
1
18-500 Design Review Report: 10/19/2020

FMPGA: The Frequency Modulating Programmable Gate Array

Authors: Joseph Finn, Eric Schneider, Manav Trivedi

Electrical and Computer Engineering, Carnegie Mellon University
Abstract—An FPGA system capable of generating, modulating,

applying effects to, and outputting a digital audio stream in real
time using a MIDI keyboard as input. We are mixing the benefits
of software and hardware solutions to digital synthesis by
providing the performance and portability of hardware
synthesizers while incorporating the extreme waveform offered
by software synthesizers.

Index Terms—Audio, Digital Synthesis, FPGA, Modulation

I. INTRODUCTION

THE FMPGA is a hardware digital synthesizer that uses a

MIDI keyboard as input. Audio producers and musicians
require complete control over the timbre, tone, and quality of
their sound. Products that solve this issue are divided into two
classes: hardware solutions and software solutions. Software
solutions provide nearly limitless options for adjusting the
tone of a sound. However, since they run on a host machine,
they suffer from two major flaws: (1) it is not easily portable
for live performance and (2) high latency is often suboptimal
for professional use. Hardware solutions can solve both of
these issues by being portable and specially designed for low
latency audio processing; however, many hardware solutions
employ expensive analog circuits that significantly limit the
product’s performance at a reasonable price point. By
designing a custom digital synthesizer on an FPGA, we are
able to solve all the flaws of both hardware and software while
retaining their benefits.

As an FPGA, it is able to interface with existing keyboards
that a musician would already own. It will also provide less
than 10ms of latency between a note-press and audio output.
This is on par with current hardware solutions and between
5x-10x faster than software solutions. By designing it for an
FPGA, the cost of our hardware is cheap enough to
reasonably produce 4 note polyphony, while most commercial
solutions are cost-limited to offer only 1 note polyphony. We
offer 12 envelopes, 3 low frequency oscillators, 8 wavetable
oscillators, frequency filtering, and distortion. Together, these
features will allow the FMPGA to fulfill its goal of combining
the benefits of hardware and audio synthesizers into an FPGA.

II. DESIGN REQUIREMENTS
A. Less than 10ms latency between MIDI keyboard

press and audio output
A major goal of this project is to bring software-grade

sound control to a lower latency platform. We have created
this requirement to quantify this goal. Modern hardware
synthesizers that are used commercially have between 3 and

15 ms. Our design aims to have a latency of 10 ms to remain
competitive with the other entry-level synthesizers that tend to
be a lot slower. The reason we opted for this value was
because it was significantly less than the human auditory
reaction time, which is around 140-160 ms, and within the
range of a solution that most audiophiles would consider more
than sufficient for audio synthesis.

B. Less than a 1% deviation in frequency from equal
temperament tuning

Another thing that is important for the use case of this
project is accuracy in terms of intonation. Our design will aim
to have a less than 1% deviation in frequency from equal
temperament tuning. It is important that the note produced is
as accurate the intended sound of the key. We decided on the
<1% deviation to stay within the bound of average human
pitch tolerance, which ranges from around 10-30 cents (1-3%).
This ensures that even those with perfect pitch will find the
sounds to be fairly accurate.

C. Achieve 48 KHz, 16-bit, single channel audio output
A high fidelity sound is also crucial to the digital

synthesizers, so we plan on ensuring that we can achieve a
48KHz 16-bit audio output. This is important for the purposes
of creating a clear, smooth audio output. To those unfamiliar
with audio terminology, this is similar to how we find videos
with a high pixel density and fast frame rate more appealing to
choppy, low quality ones. The goal of 48KHz and 16-bit audio
output stems from industry standards of 44.1KHz and 16-bit
audio which represent most music these days. To account for
the fact that the average person interested in audio synthesis
has greater expectations, we decided to design a model
slightly beyond these parameters. We have also decided to
currently focus on single channel output since it seems outside
our time and area limitations to also provide dual channel
output.

D. 4 wavetable oscillators capable of generating
square, sine, triangle, sawtooth, and noise waves

Since our product is designed to make the actual sound we
wish to augment, our synthesizer needs its own set of
oscillators. For our purposes, to generate all the sounds we
require 4 wavetable oscillators. These must be capable of
generating a variety of different waves and sounds to allow for
flexibility. The types of oscillators we are currently striving to
implement include square, sine, triangle, sawtooth, and noise.
Each of these generate a unique sound, which we felt we could
not neglect in our design, so we hope to have each of them
represented in the final design.

