer program can understand. The second requirement is

to formulate the output. This output will be a feature vector that

is fed into the machine learning algorithm. In order to make this

output meaningful, the vector should have characteristics that

iRecruit

Author: Mohini Banerjee, Shilika Gehlot, Jessica Meng: Electrical and Computer Engineering,

Carnegie Mellon University

A

18-500 Final Project Report: 10/19/2020

2

distinguish a specific letter from another, while having similar

values for the same letter. The third and last requirement of this

portion is testing the accuracy of our algorithm. This portion is

difficult to test concretely for two reasons. First, the signal of

different people recording the same letter will differ due to

differences in pitch, loudness, and frequency. Second, the

signal representing the same person saying the same letter will

vary, as well. To ensure our algorithm is behaving as expected,

we will compare the same letters spoken by the same person

and check if the signals are similar.

For the machine learning portion, there are three main

requirements. First, the input will be generated from the signal

processing algorithm described above. We will reduce the

dimension of the feature vector to make it easier for the machine

learning algorithm to train. In order to build the algorithm, we

will need to ensure we have ample training data. We plan on

having approximately 20 feature vectors representing each of

the 26 letters for a total of 520 samples of training data. This

training data will be representative of the audio recordings of

many different people to ensure that our algorithm is not biased

towards a single person’s voice. A subset of our training data

will be used as validation data to prevent any overfitting. The

second requirement consists of the output being a probability

distribution across the different letters. The letter that the user

spoke would be the one with the highest probability as

determined by the algorithm. Third, we expect for the machine

learning algorithm to have an accuracy of about 60%. We

recognize that it will be difficult for our algorithm to pick up

the differences between similar sounding letters such as “M”

and “N”. Speech recognition is a difficult task that many

talented engineers have been working on for years. Since we

are three college students with three months of time, we are

aiming to produce a simplified version of the speech

recognition algorithm that can correctly determine letters 60%

of the time.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

We have split the architecture of iRecruit’s system into 4

main parts:

• Web application

• Facial detection

• Signal processing

• Machine learning

The facial detection, signal processing, and machine learning

components exist within the main web application. The facial

detection portion will exist relatively independently, while the

signal processing and machine learning portions will be

integrated with each other. The web application is the baseline

for the system, as this is where the user will be able to access

the various components. The web application is split into three

main components:

• Behavioral

• Technical

• Profile

When a user registers or logs into the system, they will be led

to the dashboard, where they will be able to navigate to these

three parts. If they choose to go to the “Behavioral” page, they

will be presented with a randomly generated behavioral

interview question and will be given the option to video record

themselves responding to the question. iRecruit expects that the

user is sitting in front of the camera and that their face will be

visible in the video screen. When the user is recording, the

facial detection portion will attempt to detect their face using

Python’s OpenCV library, specifically Haar cascades. This may

require the user to position themselves accordingly and adjust

their angle if necessary, as the Haar cascades are sensitive to the

angle of the face. The facial detection algorithm allocates 10

seconds to an initial setup phase, to determine the frame of

reference of the user’s face and eye coordinates. Once the

system has this frame of reference, it will refer back to this for

each video frame. If the user’s face or eye coordinates are not

within a range of the frame of reference coordinates (also

known as off-center), the system will alert the user within 5

seconds. This alert will be some type of visual and/or audio

signal, so it is clear to the user that they are off-center and to

reposition.

If a user chooses to go to the “Technical” page, they will be

presented with a randomly generated technical question from

our database that is relevant to the skills they have provided in

the profile page. In our backend database, we have questions

labeled easy, medium, and hard for each of the following

categories - arrays, strings, object-oriented programming,

linked lists, binary trees, recursion, and dynamic programming.

With each question, the user will be provided with an example

input and output that will help demonstrate what the

programming solution is supposed to do. iRecruit will provide

an additional input that will test the accuracy of the user’s

solution. After running their program with the question and

input, they will be able to enter their output and iRecruit will let

them know if it was correct or not. At this point, the user will

be prompted to move on to the next randomly generated

technical question.

The user’s skill set, video recordings, and list of behavioral

and technical questions answered will be saved in the “Profile”

section of the web application. Here, the user will be able to

view three things. First, they can review past video recordings

if they want to look at their eye contact and screen alignment.

