
18-500 Final Project Report: 12/18/2020

1

Abstract—Thermonitor is a smart, contactless thermometer that can

be installed at gateways to different locations across buildings for large

organizations, such as educational institutions and corporations, to

remotely monitor their community members’ temperature and

facilitate contact tracing. The display of the Thermonitor will alert the

users to scan their ID, properly wear a mask, and measure their

temperatures once they are correctly identified as a member of the

organization. Then the Thermonitor will collect the temperature data

accompanied with one’s profile detected by their RFID tag. This data

will be uploaded to a web application, which will match the

temperatures to individual profiles and log the records to allow

organization admins to access and manage the logs.

Index Terms—Azure, Computer Vision, Face Detection,

Internet of Things, Machine Learning, Mask Detection, NFC,

RFID, STM 32, Thermometer, Web Application

I. INTRODUCTION

URRENTLY, COVID-19, a novel acute respiratory illness

is plaguing countries all over the world. Infections are

rising, with no view of a vaccine in sight. One of the earliest

warning signs of infection is fever. It is critical to regularly

monitor body temperature in order to protect others, especially

for diseases like COVID-19 where one is contagious several

days before showing any symptoms at all. By noticing changes

in one’s own body temperature, we can take immediate

measures to prevent further spread of the virus.

Thermometers in the current market are either standalone

kiosks or handheld. Handheld thermometers require another

person to hold the thermometer from a distance of up to 4

inches, which fails to conform to the mandated 6 ft for proper

social distancing. Standalone kiosks are currently over $2000,

which can be unaffordable to be installed at every gate way.

Currently, there is no viable product that is both safe and

affordable; Thermonitor aims to be both. Thermonitor is an

end-to-end device where the user presents a valid RFID tag that

triggers the start of temperature measurement. A monitor is

used to broadcast the video stream back to the user with a

bounding box that surrounds the face. The video stream is

displayed at 7 frames per second (FPS), which is the rate at

which images are shown on a display, to ensure viewing

smoothness on the monitor. Thermonitor must measure the

temperature within a distance of 50 cm (19.6 inches/1.64 feet)

and this temperature is sampled multiple times. An 85% facial

detection and 95% mask detection accuracy will be obtained.

These algorithms ensure that the user is properly wearing a

mask and alert them otherwise.

II. DESIGN REQUIREMENTS

The first requirement of Thermonitor is a capability to

correctly read the RFID tag presented. This is necessary for us

to send information from end-to-end on our device. It also

serves as an indicator to know when the device should start

scanning for faces and measuring temperatures. Secondly, it

should be able to accurately measure the temperature of an

individual standing in front of the device. It must also be able

to properly detect faces in front of it using a bounding box to

check whether or not the person is wearing a mask. All of this

information must then be sent to our IoT platform for gathering

and monitoring of data.
To verify that our design has met these specifications, we are

performing several benchmark tests. We purchased sample

RFID tags for testing the scanning functionality. The official

STM NFC Tap app was used to read the unique string ID (UID)

to confirm that both type 4 and type 5 ID tags were able to be

properly scanned and recorded. We are aiming for 99%

accuracy since misreads could occur occasionally.
To test the facial detection algorithm, we are putting both

people and objects in front of the camera and seeing if their eyes

or faces are detected by checking if a bounding box appears. In

addition, we are testing faces with and without face masks in

order to ensure it can still recognize people with only eyes as

the tracking feature. If there are multiple people in the frame,

the algorithm should only detect the main person in the front of

the camera, the one who actually scanned their RFID. We are

aiming for a 85% accuracy rate since the facial detection

algorithm normally has a 95% accuracy, but since we are

detecting it in real time video stream and we can only use a

limited number of classifiers, we are lowering our accuracy

rate. We are aiming for 95% mask detection rate since this

algorithm is only being called after we determine there is a face.

We are not aiming for 100% since we have a limited training

set for mask detection.
To test temperature sensing, we are using various objects

with different temperature ranges to test our degree

measurement. We are aiming for ±0.2 °C from the intended

temperature. Calibration with a real thermometer may be

necessary if our sensor temperature measurement is off. Since

sensor data needs to be transmitted, calculated, and displayed

on the monitor, we are aiming for a 3 second time measurement.

