
1
18-500 Design Review Report: 12/18/2020

Sudo Chess

Authors: Danié Alvarado, Brandon Dubner, Tony
Padilla — Electrical and Computer Engineering,

Carnegie Mellon University
Abstract—A mechanical chess board capable of replicating the

real-life experience of playing versus another player by moving
the pieces of one color to match the moves of an opponent playing
the game remotely. The other existing product uses a press-based
approach to communicate that a piece has been placed; we are
trying to improve on that by making the detection seamless, so it
will feel exactly like a normal chess board.

 Index Terms— Device-to-Computer, Electromagnetism, Linear
Actuators, Node.js, AWS Deployment, stepper motor driver,
belt-driven, gantry plate

I. INTRODUCTION

IN recent months, a global pandemic has locked us in our
homes, unable to have in-person interactions with the people
we care about. We hope to provide an experience of playing a
game with friends and family that’s more immersive than
through a screen.

To this end, our project design is a Chess board that
simulates real-life play. It will look just like a regular board on
the top, but underneath will lie a mechanism that can move
pieces smoothly and without disruption (no collision with
already-placed pieces) across the board, as well as the
technology for communication with a seperate
internet-enabled device. These additions let a player use the
board and play with an opponent connected remotely through
the internet while the board physically reflects the opponent’s
moves.

Our overarching goal is to have our board’s play experience
as close to a real-life experience as possible. This is why we
chose to add the challenge of moving the pieces automatically,
making it feel as if it’s just another person moving them. More
specifically, our goal is to be able track a game state and move
the opponent’s pieces accordingly with the automatic
movement taking a maximum of 5 seconds. This goal also led
to our design choice of detecting pieces through simple
placement — no need for you to press on the board or press
any other buttons, just pick and place as you would in a real
game and the board will know your intention.

II. DESIGN REQUIREMENTS

A. Software Requirements

The first design requirement for the software portion of our
project is that a user will have the ability to connect the
physical board to their device and establish communication
between them. This will demonstrate the ability to provide the
board information to the webapp and commands from the
webapp to the board. This is critical for our project, since it
will serve as the interface between the software portion of the
project and the rest of the project.

The next design requirement for the software portion is the
ability to connect with another specific user and play a game
of chess against them. The game should be able to be created
regardless of the number of players that have a Sudo Board,
and the users should be able to send communication within
500 ms. The last software design requirement is for an
intuitive user interface. Users should be able to start games
and send their moves easily, and the website should reflect
these operations quickly.

For the first two design requirements for the software part of
the project, we can verify that they are met by using unit tests
and manual tests of the system. The last requirement will be
more subjective, and will have to be verified manually.

B. Board Requirements

The overarching purpose of the board is to be able to detect
the pieces on the board and report it to the controller.
Following from this, the first design requirement of the board
is to be able to be able to determine, for all 64 squares on the
board, whether there is a piece on the square and the type of
piece and color of piece with 100% accuracy. The requirement
for complete accuracy is due to the way that moves in a chess
game occur: if a piece gets moved and a separate piece gets
detected incorrectly, it will appear as if multiple moves have
been made simultaneously, which cannot happen in a game of
chess.

Following this, the next design requirement for the board is
the capability of detecting all of the piece locations within 500
ms. This requirement is so the board has enough time to
communicate this to the website and the changes happen
nearly instantaneously. Previously we had specified this to be
100ms, but realized it was too arbitrary. Half a second is the
limit at where a user would feel it takes too slow, and as such
the requirement was loosened.

2
18-500 Design Review Report: 12/18/2020

Fig. 1. Sudo Chess System Architecture

The next design requirement for the board is that at most 1
mA of current flows through any of the paths to ground in the
piece detection circuit. This is because the circuits will be
completed by pieces placed on them, but if someone was to
complete the circuit with their finger, we do not want them to
get harmed. 10 mA of current is the threshold for harmful
amounts of current, but we want to be safe and set the
requirement for an order of magnitude less than this threshold.

