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Abstract—An interview assistant capable of providing software 

engineering jobseekers with the opportunity to practice for the 

interview process. Students are challenged with navigating fully 

virtual interviews and practicing how to conduct themselves 

during behavioral and technical interviews. Although there exist 

several written guidelines about common interview practices and 

questions, there is a lack of opportunity to practice a simulated 

interview with a “real” interviewer. iRecruit aims to give users a 

chance to practice for interviews through facial detection for 

behavioral interviews, and signal processing and machine learning 

for technical interviews. 

 
Index Terms—Facial detection, Fourier transform, Haar 

cascades, Machine learning, Neural network, Signal processing 

I. INTRODUCTION 

 common task people are faced with when searching for a 

job is interviewing. There exist several resources for 

assisting jobseekers with their interview process, such as lists 

of common behavioral interview questions and platforms to 

practice solving technical problems. Common technical 

interview platforms include HackerRank and LeetCode, where 

users are able to solve problems in a wide range of Computer 

Science topics such as Linked Lists, Dynamic Programming, 

and Strings. We want to improve upon current resources by 

creating a centralized platform where users are able to practice 

for both behavioral and technical interviews in a simulated 

environment. This way, users are able to gain an understanding 

for what real, virtual interviews are like. 

 For behavioral interviews, users are asked to video record 

themselves answering common behavioral questions. During 

the recording, iRecruit will provide real-time feedback on the 

user’s eye movement and screen alignment. The goal is to 

detect the user’s facial feature coordinates within 10 seconds, 

and alert the user after 5 seconds of subpar eye contact or screen 

alignment. For technical interviews, users are asked to audio 

record their skills, letter by letter. iRecruit will create a speech-

to-text model to feed into a neural network that generates a 

technical question relevant to the interviewee’s skillset. The 

goal is to identify the letter spoken with 60% accuracy and 

generate a question within 1 minute of post-processing. 

II. DESIGN REQUIREMENTS 

We have split the design requirements of our web application 

into 3 main components: 

• Facial detection 

• Signal processing 

• Machine learning 

Each component has a series of requirements that we are 

aiming to meet. For overall qualitative requirements, we want 

to make our code is consistent and well-documented. It should 

follow a coding standard that is readable and understandable for 

all team members. We also want to make sure that the iRecruit 

web application is able to save and remember a user’s 

information, so that they are able to use a single profile each 

time they want to practice interviewing. 

For the facial detection portion, there are three main 

requirements. The first one is the requirement for the initial 

setup phase. This initial setup phase is to allow the user to 

position themselves accordingly, and for the system to calculate 

a frame of reference that it will use for future off-center 

detection. The frame of reference should be calculated within 

10 seconds, which should allow enough time for the user to find 

a position that is comfortable for them. A time less than 10 

seconds may result in an insufficient frame of reference 

calculation, particularly for first-time users who are unaware of 

how the system works. The second requirement pertains to 

alerting the user of subpar eye contact or screen alignment. If a 

user’s eyes or face is off-center, then the system should alert the 

user within 5 seconds. We did not want an immediate alert, 

because there are times where a user needs to look away from 

the screen for a very short period of time (1-2 seconds); for 

instance, for a screen break or to look at the time. The last 

requirement is for the accuracy of the facial detection portion. 

We aim to have approximately 80 percent accuracy, because we 

will be using the OpenCV library in Python. OpenCV has built-

in Haar Cascades, which are pre-trained classifiers for features 

such as faces, eyes, and smiles. The accuracy of the Haar 

Cascades is around mid-90 percent, so we thought that aiming 

for 80 percent with our system that builds on top of Haar 

Cascades was a reasonable accuracy achievement. 

For the signal processing portion, there are three main 

requirements. The first requirement is modifying the initial 

input. Our signal processing algorithm takes in an audio 

recording of the user speaking a single letter. The modification 

process will take two steps. First, we will remove the initial 

silence before the user starts speaking from the original file. 

