
18-500 Final Project Report: 10/19/2020

1

Abstract—Thermonitor is a smart, contactless thermometer that can

be installed at gateways to different locations across buildings for large

organizations, such as educational institutions and corporations, to

remotely monitor their community members’ temperature and

facilitate contact tracing. The display of the Thermonitor will alert the

users to scan their ID, properly wear a mask, and measure their

temperatures once they are correctly identified as a member of the

organization. Then the Thermonitor will collect the temperature data

accompanied with one’s profile detected by their RFID tag. This data

will be uploaded to a web application, which will match the

temperatures to individual profiles and log the records to allow

organization admins to access and manage the logs.

Index Terms—Azure, Computer Vision, Face Detection,

Internet of Things, Machine Learning, Mask Detection, NFC,

RFID, STM 32, Thermometer, Web Application

I. INTRODUCTION

URRENTLY, COVID-19, a novel acute respiratory illness

is plaguing countries all over the world. Infections are

rising, with no view of a vaccine in sight. One of the earliest

warning signs of infection is fever. It is critical to regularly

monitor body temperature in order to protect others, especially

for diseases like COVID-19 where one is contagious several

days before showing any symptoms at all. By noticing changes

in one’s own body temperature, we can take immediate

measures to prevent further spread of the virus.

 Thermometers in the current market are either standalone

kiosks or handheld. Handheld thermometers require another

person to hold the thermometer from a distance of up to 4

inches, which fails to conform to the mandated 6 ft for proper

social distancing. Standalone kiosks are currently over $2000,

which can be unaffordable to be installed at every gate way.

Currently, there is no viable product that is both safe and

affordable; Thermonitor aims to be both. Thermonitor is an

end-to-end device where the user presents a valid RFID tag that

triggers the start of temperature measurement. A monitor is

used to broadcast the video stream back to the user with a

bounding box that surrounds the face. Thermonitor must

measure the temperature within a distance of 50 cm (19.6

inches/1.64 feet) and this temperature is sampled multiple times

within 3 seconds. An 85% facial detection and 95% mask

detection accuracy is obtained. These algorithms ensure that the

user is properly wearing a mask and alert them otherwise.

II. DESIGN REQUIREMENTS

The first requirement of Thermonitor is a capability to

correctly read the RFID tag presented. This is necessary for us

to send information from end-to-end on our device. It also

serves as an indicator to know when the device should start

scanning for faces and measuring temperatures. Secondly, it

should be able to accurately measure the temperature of an

individual standing in front of the device. It must also be able

to properly detect faces in front of it using a bounding box to

check whether or not the person is wearing a mask. All of this

information must then be sent to our IoT platform for gathering

and monitoring of data.

 To verify that our design has met these specifications, we

are performing several benchmark tests. To test the RFID

scanner, test benches were created to make sure the device

scans the IDs accurately and keeps track of unidentified

individuals. We purchased sample RFID tags for testing the

scanning functionality. We are aiming for 99% accuracy since

misreads could occur occasionally.

 To test the facial detection algorithm, we are putting both

people and objects in front of the camera and see if their eyes

or faces are detected by checking if a bounding box appears. In

addition, we are testing faces with and without face masks in

order to ensure it can still recognize people with only eyes as

the tracking feature. If there are multiple people in the frame,

the algorithm should only detect the main person in the front of

the camera, the one who actually scanned their RFID. We are

aiming for a 85% accuracy rate since the facial detection

algorithm normally has a 95% accuracy, but since we are

detecting it in real time video stream and we can only use a

limited number of classifiers, we are lowering it. We are aiming

for 95% mask detection rate since this algorithm is only being

called after we determine there is a face. We are not aiming for

100% since we have a limited training set for mask detection.

 To test temperature sensing, we are using various objects

with different temperature ranges to test our degree

measurement. We are aiming for ±0.2° Celsius from the

intended temperature. Since sensor data needs to be transmitted,

calculated, and displayed on the monitor, we are aiming for a 3

seconds time measurement. Handheld thermometers usually

take around 1.5 seconds to display results and taking into

account the processing time on the Jetson, we decided that 3

seconds is a good benchmark.

 On the cloud side, we are making logs accessible to the

admin and ensure that the correct profile is mapped to the RFID.