As for the pieces, the only requirement is that they be less
than half the side length of a square of the board, such that the
electromagnet is able to move pieces between occupied
squares. The length of the acquired actuators resulted in
squares that were 40.25mm in side length, so the requirement
was that no piece exceed 20.125mm in diameter.

Then we have a requirement regarding the electromagnet:
the distance between the electromagnet and the magnetic
material inside the piece needed to be no thicker than ¼ of an
inch for the magnet to be able to pull the piece.

Yet another requirement is that whatever magnetic material
is put inside of the pieces be centered, otherwise the pieces
would not remain in the center of each square upon being
moved by the electromagnet and run the risk of being budged
out of detection position by future movements from other
pieces or worse, not being placed in the proper position to be
detected by the contact plates.

C. Movement Requirements

For the moves of the game to be replicated automatically
onto the physical board, there must be components dedicated
to the movement of the pieces. The first design requirement
for the Sudo Chess system is to be able to complete any move
within 5 seconds. This included castling, capturing pieces, but
in reality only applied to any other legal move. 5 seconds was
chosen since we want to be within the average attention span
of humans, currently estimated to be 8 seconds, while still
providing enough time to move the pieces precisely.

To test that each movement will take less than 5 seconds,
we use the equation

. v r1 = ω

where is angular velocity. We convert RPM to angular ω
velocity using the equation

. ω × 2π rad/rev2 = RP M
60s/minute

3
18-500 Design Review Report: 12/18/2020

Fig. 2. Sudo Chess System Interaction Diagram

We use 180 RPM for moving the linear actuators to a chess
piece’s location on the board, and 90 RPM to move the piece,
using the linear actuators, to its destination. This results in an
angular velocity of 18.85 rad/s and 9.425 rad/s. The radius we
used in equation 1 refers to the radius of whatever is making a
revolution. Since we are using belt-driven linear actuators, the
radius to compute is the radius of the wheels that hold the belt
which is 3cm or .03mm. Using equation 1, for movement of
the actuators to the piece, we have a velocity of 0.5655 m/s or
565.5 mm/s. For movement of the piece to its destination we
have a velocity of 0.28275 m/s or 282.75 mm/s. Because the
maximum travel distance on the linear actuators is 402.5mm,
we are capable of moving the linear actuators to the piece that
needs to be moved in under 1s, and also move that piece to its
destination in under 1s, though the movement of a piece to its
destination varies. In any case, we are able to achieve
automatic piece movement in under 5s.

On the topic of precise movement, the next requirement of
piece movement is that only the pieces involved in a move
should be changed. There should be no collisions between the
moving piece and the other pieces and no other pieces should
need to be moved. The largest piece, the king, is 19mm in
diameter, . Each square on the board has a length, of dk ,ls
40.25mm. Since the pieces are placed on the center of the
board, this gives a minimum gap of 21.25mm for pieces to
travel in between others without collisions, which ensures 0
collisions. This minimum gap, , was calculated using the gm
equation

. g l d)3 m = 2 * (2
1

s − 2
1

k

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall design of our system is shown in the system
architecture in figure 1. In general, we split our design into 3
conceptual areas: Piece Detection, Piece Movement, and the
webapp. The components in our design that aren’t directly
related to these areas typically either connect those areas
together or implement a sub-task within the area.

A. The Sudo Board

Inside the Sudo Board we have the Piece Detector, the Piece
Mover, and the Controller that collects information from the
submodules. These modules all interact and communicate with
the other modules through the Sudo Board Communicator.

The overall objective of the piece movement unit is to be
able to move pieces to arbitrary squares without disrupting the
other pieces on the board. The piece movement unit consists
of two V-Slot® NEMA 17 Linear Actuators [1], the various
parts needed to get the actuators to move, and an
electromagnet. The linear actuators will work in tandem with
each other, moving the electromagnet to locations across the
board in either direction. The locations of the linear actuators
will be reported to the Sudo Board controller, which will give
movement commands in response.