Second, they will have a running record of all the behavioral

and technical questions answered so far, as well as a summary

of their results for each question. For the behavioral component,

this will consist of a concise summary of their eye contact and

screen alignment. For the technical component, this will consist

of how accurately the question was answered. Third, they will

be able to update and edit the recording of their skill set, so that

they do not have to re-record each time they log in. The profile

page will call the signal processing and machine learning

algorithms in the backend each time a user decides to record

their skill set.

18-500 Final Project Report: 10/19/2020

3

Fig. 1. High-level diagram of the system architecture.

Fig. 1. Is a high-level diagram of the system architecture that

shows the different web pages we plan on having, as well as

how the pages connect to each other. The behavioral interview,

technical interview, and profile pages are where most of the

backend processes (facial detection, signal processing, machine

learning) happen, whereas the home, log in, register, and

dashboard pages are more for sake of completeness of our web

application and to provide an intuitive flow between different

pages.

IV. DESIGN TRADE STUDIES

We considered various approaches to each of the components

of the system and performed an initial research phase to weigh

these approaches. There were a handful of options and

algorithms that we took into account, but ultimately went with

the ones that we thought would have the most available

documentation and provide us with a high accuracy.

A. Web Application

For the web application, we chose to use Django, a Python

web framework, to build it. Django is one of the more popular

existing web frameworks that we have the most experience

with. Many of the web components are already developed and

it allows us to focus on the features we are trying to implement.

There are four main reasons we chose to use Django. First, it is

easy to use as it is based on the Python programming language.

Since it is commonly used, there exists many tutorials and

documentation for us to refer to. Second, it is fast and simple as

making changes in the frontend or backend code does not

require the whole system to restart. It also allows for separate

testing of backend and frontend components. Third, it is

extremely secure as Django security protects against

clickjacking, cross-site scripting, and SQL injection. Lastly, it

is suitable for any web application project of any size and

capacity. It is scalable and can handle large amounts of data; it

can be used on any operating systems including Mac, Windows,

and Linux; it can incorporate multiple databases into the project

to store information. Because of the above reasons, there were

never any alternate web frameworks we considered to host our

application. Django seemed like the best approach from the

start.

B. Facial Detection

For the facial detection portion, we decided to use the

OpenCV library in Python, particularly Haar cascades. There

were two main Python libraries that we were considering for

facial detection, which were dlib and OpenCV. dlib is a toolkit

that contains machine learning algorithms and tools, and

although it is principally a C++ library, it can also be used with

Python. It has a Histogram of Oriented Gradients (HOG)

feature descriptor, which is very powerful and actually more

accurate than OpenCV Haar cascades. However, we ultimately

chose OpenCV, because OpenCV is much more commonly

used in Python. It also has more documentation and tutorials

available, which we thought would be helpful because we were

not familiar with facial detection before iRecruit. Haar cascades

also have an accuracy of approximately 95 percent[9], which we

believed was a sufficient baseline accuracy for us to build on

top of for our aim of 80 percent accuracy. We were originally

going to measure 3 things in the facial detection portion: eye

contact, posture, and screen alignment. However, we decided to

forgo posture, as there was no sufficient way to measure it. The

first measurement we thought of was to attempt to detect the

mouth, and if the mouth disappeared (user’s head is down), that

constituted subpar posture. However, if there is no mouth

detected, there is also no face detected. Another measurement

we thought of was to attempt to detect the shoulders and

measure the distance between the shoulders and the center of

the face, and if that distance was less than that of the frame of

reference, that constituted subpar posture. However, if a user

has long hair and the hair is covering the shoulders, shoulder

detection would not be possible. Forgoing this measurement

allows us to focus on implementing the eye contact and screen

alignment portions, and making them more robust to meet

accuracy demands. Facial detection accuracy will be calculated

by the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑠
 (1)

True positive tests occur when the user does not have subpar

eye contact or screen alignment, and the system does not alert

them. False positive tests are when the user does not have

subpar eye contact or screen alignment, and the system alerts

them. True negative tests occur when the user has subpar eye

contact or screen alignment, and the system alerts them. False

negative tests occur when the user has subpar eye contact or

screen alignment, and the system does not alert them.

