
1
18-500 Final Project Report: 12/18/2020

iDoorlock

Author: Alex Li, Alex Xu, Michael Chen: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—An NFC-based smart door lock that allows users
to access their home with only their phones. iDoorlock features
two-factor authentication using established smartphone
technology with 100% accuracy to prevent malicious entry and
a rapid deadbolt unlocking mechanism that unlocks the door in
under 5 seconds to allow seamless entry and exit. All user data
is managed and processed within AWS for cost efficiency,
built-in security policies, and ease of use.

 Index Terms—API Gateway, AWS, DynamoDB, Lambda, NFC

(alphabetical order)

I. INTRODUCTION
Though technology is advancing at an unprecedented

pace, there are still many elements of modern life that
remain archaic such as the burden of carrying keys for your
home. Keys are small, easy to misplace, and difficult to find
when lost. Our project, iDoorlock, aims to streamline the
door opening process and remove the need for keys while
still maintaining a high level of security and quick access
times. iDoorlock uses NFC, or near-field communication,
technology in phones to be able to unlock locked doors,
similar to an RFID or Bluetooth mechanism. Phones are an
integral part of modern life, and they are much easier to find
if misplaced through GPS tracking functionality. With just a
hover of a user’s phone, the NFC reader and the lock
terminal will interact, and the terminal will correctly
authenticate the user or maintain the lock if the user doesn't
have the right credentials. iDoorlock is inspired by Apple
Pay, a popular payment system with which customers can
just tap their phone to a payment terminal for each monetary
transaction. We wanted to do something similar to the lock
system for doors, effectively making unlocking doors a lot
faster and seamless. Besides speed and convenience, we also
want our prototype to be secure and marketable, so people
would actually be willing to use it. The most important
benefit of using a technology like NFC as opposed to just
having a standard smart lock is to negate most remote
unlocking mechanisms. In 2016, a University of Michigan
team demonstrated how they could remotely snoop on the
traffic between a smart lock and a connected Samsung
SmartThings phone application, allowing a hacker access to
the code and the ability to remotely change the PIN code
without proper authorization. In contrast, NFC technology is
a simpler way to unlock a door, and it also uses technology
that already exists in smartphones, making it cost-effective
for most Android and Apple smartphone users. iDoorlock
specifically employs NFC technology’s 4cm communication
distance to ensure that a user has physical access to their
phone, which makes wireless spoofing significantly more
difficult.

We use a NFC reader for our lock terminal, which means
we would only need to process the information from the
NFC reader through a Raspberry Pi. We will be building the
lock system including motorizing a deadbolt lock and
connecting the Raspberry Pi to a web server (for
authentication purposes). The phone and the NFC reader
would interact, and information is authenticated in the
Raspberry Pi, triggering a motor to unlock or do nothing.

II. DESIGN REQUIREMENTS
Given that the nature of our project is to secure a door, we

must maintain the same level of security that a normal door
lock provides. As such, iDoorlock requires that the door will
not open 100% of the time for unauthorized requests and
that the door will open 100% of the time for authorized
requests. We will test this by touching an unauthorized
phone to the NFC reader to ensure that the lock never opens.
Conversely, we will also touch an authorized phone to the
reader and ensure that the lock opens every time. On the
AWS side, we are authenticating requests with IAM roles
that have permission to invoke our REST API and Lambda.
These IAM roles will not have any additional permissions,
nor will AWS have admin level access. This is to ensure that
malicious attackers are not able to compromise the integrity
of the entire AWS infrastructure. To test the security of our
AWS infrastructure, we will make requests with valid and
invalid IAM access keys. We will ensure that any requests
made with the valid IAM access keys will succeed and send
the expected server response. For the requests made with the
invalid IAM access keys, we will ensure that the server does
not modify any user data and sends the expected failure
response.
 In addition to security requirements, we also need to
ensure that the delay between a user touching their phone to
the NFC reader and the door unlocking on a successful
request is no longer than 5 seconds, as that is the average
amount of time that it takes a person to open a keyed door
lock. The latency that we measure includes the entire
request/response lifecycle, from the request being sent to
AWS by the Raspberry Pi to the lock being fully opened
after receiving a success signal from AWS. We will test this
by performing a number of trials in which we touch our
authorized phone to the NFC reader and using a stopwatch
to time the number of seconds it takes for us to be able to
open the door.