The piece detection unit consists of the physical chess
board, the chess pieces, and an underlying detection circuit.
The circuit is partitioned into 4 different sampling circuits,
that each detect piece information for 16 different squares.
After piece information is collected, it is then sent to the Sudo
Board controller, which in turn communicates with the web
application.

4
18-500 Design Review Report: 12/18/2020

Fig. 3. Sudo Chess Physical System Block Diagram

The design remained mostly the same with exceptions that
will be explained in section IV. A minor change in the design
included the mounting of the linear actuators. They were to be
mounted perpendicularly using screws and L-shaped mounting
brackets. Instead, high quality gorilla glue was used for the
mounting of one linear actuator above the other. The bottom
part of the track belonging to the linear actuator allowing
movement along the x-axis was glued to the gantry plate of the
linear actuator allowing movement along the y-axis. This was
a minor design change from the previous design report.

B. The Web Application

First, we separate the web application into three distinct
components: the client, the server, and a communicator for the
Sudo Board which connects a Sudo Board. The client is the
part of the application that the user directly interacts with, as
in logging into their account. The client will then send
requests to the server, for example, to create a lobby which
the server will fulfill and tell the client as such. The client
primarily handles local Sudo Boards and local games whereas
the server primarily handles communication between one
client and another. Finally, there is a separate process that gets
output from the Sudo Board and messages it to the server,
which then forwards the update to the client. This process will
also send client messages to the Sudo Board, after being
forwarded from the server.

The web application is intentionally decoupled from the
Sudo Board in such a way that you do not need a Sudo Board
in order to use the application. Because of this, the Sudo
Board Communicator has the primary responsibility of
communicating with the Sudo Board and translating the output
to the inner game logic of the web application. Furthermore,
the client has no knowledge of the communicator, so the
server must mediate between the communicator and the web
client.

C. System Interaction

Depicted in the system interaction diagram above (figure 2)
is a chess game between one user who is using a Sudo Board
and another user who is only using the web application. The
two main ways a user can interact with the Sudo Chess system
are by creating / finding a game and by making moves in a
created game. Both Sudo Board users and web only users will
be able to find a game by interacting with the web application
client. Sudo Board users will be able to play moves by moving
the pieces on their physical Sudo Board whereas web only
users will move pieces via the web application.

Under the covers when a piece is moved on the Sudo Board,
the system response starts when the piece detection unit
reports the updated state of the board. After the Controller gets
the information from the Piece Detector, it forwards the
information to the web application through the SudoBoard
Communicator. The server will check that the move was a
legal move and, if it is, it will send the move to each of the
web clients, which will then update the board graphic on the
screen. In the opposite scenario, where the web player makes a
move using the GUI, the system interaction will be largely the

5
18-500 Design Review Report: 12/18/2020

same, except when the opponent (now the Sudo Board user)
receives the move, the Sudo Board Communicator will give
the Sudo Board a movement command, which will prompt the
movement unit to replicate the move.

IV. GENERAL DESCRIPTION WITH DESIGN TRADE STUDIES

A. Piece Detection
How to perform the piece detection was decided after

careful consideration of different elements of the subsystem
that will perform this task. We needed something that would
be cost-effective and easy to implement, as none of us had
strong experience with circuits or signals. At first, we thought
of using RFID to detect each piece, a simple implementation
as this technology is widely available. However, the cost of
having so many detectors (one for each square) would drive us
way over budget. Then we thought of contact plates that
showed on the board, where the pieces act as a simple switch
with a resistance on them won among our other possible
implementations. These can be made barely visible and made
our detection subsystem a simple DC circuit.