Handheld thermometers usually take around 1.5 seconds to

display results and taking into account the processing time on

the Jetson, we decided that 3 seconds is a good benchmark.
To test the FPS, we will be displaying the number of actual

displayed frames from the running script. We are aiming for 10

FPS as that is a standard output within the frame rate capability

of the camera model that we are using. We do not need an

extremely high FPS since we are simply displaying the

Author: Minji Kim, Iris Wang, Jiamin Wang: Electrical and Computer Engineering, Carnegie Mellon University

Thermonitor

C

18-500 Final Project Report: 12/18/2020

2

processed video stream on the monitor and will be analyzing a

stationary target.
 On the cloud side, we are making logs accessible to the

admin and ensuring that the correct profile is mapped to the

RFID. We are using the sample RFIDs to test how easily

accessible our external platform will be. To fully test our web

application, we are conducting user testing on friends and

family and adjust based on their feedback. We will have user

surveys that we will periodically send out and adjust our web

application accordingly. We are using MQTT and TCP

protocols that already ensure reliable messaging. However, we

still should account for unexpected data transmission issues,

thus we are aiming for a 99% data transfer rate.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

We are using a microcontroller unit (MCU) to handle the

logic behind our tag id verification. More specifically, we are

using a STM32 Nucleo-L476RG board with a compatible

expansion board X-NUCLEO-NFC05A1. The near field

communication (NFC) expansion board is directly connected

on top of the Nucleo board, and the boards are powered through

the micro-USB port. We originally purchased the X-NUCLEO-

NFC02A1 expansion board, but it lacked the library capabilities

to extract the UID of the tag or device scanned. In the given

middleware, the version 2 board only had the NDEF library

while the version 5 board had both the NDEF and the RFAL

library. With the RFAL library, we were able to write an FSM

that provided the necessary logic to poll for a RFID scan and

process the string before sending information to our Jetson

Nano. As seen in Figure 2, if a RFID tag is read, then this

immediately triggers the transmission of the UID string from

the Nucleo board to the Jetson Nano. Thus, the Nucleo board is

the slave device and is wired directly to the Jetson, the master

device, to allow for serial communication.

Fig. 1. Overall block diagram of our system.

Fig. 2. FSM for RFID logic.

The Jetson is always polling for an incoming RFID

transmission from the Nucleo board. Once a RFID has been

received on the Jetson, a LED will turn on for a couple of

seconds, green for indication of valid RFID string and red for

invalid RFID string.
An IR sensor is used to scan for multiple accounts of

temperature. The Raspberry Pi camera module’s video stream

is fed directly to the Jetson to begin facial detection and then

mask detection. Initially, we planned on using OpenCV and

TensorFlow for the algorithm, but due to Jetson memory issues

and processing lagginess, we used YOLOv3 [1], an object

detection algorithm that is time efficient and optimized for

running on smaller devices.
As seen in Figure 3, the user must stand within the grey oval

for an accurate measurement. A bounding box will indicate

whether the user has their mask on, mask off, or if the mask is

18-500 Final Project Report: 12/18/2020

3

worn improperly (e.g. the mask is only covering the mouth and

not the nose). After a properly worn mask is detected,

temperature taking will commence. Our temperature sensor is

able to poll extremely quickly, thus removing the need for our

limitation of having the user stand still for 3 seconds while the

temperature measurement is happening. We are able to take 20

samples within 1 second. The temperature is then displayed on

the monitor -- green for pass and red for fail. We are using a

fever threshold of 38˚C, in accordance with CMU health

guidelines.

Fig. 3. Monitor display setup from the user’s perspective.

After a successful temperature measurement, the RFID and

the temperature will be sent to the web application. The Jetson

Nano uses MQTT protocol to transmit user profile data to the

cloud. This data is received by the Azure Hub, which is the

cloud gateway for our IoT system. After unpacking the

transmitted data and formatting it in the desired form, the data

is sent to the backend of our web application. This web

application is hosted on Azure App Service, where they provide

APIs to facilitate data transmission between Azure IoT Hub and

custom applications.
The web application is accessible through a desktop browser.

We initially planned on creating a mobile application, but after

implementation, we realized that the main piece of information

to be displayed on the app is the list of logs in a table form. We

created some mock-ups of the interface and concluded that a

web application for desktop browsers was more adequate.

Figure 4 provides an example of our web application

wireframe.

Fig. 4. Web application wireframe with individual records.

Fig. 5. FSM for overall system.

IV. DESIGN TRADE STUDIES

These are some components and design trade-offs we took

into consideration when choosing which best fit our system.