2
18-500 Final Project Report: 12/18/2020

Fig. 1. iDoorlock system architecture diagram.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system is divided into three distinct parts to allow for

greater parallelization of work, which maximizes the team’s
efficiency in developing iDoorlock.

The lock hardware and circuitry is the first component
within the system architecture. The outward-facing NFC
Shield module waits for an NFC tag to forward to the
Raspberry Pi. The Raspberry Pi is then responsible for
sending the information to AWS and receiving a response.
This response is then sent back to the Raspberry Pi, which
acts on it to determine whether the servo motor connected to
the lock should be powered or not. This physical hardware
and circuitry system relies on routing information from
different endpoints within the system quickly to produce a
response for the actual door lock.

AWS is the second component within the system
architecture. In the context of iDoorlock, AWS refers to
three AWS services needed for our wireless authentication:
Lambda, DynamoDB, and API Gateway. Any wireless
requests from our lock hardware and circuitry system are
received by AWS and then acted upon. Regardless of the
type of request, AWS API Gateway will forward the request
information along to Lambda and DynamoDB, but the latter
two components interact differently depending on if the
request pertains to the activation of a new lock product or to
a general unlocking request. After the request is processed,
the AWS system will then send the response back to the
lock hardware and circuitry system or the phone application
system. API Gateway requires REST API endpoints to use
https protocol, which adds security against
man-in-the-middle attacks and eavesdropping.

The phone application is the last subsystem within the
system architecture. This application acts as the main
interface through which a user will interact with iDoorlock’s

other two subsystems. The detection of the NFC tag on the

NFC Shield Module will cause the Android Tag dispatch
system to start a service to handle messages sent via NFC.
The phone application also allows for the registration of a
new iDoorlock. Information about users and locks is
displayed on the app and will be available via
communication with the server. This is the main user-level
abstraction through which a majority of the important
information will be displayed, including a list of verified
locks and a detailed lock attempt history.

Since the Design Review, we have made some significant
changes to our design. We removed the Arduino Uno as we
discovered that the Raspberry Pi would be able to drive the
servo motor with output PWM signals, thus removing the
need for the Arduino; we will discuss this later in our design
trade studies. We also added a button and green and red
LEDs. The LEDs indicate to the user whether or not the
NFC reading was successful or not, and the button can be
pressed to lock the lock. Alternatively, the lock will
automatically lock itself after five seconds. Lastly, we
changed from using WebSockets to a REST API model, as
we encountered issues integrating WebSockets within our
door unlocking Python script with our C NFC service.

3
18-500 Final Project Report: 12/18/2020

Fig. 2. Lock registration, typical use, and lock history flow diagrams.

IV. DESIGN TRADE STUDIES

A. Authentication Methodology
To verify the identity of a user, we had originally wanted

to go with a depth sensing camera that could do 2D and 3D
imaging, the Intel RealSense Depth Camera SR305.
Powered by USB Type B, this small $80 camera would have
been the main point of interaction with the user in our
design, and it would be at the physical front of our
iDoorlock system. With the combination of OpenCV
running on our Raspberry Pi and the data output from this
camera, we set a 3% false positive and 7% false negative
rate for facial recognition. During the design process, we
had these metrics as we felt reasonably confident in the
accuracy of our system to be able to identify users
attempting to gain access and, through comparison of both
2D and 3D imaging of a user, be able to very accurately
verify identity. However, it was pointed out during our
project proposal that a lock that is not 100% safe fails to do
the job of a lock better than a regular door lock and key.
Aside from security concerns, other issues were raised about
this design, including user liveness, angle of imaging, and
general accessibility, as a fixed camera may not be able to
see every person of every height and age, and simply
attempting to match an image and a depth map can be
fooled.