Next, for this, we would need to measure 64 different
voltages at all times, one for each square of the board. We
took into consideration that it only needed to feel, to the user,
as if we were detecting all pieces at the same time. We learned
that microcontrollers can typically read their
Analog-to-Digital Converter inputs in the order of
microseconds, so instead of needing 64 separate ADCs, we
could multiplex the voltages being read from each square’s
circuit and read them one at a time fast enough for it to seem
simultaneous. The final circuit design for this results in 16
parallel paths from the 5V power source to Ground, each with
a Load Resistor and a switch with a resistance, with the node
between them being measured by the microcontroller. The
“switch” here refers to the pieces that, through metal plate
contact, connect the switch with the resistance corresponding
to a different piece type and color combination. The voltage
between the load resistor and the piece’s resistor will be
different for each type of piece and that is how the
microcontroller will be able to detect which piece it is.

Following are the details of the implementation and the
design choices that led to them.

a. Resistance Values

The main consideration for the values of the resistances of
each piece was that the board be user-safe. Since the user
could practically connect the circuit with a finger, it is a
requirement that the current going through any one path not

exceed 1mA. A load resistor goes in parallel with the resistor
in a piece for a total 5V drop, and the following values meet
this constraint

Fig. 4. Piece Resistances

A secondary consideration was resistor availability, and so
we chose values that were easily attainable from the ECE labs.

b. Muxes

Next we had to choose the multiplexers that would let the
arduino poll all 64 squares with only 4 ADC inputs. We
picked the MAX306CPI+[10] , an analog 1:16 multiplexer. This
multiplexer has a transition time of 250ns, which more than
met our requirements.

c. Power Source

The power source chosen for the subsystem was 12V DC, as
it could power the Arduino as well as the MAX306CPI+ mux.
It was also chosen because this is the voltage needed to drive
the motors for the piece movement, and so we would not need
more than one different power source upon integration.

Piece Resistances

Load Resistance 2.4KΩ

White Pawn 2.2KΩ

White Rook 2.4KΩ

White Knight 2.8KΩ

White Bishop 3.3KΩ

White King 3.6KΩ

White Queen 3.9KΩ

Black Pawn 4.2KΩ

Black Rook 4.6KΩ

Black Knight 5.0KΩ

Black Bishop 5.4KΩ

Black Knight 5.9KΩ

Black Queen 6.6KΩ

6
18-500 Design Review Report: 12/18/2020

d. Contact Plates

Initially, the plan was to craft metal plates to embed on the
boards and each piece. When the time came to implement this,
the details of it proved to be more complex than initially
thought out. There were various inconveniences we faced.
Firstly, due to the covid pandemic, Techspark course size was
very limited and Danié was not able to secure a spot in the
required training to use the metal shop and craft these plates.
Placing an order for the plates from Techspark was another
option, but it would have put us over budget. We looked then
into obtaining the plates pre-made from elsewhere, but it was
such a specific item that we could not source it.

Moreover, implementing these on the board would require a
plate-sized hole to embed them in, which required more
detailed tools that we needed a different Techspark training
course to be able to use. Again, due to limited course sizes,
this training could not be secured.

Realizing that this was a more daunting task than we had
scheduled for, we began to look for alternatives. We arrived at
the solution of using copper foil tape, which had the advantage
over metal plates in that it was quick to work with, saving us a
considerable amount of time. It also only required simple
holes to be drilled into the board, which could be easily done
with a hand drill that could be used at Techspark without
having taken a training course. In addition, copper foil tape is
incredibly cheap in comparison.

Of course, this came at a disadvantage. Copper tape is much
less durable, but this was a tradeoff we were willing to make
because the pros outweighed the cons. We valued being able
to complete the project more than getting slowed down by an
unnecessarily complicated step.

Finally, one concern was that the copper foil tape would
block the electromagnet’s magnetic field, preventing it from
attaching to a piece. This was not a problem, a magnet was
able to attract metal past the tape.