2
18-500 Design Review Report: 10/19/2020

E. The system must be able to modify all the settings
using knobs and display on an LCD screen

To allow for user input and an elegant user experience when
using the product, we plan on incorporating knobs and an
LCD display. The purpose of the knobs are critical since they
are the means by which the waves can be modified. Using a
rotary encoder instead of a standard potentiometer had the
benefit of being a knob that could infinitely be spun in one
direction and not need to be reset when cycling through
various settings. The inclusion of a display has the benefit of
reducing the number of knobs that are in the system, being a
lot more appealing to entry-level producers, while still
allowing the same degree of audio synthesis that comes with
typical hardware synthesizer. The LCD screen also allows for
the product to display a graphical representation of the
envelopes and waveforms that the user would be modifying,
which provides a visual element to digital synthesis that has
generally only been available on software synthesizers.

F. Achieve 4-note polyphony
Something we are striving for to differentiate our design

from many commercial solutions is polyphony, the ability to
play multiple notes at once. Entry-level solutions at a
reasonable price are limited to a single note, which would not
be enough for users that may want to produce live, synthesized
music, often involving multiple notes for harmony or chords.
The reason why this isn’t an easy task is because of the area
limitations on-chip since each note of polyphony requires a
duplication of the audio processing units. Thus, our design
strives to have 4-note polyphony to strike a balance between
hardware limitations and user flexibility.

G. Apply digital filtering and distortion on audio
stream

The key component to our design is its ability to modulate
the sounds that are passed in real time. Among many such
manipulations we could have performed, the ones we found by
far to be the most desired was the ability to modulate pitch and
amplitude. Fine granular control over these allows for infinite
different sounds to be produced so we decided to make those
the basis of how we define success for this project. In addition
to this, once we have a way to introduce the ability to
modulate one aspect, we could continue to quickly and easily
do so for any other effects that are supported by this project.,
and supported audio effects.

H. Use 12 configurable envelopes as modulation
sources

In audio synthesis, the modulation source used to apply
modifications to aspects of sounds like pitch or volume or
other effects is called an envelope. Each envelope in the
system applies a modification on a singular aspect, for
example pitch for a particular note. Thus, in order to provide
this vast versatility, we would need the number of envelopes
to be very large. Our design aims to have around 12 envelopes
throughout our model to at the very least perform volume and

pitch modulation on every note of polyphony, along with 1
envelope reserved for other various effects. This would
provide an ample range of possible sounds and modification,
while still staying within the multiplier limitations of the
FPGA we plan to use.

I. The system must have the ability to fully modulate
pitch, amplitude, and other supported audio effects

While effects are not the primary goal of this project, we
felt as though there were a couple notable effects we should
develop to allow for a greater degree of modularity. Filtering
and distortion were modulations that we agreed would expand
the scope of sounds that our device could produce by
manipulating the frequency using the available envelopes. The
final version of this project should be able to apply digital
low-pass filtering, high-pass filtering, and distortion to an
audio stream. In addition to this, all of these effects can easily
utilize the envelopes we plan on developing, which would
grant us modulation of these effects for free once we complete
the core of this design.

J. Implement 3 global low frequency oscillators for
further effects

In addition to the standard wavetable oscillators, we also
want to implement low frequency oscillators (LFOs) to
provide another dimension of modulation to the audio output.
An LFO can augment the output sound by introducing effects
like tremolo, vibrato, and phasing. In order to introduce an
adequate range of effects, we will strive to have 3
globally-affecting LFOs that interface with every audio
processing unit in the system.

K. Save and load at least 10 presets to memory
On top of all of this, we would like this to be a product that

musicians and producers continue to use for their synthesis
needs. Generally, whenever they stumble upon a sound they
like, they wish to use it down the line again. Thus, for a lasting
user experience, we thought it was necessary to allow for the
ability to save and load presets/configurations in memory. All
the memory on FPGAs tends to be volatile, which means upon
reset, everything stored in memory is wiped clean. So, it is
paramount that we design a way to read and write to external
memory to properly utilize this technology. For our purposes,
we think it is a reasonable goal to have the ability to save and
load 10 presets in RAM. This would provide the flexibility to
have multiple sounds available, while not being too
encumbering on the limitations of our design.

3
18-500 Design Review Report: 10/19/2020

Fig. 1. High level view of the system architecture.