Instead, after receiving this criticism, we pivoted to use
the HiLetGo PN532 NFC Module Kit, which cost just under
$10. The goal of our design pivot was to replace our
identification method with something more versatile but also
more secure, and we realized that, with smartphones being
nearly ubiquitous in society, taking advantage of technology
already existing in the pockets of most people would be a
smarter solution. This swap achieves a better value by not
only being more compact, it is also cheaper and can allow us
to prompt a user for state-of-the-art biometric identification
techniques already present in most smartphones, like a
fingerprint scanner. All that we would need to do is to
modify the phone application we were planning to use to
display lock histories and ask the NFC module to trigger the
application to open. The opening of the application will

coincide with a trigger for fingerprint authentication to log
into the application, which will serve as a basis for
authentication. By requiring a device to be physically
present next to the NFC module and a valid fingerprint, our
solution is significantly smaller, cheaper, smarter, and more
secure.

B. AWS
For the AWS component of our project, we chose to use

API Gateway to set up the REST API endpoints, Lambda
for serverless computing, and DynamoDB for user data
management. There were a number of alternatives that were
considered, such as Microsoft Azure and GCP for the cloud
provider. We decided to use AWS over the other options
because of the AWS credits provided to us by the university.
In addition, the team has prior experience with AWS, which
will allow us to accelerate our project schedule and have
additional slack in the event of unforeseen delays.

Within AWS itself, we considered EC2 to host a server
that constantly monitors API requests instead of a serverless
model with Lambda. We chose to use Lambda over EC2
because the nature of our project means that we will not be
handling a large number of requests on a daily basis. The
average person does not open their front door more than 5
times a day, and having an EC2 instance running an entire
day to handle 5 requests per lock is extremely inefficient.
With the serverless model, we pay only for each request
that we make to the Lambda rather than the instance runtime
of a server.

For our database solution, we considered other database
options such as hosting a MySQL or MongoDB server on
AWS. We decided on DynamoDB because of the ease of
integration with AWS Lambda and cost concerns. The
pynamodb Python library allows us to easily connect our
Lambda function to our DynamoDB table and manipulate
our user data. In addition, setting up a DynamoDB table is
extremely simple. New tables can be created in the AWS
developer console in a matter of minutes. The estimated cost
of running an RDS (Relational Database Service) cluster on
AWS is $850 a month. On the other hand, AWS provides 25
GB for free as part of their Free Tier and there are no
additional read/write rate limits or quotas. In addition,
setting up a RDS cluster requires secure password
management, an issue that DynamoDB does not have.

Exclusively using AWS services to handle our data
management and request handling also aids in accelerating
development. The AWS SDK for Python allows us to
manipulate multiple services with minimal code, and the
existing documentation that Amazon provides is extremely
comprehensive and easy to parse.

C. Android Phone
NFC technology is now common on most modern

smartphones. Due to time constraints, we decided to narrow
down our design to work against the most common phone
type. With this constraint, we would need to choose among
the two most popular types of phones, iPhone and Android.
We ended up choosing Android for a number of reasons.
First off, Android currently has the majority of the market

4
18-500 Final Project Report: 12/18/2020

share, with the iPhone coming in a close second. We wanted
our design to work with as many phones as possible to prove
our design could work with the common phone. Another
important reason why we chose to use an Android Phone in
our design is because the Android has well documented and
open source NFC frameworks and technology. On the other
hand, the iPhone’s NFC technology is not developer
friendly, and they hide their Apple Pay technology to
prevent competition. To further elaborate, in order to
develop our application, we would need peer to peer NFC,
which is only available to the Apple Pay software on
iPhone. So developing our application on iPhone would
need more work and effort to emulate peer to peer NFC in a
seamless way.