We did pay this price for this, however. Due to its fragile
nature, although wires could be soldered to it, it was still very
easy to tear off. This resulted in a lot of time being spent on
debugging the detection circuit due to detached wires.

e. The Pieces

There were two main options for the pieces: 3D printing and
carving out the bottoms of wooden pieces. Each had
advantages and disadvantages:

Fig. 5. Piece Types Pros & Cons

Ultimately we decided on the wooden pieces because there
was not enough advantage to using 3D printed pieces to justify
taking a much larger chunk of our budget.

f. The Piece Bottom

There was a short consideration for what should be the
bottom of the piece - the lid to close the single resistor that
needed to be placed inside. Upon making the switch to copper
foil tape, electrical tape was picked because it was thin enough
to not hinder the electromagnet and very easy to work with.
And being electrical tape, it would not interfere with the
circuit.

g. Magnetic Material

To meet the only requirement this part had - that the small
magnetic material be in the center of the piece - we quickly
found a simple solution: a ferrous nut that the resistor could be
inserted in. Because the resistor inside the piece would be
soldered onto the bottom, it could be centered, and a nut
surrounding the resistor could be glued there to stay put and
also be centered.

The nut not being magnetic enough was not an issue, as it
was able to be attracted by a fridge magnet from underneath
the board, one less powerful than our electromagnet.

h. Board Top

A board top that was thin and could be drilled holes into
was all that was needed. Two thin wooden sheets glued
together met these requirements; they were ⅛ of an inch thick
which met the ¼ of an inch requirement from the
electromagnet to the piece.

Piece Implementation Pros & Cons

3D Printed Carved wood

● Exact: easy to measure
the amount of space on
the inside of the piece.

● Time-consuming to

design each piece.
● Printed out with hole at

the bottom already
there.

● Costly

● Imprecise: difficult to
precisely measure how
much space to carve
out.

● Pieces already built.

● Arduous work to drill
into each piece.

● Cheap

7
18-500 Design Review Report: 12/18/2020

B. Piece Movement

The technology we would use for piece movement went
through a few idea iterations before we arrived at our final
idea. At first we thought it would be a good idea to have a
system of magnets underneath the board that controlled each
piece, but upon conversation with the professors, we realized
we might have been not only underestimating how
mechanically complex that could be, but also how much it
could potentially cost. As none of us were strong in
mechanical components, we had to research the price points
and complexities of different technologies to finally arrive at
the mechanism we’re using: two cross-mounted belt-driven
linear actuators. We’ll be placing these under the board. An
electromagnet will be mounted on the gantry plate of the
topmost linear actuator which will be used to move the pieces
around. The pieces were originally intended to have a magnet
at the base, but we found that using a small metallic nut was
sufficient for the electromagnet to attract the piece and move it
to its intended position.

Other considerations were using a robotic arm to move the
pieces and using the same 2D-actuator system, but using a
mechanically lifted regular magnet. We decided against the
robotic arm because it was riskier, as we would have had to
fine tune the precise mechanical movements and we did not
have the experience to gauge how easy it would be to
implement. And then we picked an electromagnet over a
mechanically lifted regular magnet simply because, although
we need to do more research to implement the electromagnet,
it is less risky in nature.

 The linear actuators will be mounted on a stable chassis
underneath the board, with an Arduino controlling them. The
linear actuators use NEMA 17 Stepper Motors which we
intended to drive using an A4988 stepper motor driver
coupled with an Arduino via an interface; the AccelStepper
library. The AccelStepper library is an Arduino library, but
since we opted for a client-side JavaScript approach, we
instead used Johnny Five’s [9] robust JavaScript Robotics and
IOT platform. The Johnny Five platform includes an API for
controlling stepper motor drivers such as the A4988 by
abstracting away the complexities of microstepping and
bipolar driving of motors.