III. ARCHITECTURE
The design consists of 3 major components: the MIDI, audio,
and video layers.

A. MIDI Layer
This set of hardware modules functions to convert raw

MIDI input into a set of 4 notes, described by the frequency,
velocity, and when the note is pressed or released.

MIDI data is transmitted serially at a rate of 31,250 baud.
Our FPGA will be running at a clock frequency of 50MHz,
leaving us with 1,600 clock cycles per MIDI bit. The MIDI
Sampler uses this information to sample the incoming
bitstream by detecting an edge and counting the necessary
number of cycles in order to sample the bit nearest to the exact
middle of its transmission. Through this method, we are able
to pass a clocked MIDI serial bitstream down the rest of the
MIDI pipeline.

The MIDI Decoder takes in the MIDI bitstream and
interprets the information embedded in the message. MIDI
protocol dictates that the controller will hold the transmission
line low until it is ready to send a packet. Then, to send a
packet, the MIDI controller will transmit a "command" byte
followed by zero or more bytes of data, where the number of
bytes of data is determined by the command byte that prefixes
the data. In our case, we only care about a subset of the MIDI
messages: “Note On” events, “Note Off” events, and Pitch
Bend Changes. From these messages, we can determine when
notes are being played, as well as their velocity and pitch. The
MIDI Decoder outputs the relevant information to the event

dispatcher in the form of a packed struct.
The Event Dispatcher arbitrates which audio processing unit

will handle which note press. The method by which it plans to
load balance is by treating the inputs of the audio processing
units as a FIFO queue. While the APUs are not currently full,
the event dispatcher is free to send a new note_on signal to
any of the other available units. In the case that we receive a
note_off signal for any of the notes previously pressed, we can
simply send that signal to corresponding units. Otherwise,
once full, if we are to receive a note_on event, we have to
decide which of the following APUs is the oldest and replace
that particular note. This is due to a limitation in terms of how
many notes we can play at once. Upon deciding the recipient
unit, the event dispatcher will output the relevant information,
which is frequency, velocity, note on, and note off, to the
corresponding audio processing unit.

B. Audio Layer
The audio layer is a set of four identical audio processing

pipelines and an audio mixer. Each audio processing unit
(APU), depicted in Fig. 2, produces a 16 bit audio output for a
single channel; the mixer combines each of these channels into
a single digital audio stream.

Each APU has three envelope generators. They each
produce an Attack, Decay, Sustain, Release (ADSR) curve
like the example in Fig. 3. The values for each of these four
parameters within each envelope generator are configurable by
the rotary encoders and delivered to the

4
18-500 Design Review Report: 10/19/2020

Fig. 2. Block diagram of a single Audio Processing Unit

module from the Configuration Settings component. The
envelope generators output a 32 bit fixed point value ranging
between 0 and 1 which can be multiplied to any parameter to
modulate it.

Each unit also has a set of applicators. The general
applicator circuit is depicted in Fig. 4. Based on the
configuration settings, the applicator will multiply its
dedicated parameter by the output of the appropriate envelope.
The applicators allow any combination of their modulation
sources to be applied to any of their possible modulation
parameters (i.e. pitch, amplitude, filters, and distortion).
Possible modulation sources are the envelopes, low frequency
oscillators, and Wavetable Oscillator 1.

Each unit has two wavetable oscillators, which generate a
wave at a given frequency. The shape of the wave can be
configured to choose a sine, square, or sawtooth wave, and the
oscillators can play frequencies between 20Hz and 4000Hz
with <1% error. There will be dedicated flash RAM to store
preconfigured wavetables, which contain 2048 samples of a
single cycle of a given waveform. The oscillator constantly
increments a phase offset by a step size, where

tep(f) N) / Fs = (s · f s (1)

and Ns is the number of samples in the wavetable (2048), Fs is
sampling frequency (48KHz), and f is the desired output pitch.
In order to index into a discrete table, the phase is incremented
by the integral component of the step size on each cycle, while
the fractional component is accumulated in an error register.
When the error register overflows to greater than 1, it is added

to the phase and reset. One wavetable oscillator produces a
wave at the output pitch of the current note, while the other
oscillator is used as a modulation source.

The APU contains a distortion effect as well as two filters,
which can be toggled between low-pass and high-pass.