D. Removing the Arduino Uno

In our original design review report, we reference the use
of an Arduino Uno to act as an communication interface
between the Raspberry Pi, our NFC module, and the servo
motor and lock hardware piece. Our original line of thinking
was that our familiarity with the Arduino Uno would make it
easier to interact with the NFC module, as that was the
original microcontroller intended for the module, and use
the pinout on the Arduino to connect to both it and the servo
motor mechanism. Our system would then use the USB
cable included with Arduino Uno to connect to the
Raspberry Pi. This way, incoming power into the Raspberry
Pi would also power the Arduino Uno. As the two were
connected via USB, it would also be relatively easy to
communicate between the two microcontrollers.

However, through the design process, we quickly realized
that the Arduino Uno would become rather useless. As the
Uno’s original intention was to be a glorified message
passer between the three subsystems in our overall design,
we did some research and experimentation to see if
connections between the Raspberry Pi and the rest of the
hardware was doable. We quickly found out that the
SDA/SCL pins on the Raspberry Pi would work perfectly
for the I2C communication between the NFC module and
our Raspberry Pi, and that the plethora of 5V, GND, and
GPIO pins work fine for any circuitry-related
implementations that we would later pursue (specifically,
the LEDs and button, which work fine on any pin, and the
PWM output signal to drive our servo motor, for which the
Raspberry Pi has a specific “CLK” GPIO pin).

The removal of the Arduino Uno is an important revision
in our design. Functionally, nothing changes from our
original vision of the product. However, any communication
delays that would have resulted from the Arduino Uno
waiting for messages among various systems has been
systematically eliminated, and the Arduino Uno itself being
removed reduces the number of attack vectors which a
hacker could look to exploit. Finally, it also reduces the size
of the overall system, which played a big role in getting our
lock housing to be in as small of a form factor as possible
for the best possible end product.

E. Unlock vs Biometrics
In our original design review report, we planned to use

biometrics as a method of authenticating that the correct
user had the phone. We changed our design so that any
unlocked state would be valid for authentication. We did this
for several reasons. One of the primary reasons is that older
models don’t have the technology to support biometrics.
Because we aim to reach a wide audience, we decided that
an unlocked state would be more practical. Another key
reason is that we wanted to give the choice of biometrics or
unlock to the user, so the user’s choice of biometrics or pin
number or always unlocked is representative of their choice
of security. Another reason is that the Android development
environment supports biometrics in apps, but restrictions are
placed so that extra steps would be needed to support a pop
up from a service (which is where the NFC communication
is spawned from). This service runs in the background, and
would need to run an Activity, which is a foreground
interface, which requires unconventional solutions to
achieve. Doing so would also remove some of the
convenience factor, so with the other reasons, we decided to
go with a simple unlock as opposed to biometrics for
authentication.

V. SYSTEM DESCRIPTION

A. Lock System, Hardware, and Overall Design
iDoorlock will use a TiankongRC MG995 servo motor in

conjunction with an AmazonBasics Deadbolt lock as the
physical lock hardware. From the lock, we will only need
the actual deadbolt alongside the mounting plate, the
mounting screws, and the inside cylinder. We will attach the
servo motor to this inside cylinder at the lock tailpiece so
that it can turn the cylinder and bolt together. This will be a
3D printed part so we can get the dimensions exactly as we
want.

5
18-500 Final Project Report: 12/18/2020

Fig. 3. Top: CAD design of the 3D printed servo lock-cylinder
tailpiece connector. Bottom: the ends at which this part will be connected.

The hardware package of iDoorlock has this lock and
servo motor combo at the end of its hardware system.
Directly connected to the lock and servo motor combo is a
Raspberry Pi. The Raspberry Pi is mainly responsible for all
of the web-based connections to AWS, which will be
discussed in the AWS section, but it also connects to the
NFC Shield module and the lock hardware package via its
pinouts, and it reads the information from the NFC module
via I2C to determine what it sends to AWS and what
response to send to the lock hardware package.