 We found the limitations of communication with a server
using the arduino platform to be rooted in increased
complexity. The Arduino platform has multi-layered libraries
that allow an arduino to communicate with a server, and the
Johnny Five platform removed these layers, as well as the
amount of code needed to decode messages from the server
and get the Arduino board to command the A4988 motor
driver to drive the motors.

 The A4988 motor drivers had their limitations as well. The
particular vendor which we obtained the motor drivers from
connected pins that were too thick to fit in the conventional
breadboards we used. It took a lot of tinkering to figure out
that they weren’t broken, but simply not inserted into the
breadboard correctly. This led to testing the linear actuator’s
movements limited by physically having to push the motor
drivers into the breadboard using a finger. The A4988 motor
drivers are extremely delicate. The physical pushing using a
finger caused shorts in some of the pins if a finger was
touching multiple pins. This led to breaking many of the
A4988 motor drivers we had at our disposal. The best
workaround to inserting the motor drivers into the breadboard
was to simply solder wires to each of the pins and insert the
wires into the breadboard. But the problems did not stop there.
The A4988 motor drivers had built in support for overheating,
and they came with heat sinks that can be mounted on the chip
in case of overheating. However, we needed a certain current
measurement to drive the motors and which could be adjusted
using the A4988 built in potentiometer. The output current
could be measured by using a multimeter and getting the
current reading across the potentiometer and the groundV mot
pin. Touching the ground pin and the pinV mot V mot
simultaneously during measurement of the current (by
accident) would cause a short resulting in breaking the built in
protection for overheating, causing the driver to overheat. This
limitation was a quick workaround with steady hands.

C. Web Application

 Fig 6. Class Diagram for web application

The main consideration motivating the choice of technology
for the webapp is the real-time exchange of data that occurs
when a move is sent from one client to another. For this
reason, we chose to use Node.js and Express.js as the
foundation for the webapp as we knew it had the capability to
meet these requirements. An added incentive for using the
Node.js framework is its rich amount of libraries available to

8
18-500 Design Review Report: 12/18/2020

supplement our application. For example, we are using
chessboard.js to provide the chess board graphics, chess.js
gives us game logic and validation, Node Serialport facilitates
communication between the web application and the Sudo
Board through ZeroMQ, and socket.io provides a nice
interface to send and receive data using websockets.

As seen in figure 6, the class diagram for the web
application client, the application will have a list of active
users and a list of lobbies. Each lobby can have up to 2 users
and each lobby has an associated game as well. Every game
has a board which visually shows the current state of the
game. Every user can register a Sudo Board, and if they do
have one registered, they will have a Sudo Board
Communicator.

For the communication between the Sudo Board and the
web application, we had a few considerations to take into
account. Originally, we assumed that we would be able to get
access to the serial port of a user’s computer directly in the
web application client, however due to the way modern web
browsers operate, this approach was not feasible. In order to
overcome this, we came up with an approach of using a
separate process on the user’s local machine to send messages
to the web application server, which then forwards the
information to the user’s web application client and the user’s
opponent’s web application client. With this approach, for
each new game the server needs to create two different
channels to communicate with the local machine
communicator: one for the server to send moves from the web
application client and one for the server to receive moves from
the Sudo Board. Because there are two users per game, this
results in four channels per game, which is a meaningful
amount of resources for the server to maintain.

The decision of which messaging service to use for our
project took several factors into consideration. The primary
factor was how much additional resources would be required
in order to implement the messaging service. Some services
required creating databases in the cloud, some required the
creation of local databases, others required using a specific
framework to base your application on. ZeroMQ [7] is the
messaging service we decided to use, partly because it only
required a local redis database, which we could easily spin up
using Redis’ public Docker image [8]. Additionally, ZeroMQ
does well on the other factors we used to come up with the
decision: it provides fast delivery time of the messages,
minimal downtime, and also has guaranteed eventual delivery
of messages sent.