We are using the sample RFIDs to test how easily accessible

our external platform will be. To fully test our web application,

we are conducting user testing on friends and family and adjust

based on their feedback. We are using MQTT and TCP

protocols that already ensure reliable messaging. However, we

still should account for unexpected data transmission issues,

Thermonitor

Author: Iris Wang, Jiamin Wang, Minji Kim: Electrical and Computer Engineering, Carnegie Mellon University

C

18-500 Final Project Report: 10/19/2020

2

thus we cannot guarantee 100% total transmission rate.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

We are using a microcontroller unit (MCU) to handle the

logic behind our tag id verification. More specifically, we are

using a STM32 Nucleo-L476RG board with a compatible

expansion board X-NUCLEO-NFC02A1. The near field

communication (NFC) expansion board is directly connected

on top of the Nucleo board and the boards are powered through

the micro-usb port. If a RFID tag is read, then a signal is sent

from the Nucleo to the Jetson Nano to initialize temperature

scanning and facial detection. Thus, the Nucleo is wired directly

to the Jetson to turn off the auto-power on function provided by

the Jetson.

 An IR sensor is used to scan multiple accounts of

temperature across a three second time frame. The Raspberry

Pi camera module’s video stream is fed directly to the Jetson to

begin facial detection and then mask detection. The user must

stand within a bounding box for accurate detection. All of this

information is displayed on a monitor, as seen in Figure 1.

Fig. 1. Monitor display setup from the user perspective.

The Jetson Nano uses MQTT protocols to transmit user

profile data across the cloud. This data is received by the Azure

Hub, which is the cloud gateway for our IoT system. After

unpacking the transmitted data and formatting it in the desired

form, the data is sent to the back-end of our web application.

This web application is hosted on Azure App Service, where

they provide APIs to facilitate data transmission between Azure

Hub and custom applications.

The web application is accessible through either a phone or a

computer. The room name where the user scanned their ID,

along with all user activity and corresponding temperatures are

available to the admin. More information such as the timestamp

becomes available once you click the individual record. Figure

2 provides an example of our web application wireframe.

Fig. 2. Web application wireframe with individual records.

18-500 Final Project Report: 10/19/2020

3

Fig. 3. Overall block diagram of our system.

IV. DESIGN TRADE STUDIES

These are some components we took into consideration when

choosing which best fit our system.

A. Temperature Measurement

From our previous design, we decided to change our

temperature measuring hardware from a FLIR IR camera to a

MLX90614_DCI medical grade long distance IR sensor. We

made this change since IR cameras within our price range had

around 2 degrees of error, which is significant when referring

to human body temperatures. More accurate IR cameras ranged

from around $1000 to $2000, which is out of our budge. The IR

sensor in contrast measures temperature with an accuracy of

±0.2°C. It measures the surface temperature by detecting

infrared radiation energy and wavelength distribution. The

sensor can detect object temperatures from a range of up to

50cm, which still conforms to our project goals of ensuring safe

social distancing temperature measurement, since our kiosk

does not require human operation.

B. Serial Communication Protocol

We also considered which serial communication protocol

would be best suited for sending RFID tag ids from the Nucleo

to the Jetson. The two that were under consideration were I2C

and SPI. We ended up choosing I2C over SPI because it

supports multiple masters to multiple slaves on the bus, making

the project more scalable. In addition, I2C has ACK and NACK

bits to support error handling, which the SPI protocol does not

have. While SPI is better for shorter distances and I2C is meant

for long distance communication, our primary form of

identification is done through the RFID tag ids. Thus, error

handling is necessary to prevent inaccurate storage of

information and ensure that the correct identification is stored

in our local and cloud systems.

C. Microcontroller Unit

We originally planned on using an Arduino, Raspberry Pi, or

FPGA as our main processor for the RFID verification process.

We ruled out the FPGA early on because the functionality we

wished to achieve was not able to utilize the full capabilities of

an FPGA. From getting some feedback from the Teaching

Assistants, we pivoted towards using an MCU. The first board

that came to mind was to use an Arduino since we have

previously worked with this microcontroller in past classes. We

also considered using a Raspberry Pi but ended up ruling that

out. This is discussed in the next section. In addition, Arduino

and Raspberry Pi boards are more for experimenting instead of

creating an end-to-end prototype. We wanted to target our

product to be in the industrial setting, and thus we ended up

moving towards using an embedded board. The STM32 series

seemed promising since it seemed to be a popular choice with

various expansion boards. We wanted to aim for a low power

series that would also be compatible with an NFC/RFID

expansion board, so we ended up choosing the STM32 Nucleo

L476RG.