This will get rid of unnecessary data (background noise) and 

shorten the input. Second, we will represent the remaining data 

as a feature vector. This will allow us to manipulate and 

transform the input to represent each letter in a way that a 

computer program can understand. The second requirement is 

to formulate the output. This output will be a feature vector that 

is fed into the machine learning algorithm. In order to make this 

output meaningful, the vector should have characteristics that 
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distinguish a specific letter from another, while having similar 

values for the same letter. The third and last requirement of this 

portion is testing the accuracy of our algorithm. This portion is 

difficult to test concretely for two reasons. First, the signal of 

different people recording the same letter will differ due to 

differences in pitch, loudness, and frequency. Second, the 

signal representing the same person saying the same letter will 

vary, as well. To ensure our algorithm is behaving as expected, 

we will compare the same letters spoken by the same person 

and check if the signals are similar. 

For the machine learning portion, there are three main 

requirements. First, the input will be generated from the signal 

processing algorithm described above. We will reduce the 

dimension of the feature vector to make it easier for the machine 

learning algorithm to train. In order to build the algorithm, we 

will need to ensure we have ample training data. We plan on 

having approximately 20 feature vectors representing each of 

the 26 letters for a total of 520 samples of training data. This 

training data will be representative of the audio recordings of 

many different people to ensure that our algorithm is not biased 

towards a single person’s voice. A subset of our training data 

will be used as validation data to prevent any overfitting. The 

second requirement consists of the output being a probability 

distribution across the different letters. The letter that the user 

spoke would be the one with the highest probability as 

determined by the algorithm. Third, we expect for the machine 

learning algorithm to have an accuracy of about 60%. We 

recognize that it will be difficult for our algorithm to pick up 

the differences between similar sounding letters such as “M” 

and “N”. Speech recognition is a difficult task that many 

talented engineers have been working on for years. Since we 

are three college students with three months of time, we are 

aiming to produce a simplified version of the speech 

recognition algorithm that can correctly determine letters 60% 

of the time. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

We have split the architecture of iRecruit’s system into 4 

main parts: 

• Web application 

• Facial detection 

• Signal processing 

• Machine learning 

The facial detection, signal processing, and machine learning 

components exist within the main web application. The facial 

detection portion will exist relatively independently, while the 

signal processing and machine learning portions will be 

integrated with each other. The web application is the baseline 

for the system, as this is where the user will be able to access 

the various components. The web application is split into three 

main components: 

• Behavioral 

• Technical 

• Profile 

When a user registers or logs into the system, they will be led 

to the dashboard, where they will be able to navigate to these 

three parts. If they choose to go to the “Behavioral” page, they 

will be presented with a randomly generated behavioral 

interview question and will be given the option to video record 

themselves responding to the question. iRecruit expects that the 

user is sitting in front of the camera and that their face will be 

visible in the video screen. When the user is recording, the 

facial detection portion will attempt to detect their face using 

Python’s OpenCV library, specifically Haar cascades. This may 

require the user to position themselves accordingly and adjust 

their angle if necessary, as the Haar cascades are sensitive to the 

angle of the face. The facial detection algorithm allocates 10 

seconds to an initial setup phase, to determine the frame of 

reference of the user’s face and eye coordinates. Once the 

system has this frame of reference, it will refer back to this for 

each video frame. If the user’s face or eye coordinates are not 

within a range of the frame of reference coordinates (also 

known as off-center), the system will alert the user within 5 

seconds. This alert will be some type of visual and/or audio 

signal, so it is clear to the user that they are off-center and to 

reposition. 

If a user chooses to go to the “Technical” page, they will be 

presented with a randomly generated technical question from 

our database that is relevant to the skills they have provided in 

the profile page. In our backend database, we have questions 

labeled easy, medium, and hard for each of the following 

categories - arrays, strings, object-oriented programming, 

linked lists, binary trees, recursion, and dynamic programming. 

With each question, the user will be provided with an example 

input and output that will help demonstrate what the 

programming solution is supposed to do. iRecruit will provide 

an additional input that will test the accuracy of the user’s 

solution. After running their program with the question and 

input, they will be able to enter their output and iRecruit will let 

them know if it was correct or not. At this point, the user will 

be prompted to move on to the next randomly generated 

technical question. 

The user’s skill set, video recordings, and list of behavioral 

and technical questions answered will be saved in the “Profile” 

section of the web application. Here, the user will be able to 

view three things. First, they can review past video recordings 

if they want to look at their eye contact and screen alignment. 