The high-pass and low-pass filters are implemented as an
infinite impulse-response filter (IIR) and a finite impulse
response filter (FIR) respectively. We chose these filters
because they're very effective filters that can be fully
described by only a handful of coefficients. As well, the FIR
can be implemented as a special case of the IIR, so the
hardware will be identical.

The coefficients for these filters are generated using very
complex math that is infeasible to do in real-time on hardware.
To compensate for this, we plan to generate these coefficients
in software for a variety of frequencies, then linearly
interpolate between them in hardware to approximate the
coefficients in a computationally efficient way.

Fig. 3. An example ADSR curve.

5
18-500 Design Review Report: 10/19/2020

Fig.4 The general multiply-accumulate circuit inside the applicators.

The distortion effect is relatively simple, and, unlike the
filters, only operates on the current audio sample, rather than a
history of audio samples. To create a "distorted" or "saturated"
effect, we take in a normalized sample that exists in the range
[-1, 1], and we pass it through a function whose output is also
constricted to the range [-1, 1]. To create a "distorted" effect,
we use an S-shaped curve for this function, as shown in Fig. 5.
The function distort is defined as:

 if istort(x, k) 1)d = 1 − (− x k x ≥ 0 (2)
 if istort(x, k) 1)d = − 1 + (+ x k x < 0 (3)

In this function, k represents the intensity of the distortion.

When k = 1, there is no distortion, and as k approaches
infinity, this function approaches a square wave. The variable
x is the value of the current sample. This function was chosen
because it generates an S-like curve without using
trigonometric functions, exponentiation, or division. The only
complexity introduced with this function is that k may be
non-integral—we deal with this by linearly interpolating
between integral values of k.

Fig.5 The distortion function with k=5.

The entire audio layer shares three low-frequency

oscillators. These oscillators function similarly to the
wavetable oscillator, except at much lower frequencies, in the
range of [0Hz, 127Hz]. These oscillators are used by the
applicators to periodically modulate parameters in addition to

the ADSR envelopes.
The four audio processing pipelines are combined in the

mixing module. This module simply adds the outputs of the
four audio processing units and normalizes it to a 16 bit digital
output. This is the final stage of audio processing, and the rest
of the audio pipeline consists of an external digital-to-analog
converter which takes in the output of the mixer and converts
it into playable audio.

C. Video Layer
The video display on the FMPGA serves two important

functions. Its most important role is to serve as a visual
indication of the settings that the user can affect when
designing sounds on the synthesizer. Once the sound has been
created, the display can be configured to show the audio
waveform as the note plays.

The display we use has a resolution of 128x64 monochrome
pixels, and it is driven through an SPI interface. The display
can only be driven at a maximum clock speed of 20MHz, and
since our clock runs at 50MHz, that means we can drive the
display at a speed of 16.67MHz. Because it takes 16 cycles to
update eight pixels of the display, and the display contains
8,192 samples, we calculate that updating the screen will take,
at minimum, to fully update the screen. /f 83μs2N pixels SP I = 9
It will take slightly more time than that, as there are more SPI
packets that need to be sent to configure the display, but in
total, updating the display shall not take more than 2ms.
Because we only need to update the display every 16.7ms to
attain 60 frames per second, we have a lot of time to perform
rendering calculations.

To render to the display, we have two separate rendering
modules that always store their rendered frame in their own
memory. Then, to render the displays, we simply mux those
RAM outputs with a select line, and draw to the screen using
SPI.

The first rendering module renders the waveform. This
module records all outgoing samples in a shift register, and
plots the audio in terms of its squared magnitude. Because we
attempt to render every 16.7ms, we have to fit 735 samples
onto a screen that is only 128 pixels wide, which we
accomplish with averaging. The second rendering module
displays the configuration settings. This gives the viewer a

6
18-500 Design Review Report: 10/19/2020

visual representation of the settings that they modify with the
rotary encoder, which is fairly trivial—it simply involves
drawing rectangles dynamically on a background image that is
stored in memory.

IV. SYSTEM IMPLEMENTATION AND DESIGN TRADE STUDIES

A. Choice of FPGA
Our requirement of four note polyphony necessitates that

we use an FPGA which is large enough to hold four copies of
our audio processing pipeline. As a result, we had to choose an
FPGA such that we maximized the number of logic elements
and on-board multipliers. We identified two FPGAs, shown in
Table 1, that were suitable for our needs. The DE-10 has a
larger area but fewer multipliers, while the 5CEBA5 has less
area but more multipliers. Both choices seemed reasonable, so
we selected the one which is easiest to work with, the DE-10.
A breakout board is readily available and provided by CMU,
so it’s much easier to obtain than the 5CEBA5, which is hard
to find on a breakout board at a reasonable price.