A. Temperature Measurement

From our previous design, we decided to change our

temperature measuring hardware from a FLIR IR camera to a

MLX90614_DCI medical grade IR sensor. We made this

change since IR cameras within our price range had around 2

degrees of error, which is significant when referring to human

body temperatures. More accurate IR cameras ranged from

around $1000 to $2000, which exceeds our budget. The IR

sensor in contrast measures temperature with an accuracy of

±0.2 °C. It measures the surface temperature by detecting

infrared radiation energy and wavelength distribution. The

sensor can detect object temperatures from a range of up to

50cm, which still conforms to our project goals of ensuring safe

social distancing temperature measurement, since our kiosk

does not require human operation.
For temperature validation, we verified our IR sensor against

a handheld IR thermometer. Although the IR sensor was factory

calibrated, the actual temperature measured had a consistent

offset of around 2.4 °C. The graph in Figure 6 shows the

calibration measurements we took to get the average offset. The

average difference was added to our final IR sensor reading for

calibration.

18-500 Final Project Report: 12/18/2020

4

Fig. 6. Handheld Thermometer vs. IR sensor temperature measurements.

B. Serial Communication Protocol

We evaluated different serial communication protocols to

determine which one is best suited for sending RFID tag ids

from the Nucleo board to the Jetson Nano. The two that were

under consideration were I2C and SPI. We ended up choosing

I2C over SPI because it supports multiple masters to multiple

slaves on the bus, making the project more scalable. In addition,

I2C has ACK and NACK bits to support error handling, which

the SPI protocol does not have. Our primary form of

identification is done through the RFID tag ids. Thus, error

handling is necessary to prevent inaccurate storage of

information and ensure that the correct identification is stored

in our local and cloud systems. We were able to achieve our

desired 100% RFID transmission rate by scanning multiple

RFIDs and receiving them on the Jetson Nano.

C. Microcontroller Unit

We originally planned on using an Arduino, Raspberry Pi, or

FPGA as our main processor for the RFID verification process.

We ruled out the FPGA early on because the functionality we

wished to achieve was not able to fully utilize the capabilities

of an FPGA. From getting some feedback from the Teaching

Assistants, we pivoted towards using an MCU. The first board

that came to mind was to use an Arduino since we have

previously worked with this microcontroller in past classes. We

also considered using a Raspberry Pi but ended up ruling that

out. This is discussed in the next section. In addition, Arduino

and Raspberry Pi boards are more for experimenting instead of

creating an end-to-end prototype. We wanted to target our

product to be in the industrial setting, and thus we ended up

moving towards using an embedded board. The STM32 series

seemed promising since it seemed to be a popular choice with

various expansion boards. We wanted to aim for a low power

series that would also be compatible with an NFC/RFID

expansion board, so we ended up choosing the STM32 Nucleo

L476RG.

D. Jetson Nano

We chose the Jetson Nano as our core processor over the

Raspberry Pi because of its high performance optimized for

object detection and image processing while being lightweight.

We determined that the Jetson Nano would be the better choice

since it could process around 15 frames per second versus the

Raspberry Pi’s 1 frame per second. With the higher frame

processing speed, we would be able to recognize the face and

mask faster and be able to match our goal of scanning a person’s

temperature at a rate fast enough to compete with handheld

thermometers.

E. Face and Mask Detection Algorithm

We started off implementing our Face and Mask detection

algorithm with Haar Cascades using Viola Jones Method. We

used eye classifiers in order to detect a face, and if there existed

one, checked if the user was wearing a mask if the nose

classifier was present. This turned out to be a very inaccurate

approach. We were achieving around 40-50% accuracy since

we were only able to use a small number of classifiers. For

regular detection algorithms, they use around 38 strong

classifiers for different features on the face. In addition, the

analyzed results lagged in real-time, since the processing took

longer than expected. This is because the algorithm can’t be run

in parallel due to dependencies on previous processing

iterations. This caused our FPS to drop since the algorithm had

to process a frame, and then display it.
The second approach we took was with TensorFlow. We

tried using pre-trained models in our algorithm to improve the

accuracy of the algorithm, but the Jetson Nano did not have

enough compute capability to run the models. Using the pre-

trained models froze the screen of the Jetson Nano and indicated

“Out Of Memory” warnings.
Finally, we pivoted to using YOLOv3, which is a real-time

object detection framework that is optimized for running on

devices with limited computational capacity, like our Jetson

Nano. This proved to be a much faster approach since it scans

the entire image at runtime as opposed to the Viola Jones

algorithm, which performs multiple scans of the entire image.