C. Signal Processing

For the signal processing portion, we hit many roadblocks as

we experimented with the best approach to reach the desired

output. There are three main decisions we had to make. First,

we were confused on whether to use the time domain or

frequency domain to represent the signal. The time domain

signal seemed like it provided us with more information,

however the amplitudes of different signals representing the

same letter were different. We recognized this was most likely

due to differences in pitch, frequency, and loudness. Thus, we

tried representing the signal in the frequency domain through

the use of the Fourier Transform. This caused different

problems as every signal, no matter the letter, looked similar as

18-500 Final Project Report: 10/19/2020

4

each representation had a peak in the lower frequencies and

another peak at the higher frequencies. The Fourier Transform

tells us what frequencies are present in our signal. It also tells

us how much power the time domain signal has at each

frequency. By breaking a signal into its frequency components,

it allows us to block out certain frequencies. We realized that

although the information that the frequency domain gives is less

intuitive than the time domain, ultimately it will help

differentiate between letters.

The next two design tradeoffs are more specific. For starters,

one decision we had to make was trimming the silence from the

audio recording. Trimming it would distort the audio signal, but

background noise silence may confuse the machine learning

algorithm. Furthermore, we had to consider trimming the

beginning of the signal, the end of the signal or both. The reason

for keeping the noise at the end of the signal is to ensure that

the length of every time signal is uniform. Trimming either the

beginning or end will be harder to implement as it will need to

be done from scratch, whereas if we trim the silence from both

sides of the signal, we are able to use the built in trim function

from the librosa library. We will need to experiment further to

see which option will provide the ideal output.

The other decision involved using a windowing function to

analyze the Fourier Transform. We decided to split the audio

signal into 20ms chunks. In theory, this is equivalent to

multiplying the signal by a rectangular window to extract the

20ms chunks. Once we realized that we were essentially

performing windowing, we needed to analyze the tradeoffs

between using different windowing functions. After doing

some research on why windowing is necessary, we found that

taking the Fourier Transform of a signal that is not perfectly

periodic results in some discrepancies. The Fourier Transform

assumes the time domain signal is a finite, periodic signal.

When this is not the case, the endpoints of the signal are not

continuous and this discontinuity is present in the frequency

domain as high frequency components that do not exist in the

original signal. Therefore, the Fourier Transform is not accurate

as the different energy components are leaking onto each other.

We found that windowing can help provide a solution for this

problem. Windowing can reduce the impact of the discontinuity

present in the time signal and thus provide a more accurate

representation of the signal in the frequency domain. It consists

of multiplying the time domain signal by a window of finite size

that has a sinusoidal amplitude that approaches zero at the

discontinuous parts. Out of all the possible windows, we saw

that the Hamming window function best emulates this

sinusoidal pattern as it has a wide peak but low side lobes.

D. Machine Learning

To implement the machine learning algorithm for our speech

processing portion, we were debating two main approaches,

neural networks and gaussian mixture modelling. The goal of a

neural network is to program a simulation of connected human

brain cells so eventually it can recognize patterns, point out

similarities and differences, and behave like a human brain. As

discussed extensively in the System Description, a complete

neural network consists of the input and output layer, and one

of more hidden layers. Increasing the number of hidden layers

increases the amount of time it will take to train the algorithm,

so when we start to finalize the number of hidden layers, this is

something we will have to keep in mind. In addition to

algorithmic decisions, we will need to finalize the number of

training and testing data samples we use. It is common to use at

least ten times as many training samples as the number of

inputs. That means that for us, we will need to gather at least

260 hundred training samples of people saying the different

letters. To improve the accuracy, this number could climb up to

a thousand or more.

The Gaussian mixture model is a probabilistic model that

represents subpopulations within an overall population that

have a normal distribution. By gathering user input of people

saying the different letters, we can create a model that would

determine the probability of likelihood of a specific letter being

chosen. We could then use this model to predict unknown

utterances when the user is speaking a letter. The Gaussian

mixture model will not require as many training samples as a

neural network would as creating a probabilistic model in

theory is less complex than trying to simulate the human brain.

The two algorithms have different pros and cons. However

none of us have any experience with Gaussian mixture

modelling while two of us have experience with neural

networks. Learning a new algorithm from scratch may not be

the best use of our time, therefore, our team will first try the

neural network algorithm as we are most familiar with it. If the

classification is completely incorrect, we will look into using

Gaussian mixture modelling. After deciding to go with the

neural network, we discussed exactly what we are trying to

classify even within speech recognition. The most advanced

algorithms such as the once used to implement Siri, Alexa, and

Google Assistant are able to identify full sentences. Due to our

time constraint, we knew we’d have to narrow down our scope.

Thus, we decided to make our speech recognition model

identify the alphabet. This way, we are only trying to

distinguish between 26 possibilities, the letters A through Z.

Additionally, we discussed whether we would want to allow the

user to speak a stream of letters into the input or one at a time.