Second, they will have a running record of all the behavioral 

and technical questions answered so far, as well as a summary 

of their results for each question. For the behavioral component, 

this will consist of a concise summary of their eye contact and 

screen alignment. For the technical component, this will consist 

of how accurately the question was answered. Third, they will 

be able to update and edit the recording of their skill set, so that 

they do not have to re-record each time they log in. The profile 

page will call the signal processing and machine learning 

algorithms in the backend each time a user decides to record 

their skill set. 
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Fig. 1. High-level diagram of the system architecture. 

 

Fig. 1. Is a high-level diagram of the system architecture that 

shows the different web pages we plan on having, as well as 

how the pages connect to each other. The behavioral interview, 

technical interview, and profile pages are where most of the 

backend processes (facial detection, signal processing, machine 

learning) happen, whereas the home, log in, register, and 

dashboard pages are more for sake of completeness of our web 

application and to provide an intuitive flow between different 

pages. 

IV. DESIGN TRADE STUDIES 

We considered various approaches to each of the components 

of the system and performed an initial research phase to weigh 

these approaches. There were a handful of options and 

algorithms that we took into account, but ultimately went with 

the ones that we thought would have the most available 

documentation and provide us with a high accuracy. 

A. Web Application 

For the web application, we chose to use Django, a Python 

web framework, to build it. Django is one of the more popular 

existing web frameworks that we have the most experience 

with. Many of the web components are already developed and 

it allows us to focus on the features we are trying to implement. 

There are four main reasons we chose to use Django. First, it is 

easy to use as it is based on the Python programming language. 

Since it is commonly used, there exists many tutorials and 

documentation for us to refer to. Second, it is fast and simple as 

making changes in the frontend or backend code does not 

require the whole system to restart. It also allows for separate 

testing of backend and frontend components. Third, it is 

extremely secure as Django security protects against 

clickjacking, cross-site scripting, and SQL injection. Lastly, it 

is suitable for any web application project of any size and 

capacity. It is scalable and can handle large amounts of data; it 

can be used on any operating systems including Mac, Windows, 

and Linux; it can incorporate multiple databases into the project 

to store information. Because of the above reasons, there were 

never any alternate web frameworks we considered to host our 

application. Django seemed like the best approach from the 

start.  

B. Facial Detection 

For the facial detection portion, we decided to use the 

OpenCV library in Python, particularly Haar cascades. There 

were two main Python libraries that we were considering for 

facial detection, which were dlib and OpenCV. dlib is a toolkit 

that contains machine learning algorithms and tools, and 

although it is principally a C++ library, it can also be used with 

Python. It has a Histogram of Oriented Gradients (HOG) 

feature descriptor, which is very powerful and actually more 

accurate than OpenCV Haar cascades. However, we ultimately 

chose OpenCV, because OpenCV is much more commonly 

used in Python. It also has more documentation and tutorials 

available, which we thought would be helpful because we were 

not familiar with facial detection before iRecruit. Haar cascades 

also have an accuracy of approximately 95 percent[9], which we 

believed was a sufficient baseline accuracy for us to build on 

top of for our aim of 80 percent accuracy. We were originally 

going to measure 3 things in the facial detection portion: eye 

contact, posture, and screen alignment. However, we decided to 

forgo posture, as there was no sufficient way to measure it. The 

first measurement we thought of was to attempt to detect the 

mouth, and if the mouth disappeared (user’s head is down), that 

constituted subpar posture. However, if there is no mouth 

detected, there is also no face detected. Another measurement 

we thought of was to attempt to detect the shoulders and 

measure the distance between the shoulders and the center of 

the face, and if that distance was less than that of the frame of 

reference, that constituted subpar posture. However, if a user 

has long hair and the hair is covering the shoulders, shoulder 

detection would not be possible. Forgoing this measurement 

allows us to focus on implementing the eye contact and screen 

alignment portions, and making them more robust to meet 

accuracy demands. Facial detection accuracy will be calculated 

by the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑠
 (1) 

True positive tests occur when the user does not have subpar 

eye contact or screen alignment, and the system does not alert 

them. False positive tests are when the user does not have 

subpar eye contact or screen alignment, and the system alerts 

them. True negative tests occur when the user has subpar eye 

contact or screen alignment, and the system alerts them. False 

negative tests occur when the user has subpar eye contact or 

screen alignment, and the system does not alert them. 