YOLOv3 was the best choice for our use case since it struggles

with detecting small objects, but since we are ensuring that the

user’s face is always a certain size, it has no problems detecting

it. YOLOv3 also utilizes trained models, which we trained with

datasets [2] of masked, no masked and incorrect masked faces.

We had to keep supplementing some of the datasets in order to

meet our accuracy metrics. However, trained models definitely

boosted the accuracy of the face and mask detection.
We tested our algorithm by having multiple people stand in

front of our machine and gathering data on the face and mask

detection rate. We also used pictures of humans and non-

humans since it was not plausible to get a big enough sample

size of real people due to the pandemic. The total sample size

we used is 20.
The face detection exceeded our expected metrics with an

accuracy of 90%. We also achieved 95% accuracy for correctly

detecting an individual with mask on and mask off, which is

what we desired when going into this project. However, we

only achieved a 60% accuracy for incorrect mask usage. This is

due to not having enough training data with people wearing

their masks incorrectly. The detailed metrics data collected

describing each false-positive and false-negative scenario are

presented in Table 1.

18-500 Final Project Report: 12/18/2020

5

TABLE I. FACE AND MASK FALSE DETECTION METRICS

Expected Result Actual Result Rate (%)

Mask On Mask Off 0

Mask On Mask Improper 0

Mask Off Mask On 0

Mask Off Mask Improper 5

Mask Improper Mask Off 5

Mask Improper Mask On 40

F. User Experience

 We scratched out the idea of using a wake up signal.

Originally, we wanted to use the signal to decrease the power

consumption of the Jetson Nano. For example, if the Jetson has

not received an RFID transmission for 10-15 minutes it would

go into idle state. But when a new user comes to scan their

RFID, they would have to wait for the Nucleo to power on the

Jetson Nano. However, with the way that Jetson Nano handles

disabling auto power on, booting the system backup could take

up to 2 minutes. This is not ideal from a user’s perspective

because students or employees would want to quickly get into

a room without wasting any of their valuable time. Thus, we

decided to take out the wake up signal functionality and

prioritize creating a user-friendly interface.
 Through testing, we also realized that a higher resolution

video output stream resulted in a lower FPS. Originally, our

video stream had around 4 FPS and every time the user moved;

the response would occur 3 to 5 seconds later. After some user

testing, we noticed that the difference in resolution was not as

noticeable to the user as the difference in FPS. As a result, we

concluded to prioritize FPS over the resolution and settled with

800 by 600 pixels. We also found that we were able to achieve

10 FPS, our desired metric if we created a smaller window size.

Even though we desired 10 FPS, we decided that having the

video stream displayed on the entire monitor is necessary to

improve user experiences. We were able to achieve 7 FPS and

the response would occur within 0.5 seconds of any movement.

G. Microsoft Azure

 Both Azure and AWS have a cloud service that enables

reliable communications between IoT applications and

connected devices. We picked Azure over AWS since there is

more documentation on using Azure IoT hub with hardware

devices like ours, and since none of us have any experience with

IoT, felt more comfortable having existing documentation to

reference when necessary.
 We were able to achieve our desired 100% message transfer

rate from the device to our web application. This was done by

monitoring all sent messages and ensuring they were reflected

on our application. In addition, our user experience feedback

surveys were highly positive, indicating that they were able to

use the site easily. We received an average of 90% satisfaction

rate for user experience and 100% satisfaction rate for overall

website design.

V. SYSTEM DESCRIPTION

The project consists of a software and hardware component.

On the hardware side, a microcontroller unit (MCU) was used

to handle interactions with a RFID tag. The Jetson processes a

video stream for facial and mask detection. This information

will then be sent to the cloud using Microsoft Azure.

A. Hardware Components

The STM32CubeIDE is used to compile and download code

to the microcontroller. The expansion board provided the

drivers for X-CUBE-NFC05. Although the expansion board is

compatible with the Nucleo board, necessary changes and

modifications were made to ensure that the drivers worked

properly. This took some time since some files were different

and we had to look through individual files and make sure that

the necessary files were placed in the correct folder path. UART

and puTTY were used for print debugging.
Standard HAL drivers were downloaded that were specific to

our board. The HAL library is used to provide generic APIs,

such as initializing and configuring the necessary peripherals,

managing data transfers, and managing communication errors.