Because implementing any speech recognition, even something

as basic as distinguishing between letters, is a difficult task, we

decided to start with recognizing one letter at a time and will

move on to a stream of letters if time allows.

V. SYSTEM DESCRIPTION

A. Facial Detection

The facial detection portion of iRecruit will be implemented

utilizing the OpenCV library in Python. When a user records

themselves answering the practice behavioral question, the

system will call the OpenCV VideoCapture class to begin a new

capture of video frames at a rate of 30 frames per second.

Additionally, the OpenCV VideoWriter class will be used for

saving the video. For the alerts to the user, this will be done

through OpenCV’s putText() method and/or through the

playsound library, to notify the user visually and/or audibly.

There will be two parts that exist within the facial detection

portion, one for eye contact and one for screen alignment.

18-500 Final Project Report: 10/19/2020

5

Fig. 2. Block diagram for facial detection architecture.

1. Eye Contact

The eye contact portion utilizes OpenCV Haar cascades as

well as the numpy library. For each frame of the video, the

system will use the frontal face Haar cascade to detect the user’s

face. The base image (video frame) is transformed into

grayscale in order to detect the face, and the face is found on

the original base image. After the face is retrieved, the system

will use the eye Haar cascade to detect the user’s eyes. The base

face image is transformed into grayscale in order to detect the

eyes. The height and width of the original face image is

calculated using numpy to make the eye detection easier. This

is because the eyes will always exist on the upper half of the

face, and the left eye will be on the left half of the face, while

the right eye will be on the right half of the face. After the eyes

are retrieved, the system will track the irises/pupils within the

eyes using a blob detector in OpenCV. The eyes are then

transformed into grayscale and a threshold is set to determine

the cutoff of which parts of the eye become black and white,

which allows for the detection of the irises/pupils. When the

irises/pupils are found, OpenCV moments are used to calculate

the centroid. This center is calculated every frame, and the X

and Y coordinates of the center are added to arrays over the

period of the 10 second initial setup phase. The average of these

coordinates is taken to find the frame of reference, which is

what the system will use as the baseline of what constitutes

centered.

2. Screen Alignment

The screen alignment utilizes OpenCV Haar cascades and the

Facemark API. Similar to the eye contact portion, for each

frame of the video, the system will use the frontal face Haar

cascade to detect the user’s face. The base image (video frame)

is transformed into grayscale in order to detect the face, and the

face is found on the original base image. After the face is

retrieved, the system will use the Facemark API Local Binary

Features (LBF) to determine the locations of all landmark facial

features. This includes the eyebrows, eyes, nose, mouth, and

edges of the face. These coordinates are calculated every frame,

and they will be stored over the period of the 10 second initial

setup phase. The average of the coordinates is taken to find the

frame of reference, which is what the system will use as the

baseline of what constitutes centered.

B. Signal Processing

The signal processing algorithm will be implemented using

Python scripts. The input will be an audio file of the user

speaking a single letter which will be read using the wavfile

module within the scipy library. This module also automatically

translates the audio into a float array which we can manipulate

and modify. Once the array is stored, we will be manually trim

the array to get rid of initial silence. This will be done using a

specific threshold to determine exactly where the user starts

speaking. Once we hit that threshold, we will truncate anything

before that point. This updated data will be split up into twenty

millisecond chunks. These chunks will be split using a

Hamming window with 50% overlap. This will allow us to

retain a better representation of the original audio data. The

fourier transform will be applied to each chunk using the inbuilt

fft function that the scipy library provides. In addition to

applying the fourier transform, we will scale the values to

render the numbers larger and more reasonable from the

programmer's perspective. This two-dimensional vector - the

dimensions being milliseconds and fourier transform value -

will be the final output of the signal processing algorithm and

the input into the neural network.

Fig. 3. Block diagram for signal processing.