D. Jetson Nano

We chose the Jetson Nano as our core processor over the

Raspberry Pi because of its higher performing GPU. We

determined that the Jetson Nano would be the better choice

since it could process around 15 frames per second versus the

Raspberry Pi’s 1 frame per second. With the higher frame

18-500 Final Project Report: 10/19/2020

4

processing speed, we would be able to recognize the face and

mask faster, and be able to match our goal of scanning a

person’s temperature at a rate of 3 seconds in order to compete

with handheld thermometers.

V. SYSTEM DESCRIPTION

The project consists of a software and hardware component.

On the hardware side, a microcontroller unit (MCU) was used

to handle interactions with a RFID tag. The Jetson processes a

video stream for facial and mask detection. This information

will then be sent to the cloud using Azure.

A. STM32 Nucleo Board

The STM32CubeIDE is used to compile and download code

to the microcontroller. The expansion board provided the

drivers for X-CUBE-NFC02 and M24LR. However, the

provided code was only compatible with F401X and L01X

STM32 boards. Necessary changes and modifications were

made to ensure that the drivers worked with our L4XX series

board. Standard HAL drivers were downloaded that were

specific to our board. The HAL library is used to provide

generic APIs, such as initializing and configuring the necessary

peripherals, managing data transfers, and managing

communication errors. A middleware folder with NDEF

libraries was also provided. This served as the main

documentation for working with NFC type 5 tags. A tag

interface is written to check whether the id already exists within

our system. Then an I2C interface sends the tag id to the Jetson

nano for further processing.
To prevent Jetson from being automatically powered on

when connected to a power supply, we are shorting pins 5 and

6 on the J50 header of the Jetson to disable auto-power on. A

“wake up” signal is sent from the Nucleo to the Jetson by

shorting pins 11 and 12 of the J50. Thus, the Nucleo and the

Jetson are directly wired. Pins 3 and 5 on the J41 header is used

Fig. 4. This is the hardware block diagram for the MCU and Jetson Nano.

to connect the SDA and SCL wires needed for our I2C serial

communication protocol. We are powering the Jetson through

the barrel jack using 5V 4A so J48 is jumpered to enable this

feature.

To perform our facial and mask detection, we are using the

Raspberry Pi camera module V2 as our main video feed. This

is directly connected to the Jetson through J13 for camera

connector #1. The Raspberry Pi camera module V2

communicates with the Jetson Nano through the MIPI CSI-2

interface. It is a high-speed protocol used for point to point

image and video transmission between cameras and host

devices. We also installed a Wi-Fi card, Intel Dual Band

Wireless-AC 8265 and Wi-Fi antennas onto the Jetson Nano for

mobility instead of needing to tether it to a router switch.

We can then connect the Jetson Nano to the cloud for our IoT

platform. All video stream is broadcast back to the user through

a display monitor that is connected by an HDMI to HDMI cable

on J6. The display monitor has a bounding box to confirm the

face of interest, the measured temperature, and other necessary

information. The IR temperature sensor, MLX90614_DCI, is

connected to the Jetson through one of the GPIO pins on J41.

The sensor uses the I2C interface to communicate, so we are

connecting the MLX90614_DCI SDI and SCK to the SDA and

SCL pins on the Jetson Nano.

B. Jetson Nano

Jetson Nano serves as the software processor. It provides two

main purposes — (1) face and mask detection and (2) IoT

connection.
 The Jetson receives the video stream inputs from the RGB

camera and run the facial and mask detection algorithm on each

frame. The detection algorithm is implemented in Python using

popular computer vision libraries such as OpenCV and NumPy.
For the IoT functionality, we are deploying the IoT Edge

Module directly on the Nano. This allows the device to easily

connect to Azure IoT hub, which is the cloud gateway that is

compatible with IoT Edge devices. We are using the MQTT

18-500 Final Project Report: 10/19/2020

5

Fig. 5. This is the software block diagram for the Jetson Nano and IoT.

protocol to send messages to the IoT Hub. After we receive the

messages, the Hub stores the information in a local storage,

Azure Blob, to allow periodic bulk updates in case of internet

connectivity issues. Then, the IoT Hub packs the data and sends

it over to our Web Application’s back-end service. The back-

end communicates with the database and the front-end of the

application to manage and display the collected temperature

data. The back-end service is implemented using Django, while

the front-end is built on the React.js framework. Finally, we are

using Azure App Service to deploy our web application, since

it easily integrates with the IoT Hub and provides a safe way to

send and receive data through web sockets.

Fig. 6. Facial and Mask Detection Algorithm Flow Chart.