C. Signal Processing 

For the signal processing portion, we hit many roadblocks as 

we experimented with the best approach to reach the desired 

output. There are three main decisions we had to make. First, 

we were confused on whether to use the time domain or 

frequency domain to represent the signal. The time domain 

signal seemed like it provided us with more information, 

however the amplitudes of different signals representing the 

same letter were different. We recognized this was most likely 

due to differences in pitch, frequency, and loudness. Thus, we 

tried representing the signal in the frequency domain through 

the use of the Fourier Transform. This caused different 

problems as every signal, no matter the letter, looked similar as 
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each representation had a peak in the lower frequencies and 

another peak at the higher frequencies. The Fourier Transform 

tells us what frequencies are present in our signal. It also tells 

us how much power the time domain signal has at each 

frequency. By breaking a signal into its frequency components, 

it allows us to block out certain frequencies. We realized that 

although the information that the frequency domain gives is less 

intuitive than the time domain, ultimately it will help 

differentiate between letters.  

The next two design tradeoffs are more specific. For starters, 

one decision we had to make was trimming the silence from the 

audio recording. Trimming it would distort the audio signal, but 

background noise silence may confuse the machine learning 

algorithm. Furthermore, we had to consider trimming the 

beginning of the signal, the end of the signal or both. The reason 

for keeping the noise at the end of the signal is to ensure that 

the length of every time signal is uniform. Trimming either the 

beginning or end will be harder to implement as it will need to 

be done from scratch, whereas if we trim the silence from both 

sides of the signal, we are able to use the built in trim function 

from the librosa library. We will need to experiment further to 

see which option will provide the ideal output. 

The other decision involved using a windowing function to 

analyze the Fourier Transform. We decided to split the audio 

signal into 20ms chunks. In theory, this is equivalent to 

multiplying the signal by a rectangular window to extract the 

20ms chunks. Once we realized that we were essentially 

performing windowing, we needed to analyze the tradeoffs 

between using different windowing functions. After doing 

some research on why windowing is necessary, we found that 

taking the Fourier Transform of a signal that is not perfectly 

periodic results in some discrepancies. The Fourier Transform 

assumes the time domain signal is a finite, periodic signal. 

When this is not the case, the endpoints of the signal are not 

continuous and this discontinuity is present in the frequency 

domain as high frequency components that do not exist in the 

original signal. Therefore, the Fourier Transform is not accurate 

as the different energy components are leaking onto each other. 

We found that windowing can help provide a solution for this 

problem. Windowing can reduce the impact of the discontinuity 

present in the time signal and thus provide a more accurate 

representation of the signal in the frequency domain. It consists 

of multiplying the time domain signal by a window of finite size 

that has a sinusoidal amplitude that approaches zero at the 

discontinuous parts. Out of all the possible windows, we saw 

that the Hamming window function best emulates this 

sinusoidal pattern as it has a wide peak but low side lobes. 

D. Machine Learning 

To implement the machine learning algorithm for our speech 

processing portion, we were debating two main approaches, 

neural networks and gaussian mixture modelling. The goal of a 

neural network is to program a simulation of connected human 

brain cells so eventually it can recognize patterns, point out 

similarities and differences, and behave like a human brain. As 

discussed extensively in the System Description, a complete 

neural network consists of the input and output layer, and one 

of more hidden layers. Increasing the number of hidden layers 

increases the amount of time it will take to train the algorithm, 

so when we start to finalize the number of hidden layers, this is 

something we will have to keep in mind.  In addition to 

algorithmic decisions, we will need to finalize the number of 

training and testing data samples we use. It is common to use at 

least ten times as many training samples as the number of 

inputs. That means that for us, we will need to gather at least 

260 hundred training samples of people saying the different 

letters. To improve the accuracy, this number could climb up to 

a thousand or more. 

The Gaussian mixture model is a probabilistic model that 

represents subpopulations within an overall population that 

have a normal distribution. By gathering user input of people 

saying the different letters, we can create a model that would 

determine the probability of likelihood of a specific letter being 

chosen. We could then use this model to predict unknown 

utterances when the user is speaking a letter. The Gaussian 

mixture model will not require as many training samples as a 

neural network would as creating a probabilistic model in 

theory is less complex than trying to simulate the human brain. 