Middleware folders with NDEF and RFAL libraries were also

provided. This served as the main documentation for working

with NFC tags. An FSM was written to poll for an RFID scan,

format the string, and transmit it one byte at a time to the Jetson

Nano. The Nucleo board was configured as a slave device with

a slave address in the I2C interface written.
LEDs were connected to the GPIO pins of the Jetson Nano

to blink during transmission and hold for 1 second after

transmission has been completed. We originally directly

connected the LEDs with pull up resistors to the Jetson, but

soon discovered that the brightness was very lacking due to low

current. We followed a tutorial to ensure that we had the correct

transistors and resistors needed to build the circuit [3]. Then,

we purchased a pack of P2N2222 transistors to amplify the

current supply to the LEDs. LEDs were put into our design after

some user testing feedback, where the user wanted more visual

affirmation that the RFID had been scanned.
To perform our facial and mask detection, we are using the

Raspberry Pi camera module V2 as our main video feed. We

chose this model for our camera as there exists a lot of

documentation for the integration of these two components.

This is directly connected to the Jetson through J13 for camera

connector #1. The Raspberry Pi camera module V2

communicates with the Jetson Nano through the MIPI CSI-2

interface. It is a high-speed protocol used for point to point

image and video transmission between cameras and host

devices. We also installed a Wi-Fi card, Intel Dual Band

Wireless-AC 8265, and Wi-Fi antennas onto the Jetson Nano

for mobility instead of needing to tether it to a router switch.

We can then connect the Jetson Nano to the cloud for our IoT

platform. The video stream is broadcast back to the user through

18-500 Final Project Report: 12/18/2020

6

a display monitor that is connected by an HDMI to HDMI cable

on J6. The display monitor has a bounding box to confirm the

face of interest, the measured temperature, and other necessary

information. The IR temperature sensor, MLX90614_DCI, is

connected to the Jetson through one of the GPIO pins on J41.

The sensor uses the I2C interface to communicate, so we are

connecting the corresponding SDA and SCL pins of the

MLX90614_DCI to the pins on the Jetson Nano.
To communicate from the IR temperature sensor and the

Jetson Nano, we originally relied on a built in library -

i2cdetect. This library is supposed to identify the address where

the connected temperature sensor device resides (e.g. 0x5a).

However, after connecting it multiple times, nothing was

showing up on i2cdetect. At first, we thought that the

temperature sensor was broken. We tried troubleshooting by

attaching it to a Raspberry Pi and Arduino, and realized we were

receiving temperature measurements, so the sensor was

working properly. We then theorized that our Jetson Nano i2c

pins were faulty, so we tried connecting the temperature sensor

to another Jetson Nano. However, that Nano also could not

sense the temperature sensor. Finally, we tried simply reading

bytes from the supposed address and started receiving data. We

realized that it was a problem with the library and that our

hardware components were working all along. We transitioned

to a smbus Python library to help us read from the proper

registers and started obtaining correct temperature data [4].

B. Jetson Nano
Jetson Nano serves as the software processor. It provides

three main purposes — (1) Receival of RFID (2) Face and mask

detection and (3) IoT connection.

Fig. 7. This is the hardware block diagram for the MCU and Jetson Nano.

i. Receival of RFID
The Jetson receives the RFID byte string from the STM32

Nucleo Board. On transmission, the Jetson sends a signal to

either the green or red LED indicating a valid or invalid RFID.

LEDs were added for the user to visually confirm that their

RFID has been accepted and as an extra indicator that mask

detection and temperature scanning should commence. The

Jetson then displays “RFID SCANNED. Please hold still.

Taking temperature…” to indicate that the user should place

their face into the gray oval drawn on the screen. The oval is

placed in the optimal position for the user to get their

temperature measured, as it is aligned with the camera and the

IR sensor. It is drawn to ensure that users are correctly

positioned for our device to analyze them.

ii. Face and Mask Detection
 The Jetson receives the video stream inputs [5] from the RGB

Raspberry Pi Module V2 camera and runs the facial and mask

detection algorithm on each frame. The detection algorithm is

implemented in Python using popular computer vision libraries

-- OpenCV and NumPy.
We are using YOLOv3, a fast object detection algorithm,

which stands for You Only Look Once. It is named for being

able to detect an object by scanning the image once at runtime,

compared to most other object detection algorithms like Viola

Jones which require multiple stages of processing. Only one

forward pass through the neural network is necessary for

detection. We trained the YOLOv3 model with datasets of

people with no mask, improper mask, and correctly worn mask.

18-500 Final Project Report: 12/18/2020

7

The single convolutional neural network (CNN) then scans the

image once, predicts bounding boxes and the confidence levels

for those boxes and then outputs recognized objects with the

boxes.