We are using a two-step facial detection algorithm, where we

first try to locate a face, and once we have, detect if there is a

mask on that face. The face detection model is trained with eye

and eyebrow classifiers since we are unable to use nose and

mouth classifiers due to the face mask covering up most of

those features. Once we compute the bounding box of the face,

we apply the mask detection algorithm. We must identify the

correct face in the video stream since there may be several

people in the background. Thus, there is a bounding box size

threshold, and once it passes that, we can identify that as the

person of interest. The mask algorithm is trained with a dataset

of faces with mask and no mask and may need to supplement it

with our own training sets if accuracy is below what we expect.

Once the detection algorithm is applied, we can display the

mask results and temperature on the monitor, and send

temperature, RFID, and other necessary data to the cloud.

VI. PROJECT MANAGEMENT

A. Schedule

The Gantt chart is split up in three different sections: initial

set up, MVP, and final project (Appendix Fig. A1). During

initial set up, we focused on getting familiar with the hardware

and the software packages that are available to us. This is also

the time when we submitted our bill of materials and were just

waiting on shipment. Due to shipment delays and placing

incorrect orders, our Gantt chart did shift back by a couple days,

but this did not affect our work significantly.
Next is MVP, these are the tasks that we aimed to finish by

the first demo. During this process, we must validate each of

the components or code we write before trying to integrate

everything together.
In the final project, we continued to push our MVP to the best

it can do, such as better accuracy and power efficiency. During

this time, we might also explore new areas or components that

we wish to add.

B. Team Member Responsibilities

Jiamin focused on working with the RFID scanner and

Nucleo board. She made sure that the RFID scanner is properly

18-500 Final Project Report: 10/19/2020

6

connected to the Nucleo board, so that the scanned ID is

eventually communicated to the Jetson Nano. In addition, she

wired the Nucleo to short pins on the Jetson to signal it to turn

on or off.
Iris focused on the Jetson Nano board. She made sure that the

camera modules are fully integrated with the Jetson and that the

facial and mask detection algorithms reached our required

accuracy. She also handled the display monitor so that the

information recorded by the Jetson is broadcast back to the

user.
Minji focused on the cloud and IoT side. She handled the

communication from Jetson to cloud, more specifically the

encryption and decryption of the messages. She made sure that

the messages are sent correctly and at a reasonable speed. With

all the user profile information, she developed a web

application for accessibility of information to the users.

C. Budget

Table 1 presents all the materials that were purchased for this

project. We were given a budget of $600.00 and we have used

just about half of the amount.

TABLE I. BILL OF MATERIALS

Component
Purchase Details

Supplier
Cost
 (per

unit)
Quantity Cost

Jetson Nano Developer

Kit Amazon 99.00 1 99.00

Jetson Nano Wi-Fi
Antenna Amazon 23.57 1 23.57

Micro SD Card (64GB) Amazon 11.99 1 11.99

SD Card Reader Amazon 12.99 1 12.99

RPi Camera Module V2 Amazon 20.00 1 20.00
IR Sensor
MLX90614_DCI

Mouser
Electronics 60.00 1 60.00

X-NUCLEO-NFC02A1

RFID Scanner
STM

Electronics 9.19 1 9.19

STM32 NUCLEO-
L476RG

STM
Electronics 14.31 1 14.31

ST25-TAG-BAG-A Mouser

Electronics 3.75 1 3.75

ST25-TAG-BAG-U Mouser
Electronics 12.50 1 12.50

Jumper Pins Amazon 6.99 1 6.99

Wires Amazon 8.49 1 8.49

HDMI Cable Amazon 7.00 1 7.00

Total 299.77

D. Risk Management

We have identified several risk factors for our project. The

first one pertains to the accuracy of the mask detection

algorithm. Since there will be varying forms of masks, we may

have higher false positives and false negatives when detecting

masked faces. To address this issue, we are planning on

collecting more training sets with a variety of masks.

We also anticipate that the IR sensor may detect inaccurate

temperatures. To ensure the accuracy of the temperature data

we collect, we will be increasing the sample time to collect

multiple data and take the average of them for the final result.
Regarding the IoT aspect of the project, it is also possible that

packet loss will occur during the transmission of data between

the Nano and the IoT Hub, or between IoT Hub and the web

application. This could be due to a lost internet connection,

which is a possibility in a real-life application of our system. To

account for this situation, we are planning on locally storing

recent data in Jetson Nano’s memory and IoT Hub’s local

memory and performing periodic bulk updates.

18-500 Final Project Report: 10/19/2020

7

VII. APPENDIX

Fig. A1. Gantt Chart