The NFC Shield module is a standalone NFC tag and
reader which operates within the standard 4cm distance
range, as is typical for NFC-based interactions. In
iDoorlock, this will be the main hardware tag which will
detect a nearby Android device with NFC enabled. This
NFC Shield module will be wired to our Raspberry Pi, and
the Raspberry Pi will use the PN532 NFC library to interact
with the NFC Shield Module. The Raspberry Pi will be
constantly polling to see if the NFC Shield module has
detected a nearby NFC tag. Once a nearby NFC tag has been
detected, the Raspberry Pi will send a series of messages
including a message requesting an application and a
message requesting a read for a pin number (which is the
phone ID explained later). After the phone ID is received,
the phone ID along with the lock ID associated with the lock
is sent to AWS for authentication and validation in the form
of an HTTPS GET request. The response indicates
success/failure, and after receiving a response from the
server or after timing out without receiving a response, the
Raspberry Pi will then determine the appropriate response
action; upon receiving verification of the user’s information,
the Raspberry Pi will power the servo motor for a set
duration until it turns the deadbolt open. The green front
facing indicator LED will flash three times to indicate this.
The lock will then automatically relock itself after five

seconds. Alternatively, there is also a manual lock button
implemented into the side of the design. If authentication
fails, a red front facing indicator LED will turn on for two
seconds, and the lock will not open. At any time if the NFC
shield fails or the connection is interrupted, nothing will be
sent to the server and the lock state will be unchanged.

The entire hardware system is placed into a compact 3D
printed housing, made in Autodesk Inventor and 3D printed
with the resources available at TechSpark. It features cutouts
for all the various components of the door lock and is
assembled by placing the Raspberry Pi at the bottom of the
housing and then inserting the deadbolt, the servo motor and
3D printed connector, and the lock cylinder in that order.
Finally, a portable power bank can be placed on top of the
other components, which will power the Raspberry Pi and fit
well under the top of the housing. Assembling it with a tight
fit allows for a relatively compact design in which we can
house all of the electronics and that could be convincingly
placed at a door instead of a traditional deadbolt. There are a
few holes for debugging, but those would be removed for
final project creation.

Fig. 4. Circuit diagram for iDoorlock. The top left red module is
the NFC Shield Module, the bottom left module is the servo motor, and on
the right there are the red and green LEDs as well as the manual deadbolt
lock button, represented by the switch.

6
18-500 Final Project Report: 12/18/2020

Fig. 5. Top: CAD design of iDoorlock housing. Bottom:
completed iDoorlock working prototype. A: MG995 servo motor. B: Lock
cylinder tailpiece-servo motor connector. C: Lock cylinder. D: Deadbolt. E:
NFC Shield module. F: Indicator LEDs. G: Manual lock button.

B. AWS

iDoorlock uses AWS for central data processing and user
permissions management. Any requests made from either
the phone application or the Raspberry Pi are made to a
REST API set up in API Gateway. The Raspberry Pi will
send requests to the API when a user has touched their
phone to the NFC terminal, and it will send the NFC
information of the phone and the NFC reader. The phone

application will send requests to the API when a user is
registering a new lock or adding other users to the
permissions list for a registered lock.

The Raspberry Pi and the phone application will assume
an IAM role that only has permissions to invoke the API and
the appropriate Lambdas. This is to ensure that malicious
requests are not able to compromise the system. When either
of them make a request to the API, they send their IAM
access keys, which are then authenticated by the API. If the
access keys are valid and have IAM permissions to invoke
the Lambda and the API, then the API will forward the
request to the Lambda. Otherwise, the request is rejected.