 Fig 7. Route Table for web application

III. PROJECT MANAGEMENT

A. Schedule

Our full, detailed schedule at the end of this document in
Fig. 8 is divided into the subsystems with one team member
taking care of each, and in addition another section for testing
and integration.

It suffered many push backs due to a number of factors. At
first, we had team communication issues which happened in
between the design phase and implementation phase, setting
up poor groundwork for the rest of the project. Secondly, we
did not plan tasks to pipeline while waiting for the delivery of
parts - mainly because we did not expect parts to take longer
than the expected delivery on the website we requested them
from, but often they took twice as long and we did plan tasks
to do while we waited.

We also did not schedule in logistical or research tasks.
These are trivial tasks that seemed simple, but span time and
needed to be accounted for. These are what ended up being the
blank spaces in the schedule that have not been spent on a
specific task, but rather in that miscellaneous preparation for
those specific tasks. These ended up pushing the tasks we had
planned out towards the end and delaying the project.

B. Team Member Responsibilities

The responsibilities of the team members were split up
mainly by subsystem, due to the current state of the world.
With a lockdown caused by a pandemic, we as a team were
not able to physically meet and so cannot share work on any
of the physical components.

Danié took care of the piece detection circuit. This included
planning the circuit, then prototyping it and integrating the

9
18-500 Design Review Report: 12/18/2020

detection with the Arduino. After that, they were to plan and
assemble the board top and integrate the circuit within it, as
well as designing the pieces to work with this board top. Since
construction of the board top and pieces is easiest if one has
access to campus facilities and they are the only team member
on campus this semester, the work was split this way.

Brandon was in charge of the software subsystem of the
project. He was responsible for creating the web app, handling
communication from the webapp to the arduino controller and
vice-versa. After everything had been put together he and
Tony worked together remotely to test the integration of the
connection between the Arduino microcontroller and the web
app. This work was assigned to Brandon because he has
experience working with web development and because he
lacked the resources to physically work on the other
subsystems.

Tony was tasked with constructing the linear actuator
system that moves the pieces from underneath the board. This
meant putting the actuators together and finding the best way
to stack them for 2-dimensional movement, i.e. building a
chassis. He is also tasked with finding the electromagnet
needed to drag the pieces across the board. Lastly, he needs to
program a microcontroller to control both the motors and the
electromagnet. After this was done, he and Danié planned to
meet in Pittsburgh for integration of the two physical
subsystems, but this was not possible due to time constraints
and covid complications. He was assigned this work because
he has access to enough tools to build a chassis for the linear
actuators.

C. Budget
Table 1 is the list of materials that we used or acquired.

Many tools we were able to use from Techspark. We used
$350.98 out of the budgeted $600.

D. Risk Management
The main risk that we face in our project is when we put our

piece detection and piece movement subsystems together.
Because we have been working on these individually and
separately due to the constraints imposed by the covid
pandemic, incompatibilities may arise once we meet and put
the two parts together. To manage this risk, we are setting
ample time aside for this integration as well as doing the
integration itself in Pittsburgh, where we have access to the
facilities and tools on CMU campus to make any adjustments
to the board that are necessary. In the end, full integration was
not possible. When we realized this, we mitigated the risk by
focusing on showcasing the integration of separate
subsystems, and downscaling our end product.