We decided to add the limitation of having only one user

recognized at a time, depending on the size of their bounding

box. This is because of our use case -- since Thermonitor could

be placed in an area where many people are walking by, we do

not want the program to detect their faces and send their

temperatures to the web application since the scanned RFID

does not correspond to the people walking by. Only the target

user should be identified. The largest person in the frame will

be considered the target user, and the program will only base

the mask detection and temperature sensing based on them.
The program will display the results of the detection above

the detected face, which is outlined with a red or green box,

depending on the results, that follows the user when they move.

It will either output “Mask On”, “No Mask”, or “Improper

Mask”. After detection of a mask, the program waits until the

user is correctly wearing a mask and positioned in the gray oval

before starting the temperature measurement. After a second,

the temperature will be displayed on the screen, with the

colored bar at the bottom displaying green (PASS) or red

(FAIL) depending on the measured temperature. We are using

a threshold of 38˚C for a failed temperature, as that is CMU’s

health guidelines for a fever. Finally, the RFID and temperature

string are then sent to the IoT hub for client viewing.

Fig. 8. Mask on and proper temperature

Fig. 9. No mask.

Fig. 10. Improper Mask.

Fig. 11. Multiple people in frame.

Fig. 12. Failed Temperature.

 iii . IoT connection
For the IoT functionality, we are deploying the IoT Edge

Module directly on the Nano. This allows the device to easily

connect to Azure IoT hub, which is the cloud gateway that is

compatible with IoT Edge devices. We are using the MQTT

protocol to send messages to the IoT Hub. After we receive the

messages, the Hub stores the information in a local storage,

Azure Blob, to allow periodic bulk updates in case of internet

connectivity issues. Then, the IoT Hub packs the data and sends

it over to our Web Application’s back-nd service, which is also

hosted by Azure. The back-end communicates with the front-

end of the application to manage and display the collected

temperature data. The back-end service is implemented using

Node.js, while the front-end is built using HTML and

JavaScript. Additionally, our database is implemented using

18-500 Final Project Report: 12/18/2020

8

Fig. 13. This is the software block diagram for the Jetson Nano and IoT.

Azure MySQL. Finally, we are using Azure App Service to

deploy our web application, since it easily integrates with the

IoT Hub and provides a safe way to send and receive data

through web sockets.

C. Enclosure

To make all our different components into a single product,

we built a laser cut wood enclosure made in TechSpark. It

houses all of our different hardware components, so that our

project will be a standalone product with only a single power

cord coming out the back, compared to needing three different

outlets for our Jetson Nano, monitor and Nucleo board. Figure

14 shows the whiteboard idea of what we wanted. We

considered making separate enclosures for each of our

components but in the end, we decided that we wanted to have

one complete singular enclosure for visual simplicity. The

hardest part was making sure that the temperature sensor was

close enough to the user while the camera still had a good

enough angle to view the user. As seen in Figure 15 and 16,

our final product was designed in CAD, laser cut, and painted.

A clear acrylic enclosure was also added to the RFID scanner

because we discovered that users tend to physically tap their

ID on the scanner. The tap would sometimes disconnect the

scanner from the microcontroller, and thus terminate the RFID

scanning process. With the clear enclosure, users can

comfortably tap their ID without touching the actual RFID

scanner.

Fig. 14. Whiteboard idea.

Fig. 15. CAD file of enclosure.

18-500 Final Project Report: 12/18/2020

9

Fig. 16. Final laser cut and painted product.

VI. PROJECT MANAGEMENT

A. Schedule

The Gantt chart is split up in three different sections: initial

set up, MVP, and final project (Appendix Fig. A1). During

initial set up, we focused on getting familiar with the hardware

and the software packages that are available to us. This is also

the time when we submitted our bill of materials and were just

waiting on shipment. Due to shipment delays and placing

incorrect orders, our Gantt chart did shift back by a couple days,

but this did not affect our work significantly. Next is MVP,

these are the tasks that we aimed to finish by the first demo.

During this process, we must validate each of the components

or code we write before trying to integrate everything together.

We decided to push for a better face and mask detection before

we started the IoT side because this was the core of our project.

In the final weeks, we worked on developing our web

application and building the enclosure.