Our DynamoDB will be configured to have five different
tables. The first table contains the allowed users for each
lock. Each item will have a primary key that is the NFC
information of the lock and another attribute that is a list of
the NFC information of the phones that are allowed to
unlock the lock. The second table contains the
human-readable ID for each phone app. Each item will have
a primary key of the NFC information and another attribute
that is the name of the user that is passed in at registration
time. The third table is similar to the third table except that it
contains the human-readable ID of each lock. The fourth
table contains the unlocking history of each lock. Each item
will have a primary key that is the NFC info of the lock and
other attributes for timestamp, user ID, and whether the
request succeeded or failed. The fifth and final table
contains the IAM keys that are expected to be passed in by
the phone application and Raspberry Pi. Each item will have
a primary key that is the public IAM key and another
attribute for the secondary key.

On new lock registration, the phone application will send
the user ID and a lock name that a user enters, as well as a
pre-generated lock ID that uniquely identifies the Raspberry
Pi. The Lambda will take the lock ID and enter it into the
DynamoDB table that stores all locks. If the user registering
the lock is new, then the Lambda will also add the user
information to the corresponding table and add it to the
permissions list for the lock. If the user already exists, the
Lambda does not add new user information to DynamoDB
and the server sends a response to the phone stating that the
user has already been registered.

When the user removes a lock from their phone
application, the phone application will send a request to API
Gateway containing the phone ID and the lock ID to be
removed. The Lambda will then check the DynamoDB table
containing the list of phones allowed to open each lock and
retrieve the item corresponding to the provided lock ID. If
the phone ID is present in that item, then it will be removed.
The server will send a response to the phone letting it know
that it has been removed. Otherwise, no action is taken on
the backend and the server sends a response to the phone
letting it know that it is already removed.

When the user changes their username on the phone
application, the phone application will send a request to API
Gateway containing the phone ID and the updated
username. Lambda will then check the DynamoDB table
containing the list of registered phone IDs. If the phone ID

7
18-500 Final Project Report: 12/18/2020

Fig. 6. AWS architecture diagram

does not exist, Lambda returns an error response to the
phone application. If it does exist, Lambda will update the
username attribute of the item and send a success response
to the phone application.

When the user opens the lock history screen for a lock,
the phone application sends a request to API Gateway
containing the lock ID that the user wishes to see the lock
history for and the user’s phone ID. Lambda will then check
DynamoDB to see if the provided phone ID has permission
to unlock the provided lock ID. If it does not, then Lambda
will return an error response to the phone application.
Otherwise, Lambda will retrieve the lock history from
DynamoDB for the provided lock and send a success
response to the phone containing the requested lock history.

When the lock is set up and a user touches their Android
phone to the lock, the NFC reader sends the NFC
information of the phone and the reader to the Raspberry Pi.
The Raspberry Pi then sends that information in a request to
the API. The Lambda receives the NFC information and
queries DynamoDB to check that the user has permission to
access the lock. If the user has the correct permissions, then
the Lambda will send a success response to the Raspberry Pi
so it knows to open the lock. If the user does not have the
correct permissions, then the Lambda sends a failure
response to the Raspberry Pi so that the door will remain
locked. In both cases, it will add an entry to the unlock
history list for the lock with the user ID, timestamp, and
whether or not the request succeeded.

C. Android Phone Application

The phone application will act as a key and have some
interface options for controlling the locks. Using the tag
dispatch system, touching the phone to the NFC shield will
enable the phone to start a service that correctly verifies the
sender is using the right protocol and application. Then after
a request message is verified, the phone ID will be sent to
the NFC for verification. The messages are called APDU
(Application Protocol Data Units), and are used for NFC
communication. The service is also set to require the device
to be unlocked, so that even if someone not authorized to
unlock the lock has the phone, he/she would not be
authorized to unlock the lock. Due to the ubiquity of NFC
technology, we will be able to reasonably support any
Android device with NFC capabilities. Behind the scenes,
the NFC shield will receive the phone ID and send the
phone ID and lock ID to the server for authentication.