C. Machine Learning

The machine learning algorithm that we will be

implementing is the neural network. As described in the design

requirements, the input will consist of a feature vector that

represents the Fourier Transform of 20ms chunks of the time

domain signal. There will be one or more hidden layers and an

output layer that will be a probability distribution across the

letters of the alphabet. Each hidden layer will have a length that

is not necessarily the same as the length of the input layer. This

length will be determined through trial and error, based on

whichever gives the highest accuracy. These feature vectors in

the hidden layer will be formed by performing a weighted linear

combination between the feature vector in the input layer and

the weights in a matrix α. The result of the linear combination

will be passed through a sigmoid function in order to normalize

the vector. Similarly, the probability distribution in the output

layer will be formed by performing a weighted linear

combination between the feature vector in the hidden layer and

the weights in a matrix β. The result of the linear combination

will be passed through a sigmoid function in order to normalize

the probability distribution.
Training the model involves finding the optimal parameter

matrices that minimize the Mean Squared Error given by this

equation below:

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌�̂� − 𝑌𝑖)

2𝑛

𝑖=1
 (2)

18-500 Final Project Report: 10/19/2020

6

Y_hat, the predicted classification for each sample in the

dataset, is found through the feedforward propagation described

above with the current weight matrices α and β, which are found

through a process called stochastic gradient descent. Y is the

true classification for each sample in the dataset. N is the total

number of samples. This process updates each of the weights in

α and β by choosing one sample from the dataset and adding the

current weight to the partial derivative of the mean squared

error with respect to each of the weights. This is repeated until

the MSE is successfully minimized.

Fig. 4. Block diagram for neural network.

VI. PROJECT MANAGEMENT

A. Schedule

Our full Gantt chart is in Appendix X. We made our schedule

very detailed, so that each part was broken down into several

parts. The schedule accounts for tasks that all team members

are responsible for (e.g. abstract, proposal presentation), a

research phase, and an implementation phase. The 3 main

components of the requirements - facial detection, signal

processing, and machine learning, were divided among each

team member. Green indicates all team member

responsibilities, purple is for Mohini, pink is for Shilika, and

blue is for Jessica,

B. Team Member Responsibilities

Mohini - Mohini is in charge of the machine learning

algorithm and ensuring that the accuracy of the neural network

matches our expected accuracy of 60%. She will also be

working with Shilika to form the input to the neural network,

which is a result of the signal processing portion of our project.

Mohini will also be designing the web application.

Shilika - Shilika is in charge of the signal processing

algorithm. She will be working to ensure that the output is a

reasonable representation of the audio that was spoken by the

user and will continue to make enhancements and

improvements to hone the output. Shilika will also be designing

the web application.

Jessica - Jessica is in charge of the facial detection portion

for the behavioral interview section. She will work on

researching and implementing the facial detection algorithm

and providing real-time feedback to users. This includes

detecting facial features and alerting users of subpar eye contact

and screen alignment.

C. Budget

iRecruit is a low-cost project, with the only purchase being

AWS credits for EC2 to deploy the web application.

TABLE I. LIST OF PURCHASES

Component Anticipated Cost Status

AWS EC2 Credits ~$10.00 In-progress

D. Risk Management

There were a couple of risk factors to consider for each

portion of iRecruit that we need to consider. For the facial

detection part, the biggest risk factor is the inability to meet our

accuracy expectation of 80 percent. To mitigate this, we are

using the OpenCV Haar cascades, which historically have an

accuracy rate of about 95 percent. We believe that because the

bulk of the initial detection is done using Haar cascades, the

accuracy of that will continue to stay high, and any loss in

accuracy will be due to the tracking and alert portions. Other

risk factors include factors that may affect performance, such

as contrast between different facial features, lighting, and

background. For example, the contrast between the iris and the

rest of the eye, may vary depending on the user. To account for

this, we will allow users to set their threshold manually instead

of having a hard-set threshold. This should also take care of the

lighting. For the background, we will recommend that a user is

positioned in front of a relatively empty background, so that the

face is apparent on the screen.

There are three main risk factors to consider in the signal

processing portion. The first risk factor is not being able to

reach the accuracy expectations we have set for ourselves. We

are aiming for a 60% accuracy on the overall speech processing

algorithm. The output of the signal processing algorithm will

have a big impact on the overall output of our speech

recognition implementation. The second risk factor is ensuring

that pitch and loudness will not have an effect on our signal

processing. For example, different people speak at different

volumes and have different pitches. These factors should not

have a major input on the overall output. The last risk factor is

distinguishing between letters that sound very similar, for

example, letters such and ‘B’ and ‘E’ or ‘M’ and ‘N’. Ensuring

that our algorithm is able to take into account the slight

differences in the pronunciations of these letters will be key to

making sure our algorithm is as effective as possible.

The biggest risk factor for machine learning is that our model

may not work at all. As mentioned previously in this report,

speech recognition is an extremely demanding task which

requires many talented engineers spending many years working

on it. If the input vectors are significantly different from our

training data, the accuracy of our model may be extremely low.