B. Team Member Responsibilities

Jiamin focused on working with the RFID scanner and

Nucleo board. She made sure that the RFID scanner is properly

connected to the Nucleo board, so that the scanned ID is

eventually communicated to the Jetson Nano. In addition, she

coordinated with TechSpark to laser cut the enclosure.
Iris and Minji focused on the Jetson Nano board. They made

sure that the camera modules and temperature sensor are fully

integrated with the Jetson and that the facial and mask detection

algorithms reached our required accuracy. They also handled

the display monitor so that the information recorded by the

Jetson is broadcast back to the user.
After face and mask detection reached the required accuracy,

Minji and Iris focused on the cloud and IoT side. They handled

the communication from Jetson to cloud, more specifically the

encryption and decryption of the messages. They made sure that

the messages were sent correctly and at a reasonable speed.

They also created a real-time updated web application with the

temperature and RFID logs.

C. Budget

Table 1 presents all the materials that were purchased for this

project. We were given a budget of $600.00 and we have used

about 84% of the allotted amount.

TABLE II. BILL OF MATERIALS

Component
Purchase Details

Supplier
Cost
 (per

unit)
Quantity Cost

Jetson Nano Developer

Kit Amazon 99.00 1 99.00

Jetson Nano Wi-Fi

Antenna Amazon 23.57 1 23.57

Micro SD Card (64GB) Amazon 11.99 1 11.99

SD Card Reader Amazon 12.99 1 12.99
RPi Camera Module

V2 Amazon 20.00 1 20.00

Acrylic Camera Holder

Case for RPi Amazon 9.91 1 9.91

IR Sensor
MLX90614_DCI

Mouser
Electronics 60.00 1 60.00

X-NUCLEO-

NFC02A1 RFID

Scanner

STM
Electronics 9.19 1 9.19

X-NUCLEO-

NFC05A1 RFID

Scanner

STM
Electronics 14.09 1 14.09

STM32 NUCLEO-
L476RG

STM
Electronics 14.31 1 14.31

10.1 inch Portable

Monitor Amazon 119.99 1 115.99

Thermometer Gun Amazon 26.98 1 27.98

ST25-TAG-BAG-A Mouser

Electronics 3.75 1 3.75

ST25-TAG-BAG-U Mouser
Electronics 12.50 1 12.50

Jumper Pins Amazon 6.99 1 6.99

Wires Amazon 8.49 1 8.49

HDMI Cable Amazon 7.00 1 7.00
Power Strip with USB
Ports Amazon 14.99 1 14.99

Laser Cut Materials

(Wood and Acrylic) TechSpark 23.50 1 23.50

Total 506.23

D. Risk Management

We have mitigated several risk factors in our project. The

first one pertains to the accuracy of the mask detection

algorithm. Since there will be varying forms of masks, we may

have higher false positives and false negatives when detecting

masked faces. To address this issue, we collected more training

sets with a variety of masks and trained our model with the

supplemented data in order to achieve our target accuracy

percentages. If our YOLOv3 algorithm did not work, we were

planning on falling back to the Haar Cascade method which was

18-500 Final Project Report: 12/18/2020

10

slow and inaccurate, but still worked. Luckily, we were able to

exceed our target accuracy metrics.
We didn’t anticipate any issues on the RFID side, but we

encountered compatibility issues with the expansion board

since it didn’t have the capabilities, we needed to complete the

necessary tasks. From a schedule standpoint, a lot of time and

effort was dedicated to debugging this specific issue. However,

after we bought a new compatible expansion board, the

integration process with the Nucleo board was much smoother

and put us back on track.
We anticipated that the IR sensor may detect inaccurate

temperatures. To ensure the accuracy of the temperature data

we collect, we increased the time interval to collect 20 sample

As discussed in section IV, an average offset was also added to

the final temperature result due to an offset we discovered when

calibrating with a store bought IR thermometer gun.
Since CMU went remote after Thanksgiving break, we were

concerned that TechSpark would not be available for use for

building our enclosure. Thus, we attempted to mitigate this risk

by having our design planned out before Thanksgiving in order

to give ourselves ample time to find a backup plan if TechSpark

ended up closing. Several COVID-19 cases at TechSpark did

put us a bit behind schedule, but we were able to parallelize the

work and improve other parts of the system.

VII. RELATED WORK

There are several other projects that overlap with parts of

our system. There is a face and mask detection system built on

the Raspberry Pi, although they use TensorFlow instead of

YOLOv3 [6]. In addition, there are projects that use the FLIR

Lepton camera we were considering at first [7]. It is also a

contactless thermometer combined with a face detection

project that checks if the user has a fever. Similarly, there are

projects using the same medical grade IR sensor as us, such as

a YouTube tutorial from educ8s.tv [8].