8
18-500 Final Project Report: 12/18/2020

Fig. 7. Phone application home screen

The phone ID mentioned previously is a separate entity to

identify each user. Upon first opening the app, the user will
be told to register a name. The name is then sent via HTTPS
to the server, and the server responds with a new and unique
phone ID. The name that is sent will be associated with the
phone ID on the server side for human readability purposes
(identifying users with a multi digit ID isn’t practical).

The app also has features to register locks, and with each
unique code for a lock, the app will send information to the
server for registration, specifically a lock ID and a phone ID.
The lock ID will then associate the phone ID with the lock
ID, and on uses of the lock, the server will be able to check
this information against its stored information from the time
of registration. The lock name is entered so the user is able
to identify locks easily instead of using a multi digit lock ID.
The lock name will be visible to the user upon registration at
the home screen. The user can also delete saved locks after
registration (which will also inform the server that the lock
information saved for that particular phone is no longer
valid).

Fig. 8. Phone application lock registration screen

Another feature is that on the home screen, the user can
choose certain locks to view information about the lock such
as previous unlocks, time of unlock, and name of user that
unlocked.

Fig. 9. Phone application lock history screen

9
18-500 Final Project Report: 12/18/2020

VI. PROJECT MANAGEMENT

A. Schedule
Our work was distributed into sections of around 1

to 2 week periods of development, with ample time at the
end for integration/slack. We revised our schedule after
Thanksgiving break, as we used the slack time for printing
out the functional motor horn and component housing. Due
to errors in Techspark’s 3D printing process, we had to do
dozens of prints to get the proper sizing for the two parts we
needed.

Fig. 10. Schedule marking planned work done by week (full version on
page 10)

B. Team Member Responsibilities
Alex Li was responsible for the work with the Phone App,

all of its functionality, and how it interacts with the server
and the NFC reader. Alex Xu assembled the motor/lock
mechanism and developed the Raspberry Pi scripts that
triggered the LEDs, motors, and button, as well as designed
and printed the component housing and servo motor
cylinder. Michael Chen worked on setting up a web server
using AWS services (Lambda, DynamoDB).

C. Budget
Overall we have a pretty standard parts list consisting of

only the parts we need except for the Raspberry Pi 4’s,
which we ordered extras for to account for board failure and
concurrent development. The AWS and circuit components
are free (circuit components free with TechSpark lab), and
the Android Phone’s price varies depending on the model
(we used our personal Android phones).

Fig. 11. Projected budget. (full version on page 11)

D. Risk Management
We planned on managing our risk by spending more time

during our design phase so we had a well-defined set of
goals for development. However, the biggest roadblock we
did not foresee was the 3D printing of the component
housing and servo motor horn cylinder, because Techspark
was closed for a duration due to a COVID-19 case. In
addition, we also encountered errors where 3D prints we
made came out inaccurately, more frequently warped or
visibly shifted off its base beyond usability in a manner that
Techspark employees hadn’t seen before; we predict that we
lost around 10 days worth of time printing and reprinting
parts. Luckily, we did end up getting a few prints that came
out relatively error-free, and capstone TA Mobolaji helped
out with his personal 3D printer to get us accurate parts
concurrently with Techspark’s labs. We were able to ramp
up physical prototyping very quickly after our design
document, and Alex Xu figured out how to print everything
we would need, successfully mitigating the risk from the
skillset side of CAD-related tasks.

Another possible risk we predicted would be the lock
speed, which we wanted to to beat the speed of locks with
keys. This could be a challenge for several factors, such as
Wi-Fi latency or slow authentication software. To mitigate
this, we tested both the server response latency and the lock
turning speed in tandem to ensure that the time it took for
the whole system to go from NFC tag detection to the actual
deadbolt unlocking was just under two seconds. Few
additional optimizations were needed upon our initial
attempt to write efficient code, and we attribute part of our
success with unlocking speed due to the removal of the
additional Arduino Uno microcontroller we no longer
needed.