B. Memory type
Due to the volatile nature of on-chip memory, it is

necessary to have some form of external memory that allows
our design to read and write without the fear of loss of data.
This led us to the crossroad of debating between either flash
memory or SD cards. Both methods seem equally challenging
and the more appealing option as of now is flash memory
since we do not need to interface with any other peripherals.

C. Display
In order to retain the ease-of-use of software synthesizers,

we need to include visual feedback for the current settings of
the synthesizer. The user will be able to cycle through the
different modulation sources and see their individual state.
They will also be able to view the output waveform in real
time. A reasonable display for our use case needs to simply be
black and white since we have no particular need for color.
The pixel density for this screen should be enough to display a
waveform. We reasoned based on the pictures and reviews of
the particular 128x64 LCD panel, we decided that it was
sufficient enough to display numbers and waves.

TABLE I. FPGA OPTIONS

FPGA Logic Elems 27x27 Multipliers

Terasic DE-10 110k 112

Cyclone 5CEBA5 77k 150

D. Audio Layer Latency Analysis
The audio layer is the critical path of our design, and will

determine if we can meet our timing requirement of <10ms
latency. We needed to verify this latency is realistic for our
proposed design, so we performed the following estimation.

First, we made the following assumptions:

i. Sampling rate Fs = 48KHz
ii. Total audio pipeline stages NA will lie in the

conservative range of 0 005 ≤ N A ≤ 4
iii. FPGA clock frequency FC will be in the

range 0MHz 0MHz1 ≤ F C ≤ 5

To meet our latency requirement, it is necessary that:
0ms N / F1 ≥ A c (4)

In the worst case, we maximize NA and minimize FC. By
combining (4) with assumptions (i) and (ii), we get a latency
of 40μs. This leaves us with over 9ms to decode MIDI and
pass our output through the DAC, which we estimate is very
feasible.

V. PROJECT MANAGEMENT

A. Schedule
Initially, we were very ambitious with creating a very tight

schedule for ourselves: we planned to be done with
simulations within the first 7 weeks. We quickly realized that
the burden of other classes deemed this schedule unrealistic,
so we adjusted it to spread out our time more evenly over the
course of the semester. We redistributed our workload to
spend more time designing and planning in software, which
extends the amount of time before we get a working
prototype; however, it has the enormous benefit of allowing us
to complete hardware implementations much more efficiently.
Our schedule is available on the last page of this document as
Fig. 7.

B. Team Member Responsibilities
Because of the modular nature of this project, we decided to

break up responsibility based on each of the layers described
in Section III.

Manav's primary responsibilities are the MIDI layer to
convert serial input to a series of discrete events that are
arbitrated to the APUs, interfacing with flash memory to write
and retrieve configuration settings, and the DAC interface to
convert digital signal to audio out.

Joe’s responsibility is the audio layer, which consists of the
oscillators, which are used to generate a digital wave;
envelopes to perform modulation on pitch, volume, and other
effects; effects such as low-pass, high-pass, and distortion for
a greater range of sounds; LFOs to generate effects like
vibrato, tremolo, and phasing.; and a polyphony mixer to
generate a combined wave that can be used as output.

Eric’s responsibilities are the video layer, which consist of
the I2C interface for the LCD to display the waves and
configuration settings; the input encoders to gather user input
to modify and the modulations and effects applied; and the
configuration settings module to serve as the centralized hub
for modifying the system.

C. Budget
Though not an official requirement, we have planned the

7
18-500 Design Review Report: 10/19/2020

project since the beginning with a goal of being low cost. Our
goal was under roughly $200; since we are not purchasing an
FPGA, we did research to find an appropriate FPGA to use
should we manufacture our product, to see if our price target
was indeed reasonable.