TABLE I. BUDGET

Component Price Notes

Incurred
 Expenses

Breadboard - Leftover from
 another course

Arduino
 UNO + cables and power
supply

- Kept from
18-220

Resistors - Obtained from
 ECE labs

Hand Drill - Techspark

Hot Glue Gun - Techspark

Electrical Tape - Techspark

Stencil Knife - Techspark

Digikey
 MAX306CPI+ 16:1 analog
multiplexer

$14.00 $9 + $5 shipping
 cost

Wooden Sheets $8.00 Techspark

DC
 Power Jack female

$8.49 came in bundle
 of 12

12v
 power supply

$12.21

Wooden
 Chess pieces

$12.00 set from
Amazon

x2
 V-Slot® NEMA 17 Linear
Actuator Bundle

$171.98

x2
 A4988 stepper motor drives

$19.10 came in bundle
 of 5

x3
 Digikey MAX306CPI+
16:1 analog multiplexer

$32.50

Techspark
 wood costs

$20

10
18-500 Design Review Report: 12/18/2020

IV. SUMMARY
Our final product was incomplete due to time constraints.

The limits on the system’s performance are largely due to not
having a full integration. In section II, it was specified that the
system would be able to handle complex moves like castling,
and even moving a piece off board after it has been taken. The
linear actuator system is able to move pieces in between
others; it is demonstrated in code with the movement of the
knight. Due to time constraints and some design limitations
we were only able to demonstrate the simple movements: the
movement of a knight, a diagonal movement, a horizontal
movement, and a vertical movement of a chess piece. Given
more time, we would find a way to implement more complex
movements like pawn promotion and most importantly: taking
pieces We also didn’t have a chassis for the linear actuators,
and this was largely due to not having access to the right
materials or the lab space to create a chassis out of wood. With
the chess board subsystem, given more time, we could
improve performance by aligning each piece to the center of
the square it is contained in such that it lies in the center
always.

A. Lessons Learned
Although we were unable to fulfil the design we set out to

build, there are various lessons we took from this entire
process. First is the importance of the initial research. While
we did acknowledge that researching was important before we
set out to build anything, we still failed to give it the
importance it merited.

For example, one variable that determined other details of
the implementation was which actuators we would be able to
find. Size, price, and the requirements for powering them
would affect the other subsystems too. We spent weeks
without deciding on one when we should have focused all our
energies into researching that as soon as possible.

Probably the most important lesson though was the

importance of planning things out to the last possible detail at
the beginning. Things that can be figured out at the start
should never be relegated to later. We set out into the
implementation phase with a very flimsy design, one which
had many details yet to figure out, leading to many, many
surprises along the way that could have been foreseen.

Lastly, the management skills needed for a large project, in

particular when working with a remote team. For some of us it
was the first semester-long project, and our time management
skills would be put to work. However, the restrictions due to
covid were more impactful than foreseen. In addition to the
extra discipline needed to meet virtually as opposed to
physically, there were so many logistical details that needed to
be worked out. Our mistake was not taking the fact that these
would be impactful into account. The long wait times for
deliveries, the times for shipping tools, the restricted access to
campus, and the logistics of planning around a small window
of time for integration all had a negative impact on our
schedule, an impact that could have been mitigated by taking
these inconveniences into account from the start. By working
them into the schedule.

REFERENCES
[1] OpenBuilds Part Store,

https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-b
elt-driven/

[2] squareoffnow.com
[3] Otka OIDC Middleware

npmjs.com/package/@okta/oidc-middleware
[4] Chessboard.js

chessboardjs.com
[5] Chess.js

github.com/jhlywa/chess.js
[6] Socket.io

socket.io
[7] ZeroMQ

zeromq.org/languages/nodejs/
[8] Redis

 hub.docker.com/_/redis
[9] Johnny Five

http://johnny-five.io/
[10] MAX306 Datasheet

https://datasheets.maximintegrated.com/en/ds/MAX306-MAX307.pdf

10K
 pots

$8.18 came in bundle
 of 5

electromagnet $21.56

PCB Breadboards $7.99 Set from
Amazon

Copper Foil Tape $14.97 from Amazon

Total
 Expenses

$350.98

Total
 Budget

$600.00

Leftover $233.54

https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-driven/
https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-driven/
https://squareoffnow.com/
https://www.npmjs.com/package/@okta/oidc-middleware
https://chessboardjs.com/
https://socket.io/
https://zeromq.org/languages/nodejs/

11
18-500 Design Review Report: 12/18/2020

 Fig 8. Project Schedule