A last challenge we needed to face was the battery of the
device. If we wanted to reduce wireless latency, we would
always need to maintain the connection from the Raspberry
Pi to the server, but that would use a lot of power. If we did
not maintain the connection, then we could save a lot of
energy and keep up our system for a long time before
battery replacement. Part of our solution was in the switch
from websockets to REST API, which removes the need for
a persistent connection being open, which would result in a
slower power drain by the Raspberry Pi. We also learned
that it could be powered by a simple phone battery pack,
with the specific model we were using predicted to last a
little over a week in time, but throughout the demonstration
we kept it powered by a wall outlet.

10
18-500 Final Project Report: 12/18/2020

VII. RELATED WORK
The idea of a smart door lock is not unique to our project.

A relevant example is CBORD, which provides Carnegie
Mellon with card scanners that manage building and
residential hall access. Students, staff and faculty touch their
school ID cards to the scanner, which then unlocks the door
if the person has the correct credentials. However, this
approach is directed towards larger organizations, as there is
considerable overhead of producing ID cards for a small
number of people. iDoorlock is designed to be more
accessible to regular consumers by using a phone app
instead of ID cards.

More consumer-facing solutions for smart door locks
already exist on the market. The August Wi-Fi Smart Lock
and Google Nest are examples of smart key-free locks that
allow users to control them through their phones. Users can
provide temporary guest passcodes for their friends and
family to access the lock. They can also remotely lock and
unlock through the phone app. These solutions are heavily
reliant on the security of the phone app, and a proficient
hacker could likely compromise the application.

iDoorlock distinguishes itself from other existing
consumer-focused solutions with the inclusion of an NFC
reader. By requiring biometric or PIN authentication through
the existing phone software as well as the NFC tag, we
implement a form of two-factor authentication that is
incredibly hard to spoof. Even with a highly knowledgeable
hacker, they must be physically close to the NFC reader. If
somebody really wanted to enter your house at that point,
they would likely just break the door down.

VIII. SUMMARY
Our current design is a thorough and innovative approach

to the current locking market. We expect to meet our core
requirements of speed and security because the underlying
technology we expect to use has already been tested and
proven for its reliability. Using a 3 part approach with a
server, Android phone, and the locking apparatus, the design
will quickly and correctly verify users with a simple tap of
the phone. We hope to refine the approach so that it can
compete and improve upon modern locking designs.

REFERENCES
[1] Allison, C. (2019, March 13). How does NFC payment work?

Retrieved October 20, 2020, from
https://fin.plaid.com/articles/how-does-nfc-payment-work/

[2] Build your own NFC reader. (2018, January 08). Retrieved October
20, 2020, from
https://www.themobileknowledge.com/knowledge-base/nfc-reader-de
sign/

[3] NFC basics : Android Developers. (n.d.). Retrieved October 20,
2020, from
https://developer.android.com/guide/topics/connectivity/nfc/nfc

[4] Square. (n.d.). How to Accept Apple Pay at Your Small Business.
Retrieved October 20, 2020, from
https://squareup.com/us/en/townsquare/apple-pay-for-small-businesse
s-how-to-accept-it

[5] Zuo, B. (n.d.). NFC Shield V2.0. Retrieved October 20, 2020, from
https://wiki.seeedstudio.com/NFC_Shield_V2.0/

[6] Moore, Nicole Casal. “Hacking into Homes: Security Flaws Found in
SmartThings Connected Home System.” Michigan Engineering,

University of Michigan, 2 May 2016,
news.engin.umich.edu/2016/05/hacking-into-homes-security-flaws-fo
und-in-smartthings-connected-home-system/.

[7] Monk, Simon. “Adafruit's Raspberry Pi Lesson 8. Using a Servo
Motor.” Adafruit Learning System,
learn.adafruit.com/adafruits-raspberry-pi-lesson-8-using-a-servo-moto
r.

https://wiki.seeedstudio.com/NFC_Shield_V2.0/

11
18-500 Final Project Report: 12/18/2020

12
18-500 Final Project Report: 12/18/2020