VIII. SUMMARY

Our system is able to achieve everything we envisioned for

it at the start of the semester. It is able to retrieve a user’s RFID,

detect their face and mask, take their temperature and have it all

shown on a web application.
 We had an original goal to hit 10 FPS but were only able to

achieve 7 FPS. If given more time, we would like to improve

the FPS of the video stream without sacrificing the screen

resolution. In addition, since we directed most of our focus to

ensuring accuracy for our face and mask detection algorithm,

we would like to improve the user interface and create a

database to store the user profiles if time permits.

A. Lessons Learned

We learned that the integration of all of our components was

a much more difficult process than expected. We definitely

encountered some roadblocks when integrating the components

and had to spend a lot of time drawing out the FSM and thinking

about what fit into where. If we drew this out as the first step,

before we started coding, it would have avoided a lot of

confusion and provided more clarity in our actions.
When we first started our project, there was a lack of good

documentation. Sometimes, the language used in the

documentation did not clarify anything and led to more

confusion. Working with hardware we usually depend on

reading datasheets to obtain the most accurate and

representative information. However, we could never find one

singular document that described all the features of the

hardware and often had to perform Google searches with

specific keywords to find the right assistance online.
One last lesson we learned is that we cannot blindly rely on

the built-in libraries. We encountered many cases where we

had to deal with buggy behaviors of the libraries that we

initially thought was correct. As discussed in section V, the

i2cdetect feature was one of our major roadblocks where we

spent a lot of time and energy to debug a working sensor.

B. Acknowledgements

 We would like to thank TechSpark, especially Brian Lee,

for helping us in developing the enclosure design.

REFERENCES

[1] Python wrapper for YOLOv3 https://github.com/madhawav/YOLO3-4-

Py.
[2] Mask Dataset

https://drive.google.com/drive/folders/1aAXDTl5kMPKAHE08WKGP2

PifIdc21-ZG
[3] Jetson Nano GPIO, JetsonHacks,

https://www.jetsonhacks.com/2019/06/07/jetson-nano-gpio/.

[4] Shawn Hymel, Experiment 4: I2C Temperature Sensor, Sparkfun,
https://learn.sparkfun.com/tutorials/python-programming-tutorial-

getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-

sensor.

[5] Raspberry Pi Video Stream Code

https://github.com/JetsonHacksNano/CSI-Camera
[6] Face Mask Detection using Raspberry Pi, ElectronicWings,

https://www.electronicwings.com/users/ptksuraj99/projects/437/face-

mask-detection-using-raspberry-pi.

[7] Fever, https://github.com/maxbbraun/fever.
[8] educ8s.tv, Arduino Project: IR thermometer using the MLX90614 IR

temperature sensor from icstation.com,

https://www.youtube.com/watch?v=F2ZCUrR-
oss&list=PL4KWmkNpjC3B7iMqkTVDQxApwqh7McqcT&index=19

&t=0s.

https://github.com/madhawav/YOLO3-4-Py
https://github.com/madhawav/YOLO3-4-Py
https://drive.google.com/drive/folders/1aAXDTl5kMPKAHE08WKGP2PifIdc21-ZG
https://drive.google.com/drive/folders/1aAXDTl5kMPKAHE08WKGP2PifIdc21-ZG
https://www.jetsonhacks.com/2019/06/07/jetson-nano-gpio/
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-sensor
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-sensor
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-sensor
https://github.com/JetsonHacksNano/CSI-Camera
https://www.electronicwings.com/users/ptksuraj99/projects/437/face-mask-detection-using-raspberry-pi
https://www.electronicwings.com/users/ptksuraj99/projects/437/face-mask-detection-using-raspberry-pi
https://github.com/maxbbraun/fever
https://www.youtube.com/watch?v=F2ZCUrR-oss&list=PL4KWmkNpjC3B7iMqkTVDQxApwqh7McqcT&index=19&t=0s
https://www.youtube.com/watch?v=F2ZCUrR-oss&list=PL4KWmkNpjC3B7iMqkTVDQxApwqh7McqcT&index=19&t=0s
https://www.youtube.com/watch?v=F2ZCUrR-oss&list=PL4KWmkNpjC3B7iMqkTVDQxApwqh7McqcT&index=19&t=0s

18-500 Final Project Report: 12/18/2020

11

IX. APPENDIX

Fig. A1. Gantt Chart