There are many factors beyond our control including the pitch,

frequency, and loudness of the audio signal that may contribute

to a lower than expected accuracy for the algorithm.

Furthermore, we will need to gather enough varying training

data to build a model that does not overfit to any particular data.

Another minor risk factor relates to not being able to determine

18-500 Final Project Report: 10/19/2020

7

the optimal parameters for our model. This includes the number

of hidden layers, the number of epochs, and size of training and

test dataset.

VII. RELATED WORK

There are multiple current resources available for practicing

behavioral and technical interviewing. For behavioral

interviews, there are several articles that exist that give tips and

commonly asked behavioral questions. These articles exist

across many platforms, including many job-related sites, such

as Indeed and Glassdoor. For technical interviews, there are

several platforms that allow users to practice their technical and

coding skills. This includes HackerRank and LeetCode, where

users are able to select which topic they want to practice with

and are given a question and an IDE to code on.

VIII. SUMMARY

A. Future Work

If we do choose to continue working beyond the semester,

one improvement we’d like to make has to do with the scope of

the speech to text algorithm. Currently, we are planning on

simply detecting individual letters. Future work would involve

being able to detect entire words. This is a lot more complex, as

we’d have to research phonetics as well as natural language

processing algorithms. We’d also like to improve the time

complexity of our speech processing algorithm as currently we

are expecting it to take between 5 and 10 minutes to predict each

letter. Another improvement we’d like to make is to offer more

feedback in the behavioral interview section. Currently, we are

offering eye contact and screen alignment, but would like to

research other acceptable forms of feedback. Additionally, we

would like to do more research into what constitutes good eye

contact and good screen alignment as we are basing it off our

personal experience. This would provide more valuable

feedback to the user if we were able to specify the metrics of

what constitutes as “good”.

B. Lessons Learned

This is an important application to consider as many of us, as

graduating seniors, are experiencing the hardships of the job

recruiting process. Interviewing is rough and based on our

personal experiences, we decided that having a centralized

platform would make practicing for an interview less stressful.

In terms of the design and implementation process of our

project, we suggest having clear goals, deadlines, and vision for

the end product before starting the implementation.

Documenting the small success points along the way helps the

end goal seem more feasible and attainable.

REFERENCES

[1] “Dlib C++ Library.” Dlib, dlib.net/python/index.html.

[2] “Gaussian Mixture Model.” Brilliant Math & Science Wiki,
brilliant.org/wiki/gaussian-mixture-model/.

[3] Guennouni, Souhail, et al. “A Comparative Study of Multiple Object

Detection Using Haar-Like Feature Selection and Local Binary Patterns
in Several Platforms.” Modelling and Simulation in Engineering, vol.

2015, 31 Dec. 2015, pp. 1–8., doi:10.1155/2015/948960.

[4] “How Neural Networks Work - A Simple Introduction.” Explain That
Stuff, 17 June 2020, www.explainthatstuff.com/introduction-to-neural-

networks.html.

[5] Jack, Srujan. “Face Detection Using Dlib HOG.” Medium, 17 July
2020,

medium.com/mlcrunch/face-detection-using-dlib-hog-198414837945.

[6] Lab, Sagara Idea. “What Is Django and Why Is It Used?” Medium,
Medium, 4 Feb. 2020, medium.com/@sagarajkt/what-is-django-and-

why-is-it-used-2dafdc75ce67.

[7] Mallick, Satya. “How to Find Frame Rate or Frames per Second (Fps) in
OpenCV (Python / C++) ?” Learn OpenCV, 12 Nov. 2015,

www.learnopencv.com/how-to-find-frame-rate-or-frames-per-second-

fps-in-opencv-python-cpp/.
[8] Scheidler, Pete. “Understanding the Basics of Fourier Transforms.”

EnDAQ Blog for Data Sensing and Analyzing, blog.endaq.com/fourier-

transform-basics.
[9] P. Viola and M. Jones, "Rapid object detection using a boosted cascade

of simple features," Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001,
Kauai, HI, USA, 2001, pp. I-I, doi: 10.1109/CVPR.2001.990517.

[10] Understanding FFTs and Windowing . National Instruments ,

download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20W
indowing.pdf.

18-500 Final Project Report: 10/19/2020

8

IX. APPENDIX I. SCHEDULE

18-500 Final Project Report: 10/19/2020

9

X. APPENDIX II. ENLARGED BLOCK DIAGRAMS FOR FACIAL

DETECTION AND MACHINE LEARNING