The two algorithms have different pros and cons. However 

none of us have any experience with Gaussian mixture 

modelling while two of us have experience with neural 

networks. Learning a new algorithm from scratch may not be 

the best use of our time, therefore, our team will first try the 

neural network algorithm as we are most familiar with it. If the 

classification is completely incorrect, we will look into using 

Gaussian mixture modelling. After deciding to go with the 

neural network, we discussed exactly what we are trying to 

classify even within speech recognition. The most advanced 

algorithms such as the once used to implement Siri, Alexa, and 

Google Assistant are able to identify full sentences. Due to our 

time constraint, we knew we’d have to narrow down our scope. 

Thus, we decided to make our speech recognition model 

identify the alphabet. This way, we are only trying to 

distinguish between 26 possibilities, the letters A through Z. 

Additionally, we discussed whether we would want to allow the 

user to speak a stream of letters into the input or one at a time. 

Because implementing any speech recognition, even something 

as basic as distinguishing between letters, is a difficult task, we 

decided to start with recognizing one letter at a time and will 

move on to a stream of letters if time allows. 

V. SYSTEM DESCRIPTION 

A. Facial Detection 

The facial detection portion of iRecruit will be implemented 

utilizing the OpenCV library in Python. When a user records 

themselves answering the practice behavioral question, the 

system will call the OpenCV VideoCapture class to begin a new 

capture of video frames at a rate of 30 frames per second. 

Additionally, the OpenCV VideoWriter class will be used for 

saving the video. For the alerts to the user, this will be done 

through OpenCV’s putText() method and/or through the 

playsound library, to notify the user visually and/or audibly. 

There will be two parts that exist within the facial detection 

portion, one for eye contact and one for screen alignment.  
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Fig. 2. Block diagram for facial detection architecture. 

1. Eye Contact 

The eye contact portion utilizes OpenCV Haar cascades as 

well as the numpy library. For each frame of the video, the 

system will use the frontal face Haar cascade to detect the user’s 

face. The base image (video frame) is transformed into 

grayscale in order to detect the face, and the face is found on 

the original base image. After the face is retrieved, the system 

will use the eye Haar cascade to detect the user’s eyes. The base 

face image is transformed into grayscale in order to detect the 

eyes. The height and width of the original face image is 

calculated using numpy to make the eye detection easier. This 

is because the eyes will always exist on the upper half of the 

face, and the left eye will be on the left half of the face, while 

the right eye will be on the right half of the face. After the eyes 

are retrieved, the system will track the irises/pupils within the 

eyes using a blob detector in OpenCV. The eyes are then 

transformed into grayscale and a threshold is set to determine 

the cutoff of which parts of the eye become black and white, 

which allows for the detection of the irises/pupils. When the 

irises/pupils are found, OpenCV moments are used to calculate 

the centroid. This center is calculated every frame, and the X 

and Y coordinates of the center are added to arrays over the 

period of the 10 second initial setup phase. The average of these 

coordinates is taken to find the frame of reference, which is 

what the system will use as the baseline of what constitutes 

centered. 

2. Screen Alignment 

The screen alignment utilizes OpenCV Haar cascades and the 

Facemark API. Similar to the eye contact portion, for each 

frame of the video, the system will use the frontal face Haar 

cascade to detect the user’s face. The base image (video frame) 

is transformed into grayscale in order to detect the face, and the 

face is found on the original base image. After the face is 

retrieved, the system will use the Facemark API Local Binary 

Features (LBF) to determine the locations of all landmark facial 

features. This includes the eyebrows, eyes, nose, mouth, and 

edges of the face. These coordinates are calculated every frame, 

and they will be stored over the period of the 10 second initial 

setup phase. The average of the coordinates is taken to find the 

frame of reference, which is what the system will use as the 

baseline of what constitutes centered. 