TABLE II. BUDGET

Part Name Quantity Price Total

FPGA - Terasic DE-10 Standard
(Provided by CMU) 1 $0.00 $0.00

---------- 5CEBA5F23C8N (price if we
were to manufacture it) 1 $88.04 $88.04

Rotary Encoders (EN11-HSM1BF20) 10 $1.08 $10.80

Digital to Analog Converter
(DAC101S101CIMK/NOPB) 1 $1.69 $1.69

MIDI DIN connector 2 $1.75 $3.50

LCD Display
(NHD-C12864A1Z-FSW-FBW-HTT) 1 $22.69 $22.69

MIDI Keyboard - Novation Launchkey
Mini mk3 (for testing) 1 $109.99 $109.99

---------- Estimated cost of PCB and
other misc. manufacturing costs 1 $50.00 $50.00

 Cost for Project $149.62

 Cost to Manufacture $176.67

D. Risk Management
In terms of time, we attempted to be very realistic about

how much of a time investment this project would be and
made sure to allocate an adequate amount of slack near the tail
end of our project to make up for any unforeseen
circumstances.

In order to increase our hardware design efficiency, we have
been trying to design each part of each subsystem to be
extremely modular such that we avoid large, grotesque
modules that are hard to test. This way, once we can ensure
that the singular element is working correctly, we can assume
down the line, any emergent issues are with other elements in
the design. Paired with a detailed verification platform, we can
be assured that the final design works as smoothly as possible.

In terms of resources, we have accounted for the fact that
many of the smaller pieces like rotary encoders, buttons, and
so on are bound to break, so we added slightly more than
necessary to our budget as a backup.

On a planning level, we tried to make sure that the FPGA
we plan on using had more than enough multipliers and logic
elements to make sure we don’t find that our board is
insufficient for our use case.

VI. VERIFICATION
There was a significant emphasis placed on verification and

testing from the very beginning of this project. We understand
that large hardware-based projects are often hard to test and in
the real world have entire teams dedicated to verification, thus
we wanted to incorporate a strict testing platform as a priority.

We wanted to make sure that we were testing throughout the
span of the project, rather than leaving it all at the end, causing
more hassle than necessary. We still have a dedicated time for
verification of the whole project near the end of our schedule,
but this is meant to represent testing the high level design and
fine tuning.

Before we start implementing any hardware for the design,
we ensure that we have a working software prototype designed
in Python. The purpose of this is two-fold: first, to provide us
with a general understanding of how to design the
SystemVerilog description of the module, given that software
is generally easier to implement; and second, to allow us to
systematically compare the inputs and outputs at every clock
cycle to determine exactly when unexpected behavior occurs.
Developing such a robust software model of our design has
allowed us to engage in test-driven development for the
entirety of the semester.

The testing environment is derived from the Universal
Verification Methodology (UVM). The exact flow can be seen
in Fig. 6. We designed a module that monitors all inputs and
outputs exchanged between a SystemVerilog testbench and the
device-under-test (DUT). It outputs these signals to files in a
standardized format. A Python module then reads these files
and turns them into cycle-by-cycle input and output streams,
respecting the names and bitwidths of each signal. The inputs
are fed into a Python test driver, which sends them to a Python
“golden” model of the DUT. The outputs of the golden model
are then automatically compared to the outputs of the
SystemVerilog DUT within the test driver in order to verify
the design. All of this functionality is automated through a
script, aside from the creation of the DUT, the testbench, and
the golden model, which are necessarily custom to each
module.

Almost all of our verification can be done using this
method, since it allows us to bring up and verify the entire
design in simulation. The only further verification that needs
to be done post-simulation is (a) verifying the accuracy of
intonation through the DAC using a tuner, (b) verifying the
latency from keypress to audio-output using high speed audio
capture, and (c) verifying that the output of the LCD is to our
liking.

Fig.6 Flow chart of our test environment

8
18-500 Design Review Report: 10/19/2020

VII. REFERENCES

[1] ADSR diagram, The elements in an ADSR envelope
[2] DE-10 Standard Design Specification, Cyclone V Device Overview
[3] MIDI message table, Summary of MIDI Messages
[4] Digital Filter, Lecture 6 - Design of Digital Filters
[5] IIR Filters, IIR Filters - an overview
[6] Display Specifications, NHD-C12864A1Z-FSW-FBW-HTT
[7] Display Controller Specification, Sitronix

https://www.researchgate.net/figure/The-elements-in-an-ADSR-envelope_fig22_270819567
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l6.pdf
https://www.sciencedirect.com/topics/engineering/iir-filters
https://www.newhavendisplay.com/specs/NHD-C12864A1Z-FSW-FBW-HTT.pdf
https://www.newhavendisplay.com/resources_dataFiles/datasheets/LCDs/ST7565P.pdf

9
18-500 Design Review Report: 10/19/2020

Fig.7 Schedule and division of labor

