
1
18-500 Design Review Report: 10/19/2020

Sudo Chess

Authors: Danié Alvarado, Brandon Dubner, Tony
Padilla — Electrical and Computer Engineering,

Carnegie Mellon University
Abstract—A mechanical chess board capable of replicating the

real-life experience of playing versus another player by moving
the pieces of one color to match the moves of an opponent playing
the game remotely. The other existing product uses a press-based
approach to communicate that a piece has been placed; we are
trying to improve on that by making the detection seamless, so it
will feel exactly like a normal chess board.

Index Terms— Device-to-Computer, Electromagnetism, Linear
Actuators, Node.js, AWS Deployment.

I. INTRODUCTION

IN recent months, a global pandemic has locked us in our
homes, unable to have those in-person interactions with the
people we care about. We hope to, for people who enjoy
playing Chess with their friends and family, be able to provide
a more similar experience to playing a game with those people
that’s more than just through a screen.

To this end, our project design is a Chess board that
simulates real-life play. It will look just like a regular board on
the top, but underneath will lie a mechanism that can move
pieces smoothly and without disruption (no collision with
already-placed pieces) across the board, as well as the
technology for communication with an internet-enabled
separate device. These additions let a player use the board and
play with an opponent connected remotely through the internet
while the board reflects the opponent’s moves physically.

Our overarching goal is to have our board’s play experience
as close to a real-life experience as possible. This is why we
chose to add the challenge of moving the pieces automatically,
making it feel as if it’s just another person moving them, only
you can’t see the hand. More specifically, our goal is to be
able track a game state and move the opponent’s pieces
accordingly. This goal also led to our design choice of
detecting pieces through simple placement — no need for you
to press on the board or press any other buttons, just pick and
place as you would in a real game and the board will know
your intention.

II. DESIGN REQUIREMENTS

A. Software Requirements

The first design requirement for the software portion of our
project is that a user will have the ability to connect the
physical board to their device and establish communication
between them. This will demonstrate the ability to provide the
board information to the webapp and commands from the
webapp to the board. This is critical for our project, since it
will serve as the interface between the software portion of the
project and the rest of the project.

The next design requirement for the software portion is the
ability to connect with another specific user and play a game
of chess against them. The game should be able to be created
regardless of the number of players that have a Sudo Board,
and the users should be able to send communication within
500 ms. The last software design requirement is for an
intuitive user interface. Users should be able to start games
and send their moves easily, and the website should reflect
these operations quickly.

For the first two design requirements for the software part of
the project, we can verify that they are met by using unit tests
and manual tests of the system. The last requirement will be
more subjective, and will have to be verified manually.

B. Board Requirements

The overarching purpose of the board is to be able to detect
the pieces on the board and report it to the controller.
Following from this, the first design requirement of the board
is to be able to be able to determine, for all 64 squares on the
board, whether there is a piece on the square and the type of
piece and color of piece with 100% accuracy. The requirement
for complete accuracy is due to the way that moves in a chess
game occur: if a piece gets moved and a separate piece gets
detected incorrectly, it will appear as if multiple moves have
been made simultaneously, which cannot happen in a game of
chess.

Following this, the next design requirement for the board is
the capability of detecting all of the piece locations within 100
ms. This requirement is so the board has enough time to
communicate this to the website and the changes happen
nearly instantaneously.

2
18-500 Design Review Report: 10/19/2020

Fig. 1. Sudo Chess System Architecture

The last design requirement for the board is that at most 1
mA of current flows through any of the paths to ground in the
piece detection circuit. This is because the circuits will be
completed by pieces placed on them, but if someone was to
complete the circuit with their finger, we do not want them to
get harmed. 10 mA of current is the threshold for harmful
amounts of current, but we want to be safe and set the
requirement for an order of magnitude less than this threshold.