B. Signal Processing 

The signal processing algorithm will be implemented using 

Python scripts. The input will be an audio file of the user 

speaking a single letter which will be read using the wavfile 

module within the scipy library. This module also automatically 

translates the audio into a float array which we can manipulate 

and modify. Once the array is stored, we will be manually trim 

the array to get rid of initial silence. This will be done using a 

specific threshold to determine exactly where the user starts 

speaking. Once we hit that threshold, we will truncate anything 

before that point. This updated data will be split up into twenty 

millisecond chunks. These chunks will be split using a 

Hamming window with 50% overlap. This will allow us to 

retain a better representation of the original audio data. The 

fourier transform will be applied to each chunk using the inbuilt 

fft function that the scipy library provides. In addition to 

applying the fourier transform, we will scale the values to 

render the numbers larger and more reasonable from the 

programmer's perspective.  This two-dimensional vector - the 

dimensions being milliseconds and fourier transform value - 

will be the final output of the signal processing algorithm and 

the input into the neural network. 

Fig. 3.  Block diagram for signal processing. 

C. Machine Learning 

The machine learning algorithm that we will be 

implementing is the neural network. As described in the design 

requirements, the input will consist of a feature vector that 

represents the Fourier Transform of 20ms chunks of the time 

domain signal. There will be one or more hidden layers and an 

output layer that will be a probability distribution across the 

letters of the alphabet. Each hidden layer will have a length that 

is not necessarily the same as the length of the input layer. This 

length will be determined through trial and error, based on 

whichever gives the highest accuracy. These feature vectors in 

the hidden layer will be formed by performing a weighted linear 

combination between the feature vector in the input layer and 

the weights in a matrix α. The result of the linear combination 

will be passed through a sigmoid function in order to normalize 

the vector. Similarly, the probability distribution in the output 

layer will be formed by performing a weighted linear 

combination between the feature vector in the hidden layer and 

the weights in a matrix β. The result of the linear combination 

will be passed through a sigmoid function in order to normalize 

the probability distribution. 
Training the model involves finding the optimal parameter 

matrices that minimize the Mean Squared Error given by this 

equation below: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌�̂� − 𝑌𝑖  )

2𝑛

𝑖=1
 (2) 
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Y_hat, the predicted classification for each sample in the 

dataset, is found through the feedforward propagation described 

above with the current weight matrices α and β, which are found 

through a process called stochastic gradient descent. Y is the 

true classification for each sample in the dataset. N is the total 

number of samples. This process updates each of the weights in 

α and β by choosing one sample from the dataset and adding the 

current weight to the partial derivative of the mean squared 

error with respect to each of the weights. This is repeated until 

the MSE is successfully minimized. 

Fig. 4.  Block diagram for neural network. 

VI. PROJECT MANAGEMENT 

A. Schedule 

Our full Gantt chart is in Appendix X. We made our schedule 

very detailed, so that each part was broken down into several 

parts. The schedule accounts for tasks that all team members 

are responsible for (e.g. abstract, proposal presentation), a 

research phase, and an implementation phase. The 3 main 

components of the requirements - facial detection, signal 

processing, and machine learning, were divided among each 

team member. Green indicates all team member 

responsibilities, purple is for Mohini, pink is for Shilika, and 

blue is for Jessica,  

B. Team Member Responsibilities 

Mohini - Mohini is in charge of the machine learning 

algorithm and ensuring that the accuracy of the neural network 

matches our expected accuracy of 60%. She will also be 

working with Shilika to form the input to the neural network, 

which is a result of the signal processing portion of our project. 

Mohini will also be designing the web application. 

Shilika - Shilika is in charge of the signal processing 

algorithm. She will be working to ensure that the output is a 

reasonable representation of the audio that was spoken by the 

user and will continue to make enhancements and 

improvements to hone the output. Shilika will also be designing 

the web application. 

Jessica - Jessica is in charge of the facial detection portion 

for the behavioral interview section. She will work on 

researching and implementing the facial detection algorithm 

and providing real-time feedback to users. This includes 

detecting facial features and alerting users of subpar eye contact 

and screen alignment. 

C. Budget 

iRecruit is a low-cost project, with the only purchase being 

AWS credits for EC2 to deploy the web application. 