C. Movement Requirements

For the moves of the game to be replicated automatically
onto the physical board, there must be components dedicated
to the movement of the pieces. The first design requirement
for the Sudo Chess system is to be able to complete any move
within 5 seconds. This includes castling, capturing pieces, and
any other legal move. 5 seconds was chosen since we want to
be within the average attention span of humans, currently
estimated to be 8 seconds, while still providing enough time to
move the pieces precisely.

On the topic of precise movement, the next requirement of
piece movement is that only the pieces involved in a move
should be changed. There should be no collisions between the
moving piece and the other pieces and no other pieces should
need to be moved.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall design of our system is shown in the system
architecture in figure 1. In general, we split our design into 3
conceptual areas: Piece Detection, Piece Movement, and the
webapp. The components in our design that aren’t directly
related to these areas typically either connect those areas
together or implement a sub-task within the area.

A. The Sudo Board

Inside the Sudo Board we have the Piece Detector, the Piece
Mover, and the Controller that collects information from the
submodules. These modules all interact and communicate with
the other modules through the Sudo Board Communicator.

The overall objective of the piece movement unit is to be
able to move pieces to arbitrary squares without disrupting the
other pieces on the board. The piece movement unit consists
of two V-Slot® NEMA 17 Linear Actuators, the various parts
needed to get the actuators to move, and an electromagnet.
The linear actuators will work in tandem with each other,
moving the electromagnet to locations across the board in
either direction. The locations of the linear actuators will be
reported to the Sudo Board controller, which will give
movement commands in response.

3
18-500 Design Review Report: 10/19/2020

Fig. 2. Sudo Chess System Interaction Diagram

The piece detection unit consists of the physical chess
board, the chess pieces, and an underlying detection circuit.
The circuit is partitioned into 4 different sampling circuits,
that each detect piece information for 16 different squares.
After piece information is collected, it is then sent to the Sudo
Board controller, which in turn communicates with the web
application.

B. The Web Application

First, we separate the web application into two distinct
components: the client and the server. The client is the part of
the application that the user directly interacts with, as in
logging into their account. The client will then send requests
to the server, for example, to create a lobby which the server
will fulfill and tell the client as such. The client primarily
handles local Sudo Boards and local games whereas the server
primarily handles communication between one client and
another.

The web application is intentionally decoupled from the
Sudo Board in such a way that you do not need a Sudo Board
in order to use the application. Because of this, the Sudo
Board Communicator has the primary responsibility of
communicating with the Sudo Board and translating the output
to the inner game logic of the web application.

C. System Interaction

Depicted in the system interaction diagram above (figure 2)
is a chess game between one user who is using a Sudo Board
and another user who is only using the web application. The
two main ways a user can interact with the Sudo Chess system
are by creating / finding a game and by making moves in a
created game. Both Sudo Board users and web only users will
be able to find a game by interacting with the web application
client. Sudo Board users will be able to play moves by moving
the pieces on their physical Sudo Board whereas web only
users will move pieces via the web application.

Under the covers when a piece is moved on the Sudo Board,
the system response starts when the piece detection unit
reports the updated state of the board. After the Controller gets
the information from the Piece Detector, it forwards the
information to the web application through the SudoBoard
Communicator. The application will check that the move was
a legal move and, if it is, it will first update the board graphic
on the screen. Next, the web application will tell the server to
forward the move to the user’s opponent in the game and then
the opponent will be prompted to make a move. In the
opposite scenario, where the web player makes a move using
the GUI, the system interaction will be largely the same,
except when the opponent (now the Sudo Board user) receives
the move, the Sudo Board Communicator will give the Sudo
Board a movement command, which will prompt the
movement unit to replicate the move.

4
18-500 Design Review Report: 10/19/2020

Fig. 3. Sudo Chess Physical System Block Diagram

IV. GENERAL DESCRIPTION WITH DESIGN TRADE STUDIES

A. Piece Detection
How to perform the piece detection was decided after

careful consideration of different elements of the subsystem
that will perform this task. We needed something that would
be cost-effective and easy to implement, as none of us had
strong experience with circuits or signals. At first, we thought
of using RFID to detect each piece, a simple implementation
as this technology is widely available. However, the cost of
having so many detectors (one for each square) would drive us
way over budget. Then we thought of contact plates that
showed on the board, where the pieces act as a simple switch
with a resistance on them won among our other possible
implementations. These can be made barely visible and made
our detection subsystem a simple DC circuit.

Next, for this, we would need to measure 64 different
voltages at all times, one for each square of the board. We
took into consideration that it only needed to feel, to the user,
as if we were detecting all pieces at the same time. We learned
that microcontrollers can typically read their
Analog-to-Digital Converter inputs in the order of
microseconds, so instead of needing 64 separate ADCs, we
could multiplex the voltages being read from each square’s
circuit and read them one at a time fast enough for it to seem
simultaneous. The final circuit design for this results in 16
parallel paths from the 5V power source to Ground, each with
a Load Resistor and a switch with a resistance, with the node
between them being measured by the microcontroller. The
“switch” here refers to the pieces that, through metal plate

contact, connect the switch with the resistance corresponding
to a different piece type and color combination. The voltage
between the load resistor and the piece’s resistor will be
different for each type of piece and that is how the
microcontroller will be able to detect which piece it is. The
resistances for each path will be from 5K to 12K Ohms,with
values picked for user safety.

B. Piece Movement
The technology we would use for piece movement went

through a few idea iterations before we arrived at our final
idea. At first we thought it would be a good idea to have a
system of magnets underneath the board that controlled each
piece, but upon conversation with the professors, we realized
we might have been not only underestimating how
mechanically complex that could be, but also how much it
could potentially cost. As none of us were strong in
mechanical components, we had to research the price points
and complexities of different technologies to finally arrive at
the mechanism we’re using: two cross-mounted belt-driven
linear actuators. We’ll be placing these under the board then
using an electromagnet to move the pieces around (which will
have a magnet at their base).

Other considerations were using a robotic arm to move the
pieces and using the same 2D-actuator system, but using a
mechanically lifted regular magnet. We decided against the
robotic arm because it was riskier, as we would have had to
fine tune the precise mechanical movements and we did not
have the experience to gauge how easy it would be to
implement. And then we picked an electromagnet over a
mechanically lifted regular magnet simply because, although
we need to do more research to implement the electromagnet,
it is less risky in nature.

5
18-500 Design Review Report: 10/19/2020

Fig 4. Software Class Diagram for web application

 These linear actuators will be mounted on a stable chassis
underneath the board, with an Arduino controlling them. The
linear actuators use NEMA 17 Stepper Motors which we will
drive with an Arduino using the AccelStepper library via
A4988 Stepper motor drivers.

C. Web Application
The main consideration motivating the choice of technology

for the webapp is the real-time exchange of data that occurs
when a move is sent from one client to another. For this
reason, we chose to use Node.js and Express.js as the
foundation for the webapp as we knew it had the capability to
meet these requirements. An added incentive for using the
Node.js framework is its rich amount of libraries available to
supplement our application. For example, we are using
chessboard.js to provide the chess board graphics, chess.js
gives us game logic and validation, Node Serialport facilitates
communication between the web application and the Sudo
Board through UART, and socket.io provides a nice interface
to send and receive data using websockets.

As seen in figure 4, the class diagram for the web
application client, the application will have a list of active
users and a list of lobbies. Each lobby can have up to 2 users
and each lobby has an associated game as well. Every game
has a board which visually shows the current state of the
game. Every user can register a Sudo Board, and if they do
have one registered, they will have a SudoBoard
Communicator.

For deployment, we will use DynamoDB for the database
and deploy to AWS Elastic Beanstalk. This gives us the
benefit of deploying to an autoscaling service without us
needing to worry about the complex infrastructure.