TABLE I.  LIST OF PURCHASES 

Component Anticipated Cost Status 

AWS EC2 Credits ~$10.00 In-progress 

 

D. Risk Management 

There were a couple of risk factors to consider for each 

portion of iRecruit that we need to consider. For the facial 

detection part, the biggest risk factor is the inability to meet our 

accuracy expectation of 80 percent. To mitigate this, we are 

using the OpenCV Haar cascades, which historically have an 

accuracy rate of about 95 percent. We believe that because the 

bulk of the initial detection is done using Haar cascades, the 

accuracy of that will continue to stay high, and any loss in 

accuracy will be due to the tracking and alert portions. Other 

risk factors include factors that may affect performance, such 

as contrast between different facial features, lighting, and 

background. For example, the contrast between the iris and the 

rest of the eye, may vary depending on the user. To account for 

this, we will allow users to set their threshold manually instead 

of having a hard-set threshold. This should also take care of the 

lighting. For the background, we will recommend that a user is 

positioned in front of a relatively empty background, so that the 

face is apparent on the screen. 

There are three main risk factors to consider in the signal 

processing portion. The first risk factor is not being able to 

reach the accuracy expectations we have set for ourselves. We 

are aiming for a 60% accuracy on the overall speech processing 

algorithm. The output of the signal processing algorithm will 

have a big impact on the overall output of our speech 

recognition implementation. The second risk factor is ensuring 

that pitch and loudness will not have an effect on our signal 

processing. For example, different people speak at different 

volumes and have different pitches. These factors should not 

have a major input on the overall output. The last risk factor is 

distinguishing between letters that sound very similar,  for 

example, letters such and ‘B’ and ‘E’ or ‘M’ and ‘N’. Ensuring 

that our algorithm is able to take into account the slight 

differences in the pronunciations of these letters will be key to 

making sure our algorithm is as effective as possible. 

The biggest risk factor for machine learning is that our model 

may not work at all. As mentioned previously in this report, 

speech recognition is an extremely demanding task which 

requires many talented engineers spending many years working 

on it. If the input vectors are significantly different from our 

training data, the accuracy of our model may be extremely low. 

There are many factors beyond our control including the pitch, 

frequency, and loudness of the audio signal that may contribute 

to a lower than expected accuracy for the algorithm. 

Furthermore, we will need to gather enough varying training 

data to build a model that does not overfit to any particular data. 

Another minor risk factor relates to not being able to determine 
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the optimal parameters for our model. This includes the number 

of hidden layers, the number of epochs, and size of training and 

test dataset. 

VII. RELATED WORK 

There are multiple current resources available for practicing 

behavioral and technical interviewing. For behavioral 

interviews, there are several articles that exist that give tips and 

commonly asked behavioral questions. These articles exist 

across many platforms, including many job-related sites, such 

as Indeed and Glassdoor. For technical interviews, there are 

several platforms that allow users to practice their technical and 

coding skills. This includes HackerRank and LeetCode, where 

users are able to select which topic they want to practice with 

and are given a question and an IDE to code on. 

VIII. SUMMARY 

A. Future Work 

If we do choose to continue working beyond the semester, 

one improvement we’d like to make has to do with the scope of 

the speech to text algorithm. Currently, we are planning on 

simply detecting individual letters. Future work would involve 

being able to detect entire words. This is a lot more complex, as 

we’d have to research phonetics as well as natural language 

processing algorithms. We’d also like to improve the time 

complexity of our speech processing algorithm as currently we 

are expecting it to take between 5 and 10 minutes to predict each 

letter. Another improvement we’d like to make is to offer more 

feedback in the behavioral interview section. Currently, we are 

offering eye contact and screen alignment, but would like to 

research other acceptable forms of feedback. Additionally, we 

would like to do more research into what constitutes good eye 

contact and good screen alignment as we are basing it off our 

personal experience. This would provide more valuable 

feedback to the user if we were able to specify the metrics of 

what constitutes as “good”. 

B. Lessons Learned 

This is an important application to consider as many of us, as 

graduating seniors, are experiencing the hardships of the job 

recruiting process. Interviewing is rough and based on our 

personal experiences, we decided that having a centralized 

platform would make practicing for an interview less stressful. 

In terms of the design and implementation process of our 

project, we suggest having clear goals, deadlines, and vision for 

the end product before starting the implementation. 

Documenting the small success points along the way helps the 

end goal seem more feasible and attainable. 
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IX. APPENDIX I. SCHEDULE 
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X. APPENDIX II. ENLARGED BLOCK DIAGRAMS FOR FACIAL 

DETECTION AND MACHINE LEARNING 

 
 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 