 Fig 5. Route Table for web application

III. PROJECT MANAGEMENT

A. Schedule

Our full, detailed schedule at the end of this document in
Fig. 6 is divided into the subsystems with one team member
taking care of each, and in addition another section for testing
and integration.

It has suffered some push back of tasks, mainly due to
waiting for delivery of parts and not accounting for how busy
each member would be during specific times with other
classes. However, we had made it with a margin for error,
such that even with the set-backs we are still on schedule. The
blank spaces in the schedule have not been spent on a specific
task, but rather in miscellaneous preparation for those specific
tasks, such that once we have all the materials and resources
we can quickly do the task listed.

B. Team Member Responsibilities

The responsibilities of the team members are split up
mainly by subsystem, due to the current state of the world.
With a lockdown caused by a pandemic, we as a team are not
able to physically meet and so cannot share work on any of the
physical components.

Danié is taking care of the piece detection circuit. This
includes planning the circuit, then prototyping it and
integrating the detection with the Arduino. After that, they are
to plan and assemble the board top and integrate the circuit
within it, as well as designing the pieces to work with this
board top. Since construction of the board top and pieces is
easiest if one has access to campus facilities and they are the
only team member on campus this semester, the work was
split this way.

6
18-500 Design Review Report: 10/19/2020

Brandon is in charge of the software subsystem of the

project. He is responsible for creating the web app, handling
communication from the webapp to the arduino controller, and
deploying the web app to AWS . After everything has been
put together he and Danié will work together remotely to test
the integration of the connection between the Arduino
microcontroller and the web app. This work was assigned to
Brandon because he has experience working with web
development and because he lacks the resources to physically
work on the other subsystems.

Tony is tasked with constructing the linear actuator system
that moves the pieces from underneath the board. This means
putting the actuators together and finding the best way to stack
them for 2-dimensional movement, i.e. building a chassis. He
is also tasked with finding the electromagnet needed to drag
the pieces across the board. Lastly, he needs to program a
microcontroller to control both the motors and the
electromagnet. After this is done, he and Danié will meet in
Pittsburgh for integration of the two physical subsystems. He
was assigned this work because he has access to enough tools
to build a chassis for the linear actuators.

C. Budget
Table 1 is the list of materials that we have acquired so far

along with what we plan to acquire. Expenses for techspark
are a generous estimate of the materials we might need to
acquire, mainly wood and metal, but also PCBs. We have
budgeted only $366.46 out of the $600, giving us plenty of
slack to work with.

D. Risk Management
The main risk that we face in our project is when we put our

piece detection and piece movement subsystems together.
Because we have been working on these individually and
separately due to the constraints imposed by the covid
pandemic, incompatibilities may arise once we meet and put
the two parts together. To manage this risk, we are setting
ample time aside for this integration as well as doing the
integration itself in Pittsburgh, where we have access to the
facilities and tools on CMU campus to make any adjustments
to the board that are necessary.

TABLE I. TENTATIVE BUDGET

Component Price Notes

Incurred Expenses

Breadboard -
Leftover from
another course

Arduino UNO + cables and
power supply - Kept from 18-220

Resistors -
Obtained from
ECE labs

Digikey MAX306CPI+ 16:1
analog multiplexer $14.00

$9 + $5 shipping
cost

Planned Future Expenses

Wooden Chess pieces $12.00 set from Amazon

x2 V-Slot® NEMA 17 Linear
Actuator Bundle $171.98

NEMA 17 Stepper Motor $35.98

x3 Digikey MAX306CPI+
16:1 analog multiplexer $32.50

Techspark estimated costs $100.00

Total Planned Expenses $366.46

Total Budget $600.00

Leftover $233.54

REFERENCES
[1] OpenBuilds Part Store,

https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-b
elt-driven/

[2] squareoffnow.com

https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-driven/
https://openbuildspartstore.com/v-slot-nema-17-linear-actuator-bundle-belt-driven/
https://squareoffnow.com/

7
18-500 Design Review Report: 10/19/2020

 Fig 6. Project Schedule

