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Abstract—An FPGA system capable of generating, modulating,       

applying effects to, and outputting a digital audio stream in real           
time using a MIDI keyboard as input. We are mixing the benefits            
of software and hardware solutions to digital synthesis by         
providing the performance and portability of hardware       
synthesizers while incorporating the extreme waveform offered       
by software synthesizers.  
 

Index Terms—Audio, Digital Synthesis, FPGA, Modulation 
 

I. INTRODUCTION 

THE FMPGA is a hardware digital synthesizer that uses a          

MIDI keyboard as input. Audio producers and musicians        
require complete control over the timbre, tone, and quality of          
their sound. Products that solve this issue are divided into two           
classes: hardware solutions and software solutions. Software       
solutions provide nearly limitless options for adjusting the        
tone of a sound. However, since they run on a host machine,            
they suffer from two major flaws: (1) it is not easily portable            
for live performance and (2) high latency is often suboptimal          
for professional use. Hardware solutions can solve both of         
these issues by being portable and specially designed for low          
latency audio processing; however, many hardware solutions       
employ expensive analog circuits that significantly limit the        
product’s performance at a reasonable price point. By        
designing a custom digital synthesizer on an FPGA, we are          
able to solve all the flaws of both hardware and software while            
retaining their benefits. 

As an FPGA, it is able to interface with existing keyboards           
that a musician would already own. It will also provide less           
than 10ms of latency between a note-press and audio output.          
This is on par with current hardware solutions and between          
5x-10x faster than software solutions. By designing it for an          
FPGA, the cost of our hardware is cheap enough to          
reasonably produce 4 note polyphony, while most commercial        
solutions are cost-limited to offer only 1 note polyphony. We          
offer 12 envelopes, 3 low frequency oscillators, 8 wavetable         
oscillators, frequency filtering, and distortion. Together, these       
features will allow the FMPGA to fulfill its goal of combining           
the benefits of hardware and audio synthesizers into an FPGA.  

II. DESIGN REQUIREMENTS 
A. Less than 10ms latency between MIDI keyboard       

press and audio output 
A major goal of this project is to bring software-grade          

sound control to a lower latency platform. We have created          
this requirement to quantify this goal. Modern hardware        
synthesizers that are used commercially have between 3 and         

15 ms. Our design aims to have a latency of 10 ms to remain              
competitive with the other entry-level synthesizers that tend to         
be a lot slower. The reason we opted for this value was            
because it was significantly less than the human auditory         
reaction time, which is around 140-160 ms, and within the          
range of a solution that most audiophiles would consider more          
than sufficient for audio synthesis. 

B. Less than a 1% deviation in frequency from equal         
temperament tuning 

Another thing that is important for the use case of this           
project is accuracy in terms of intonation. Our design will aim           
to have a less than 1% deviation in frequency from equal           
temperament tuning. It is important that the note produced is          
as accurate the intended sound of the key. We decided on the            
<1% deviation to stay within the bound of average human          
pitch tolerance, which ranges from around 10-30 cents (1-3%).         
This ensures that even those with perfect pitch will find the           
sounds to be fairly accurate. 

C. Achieve 48 KHz, 16-bit, single channel audio output 
A high fidelity sound is also crucial to the digital          

synthesizers, so we plan on ensuring that we can achieve a           
48KHz 16-bit audio output. This is important for the purposes          
of creating a clear, smooth audio output. To those unfamiliar          
with audio terminology, this is similar to how we find videos           
with a high pixel density and fast frame rate more appealing to            
choppy, low quality ones. The goal of 48KHz and 16-bit audio           
output stems from industry standards of 44.1KHz and 16-bit         
audio which represent most music these days. To account for          
the fact that the average person interested in audio synthesis          
has greater expectations, we decided to design a model         
slightly beyond these parameters. We have also decided to         
currently focus on single channel output since it seems outside          
our time and area limitations to also provide dual channel          
output. 

D. 4 wavetable oscillators capable of generating      
square, sine, triangle, sawtooth, and noise waves 

Since our product is designed to make the actual sound we           
wish to augment, our synthesizer needs its own set of          
oscillators. For our purposes, to generate all the sounds we          
require 4 wavetable oscillators. These must be capable of         
generating a variety of different waves and sounds to allow for           
flexibility. The types of oscillators we are currently striving to          
implement include square, sine, triangle, sawtooth, and noise.        
Each of these generate a unique sound, which we felt we could            
not neglect in our design, so we hope to have each of them             
represented in the final design. 
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E. The system must be able to modify all the settings          
using knobs and display on an LCD screen 

To allow for user input and an elegant user experience when           
using the product, we plan on incorporating knobs and an          
LCD display. The purpose of the knobs are critical since they           
are the means by which the waves can be modified. Using a            
rotary encoder instead of a standard potentiometer had the         
benefit of being a knob that could infinitely be spun in one            
direction and not need to be reset when cycling through          
various settings. The inclusion of a display has the benefit of           
reducing the number of knobs that are in the system, being a            
lot more appealing to entry-level producers, while still        
allowing the same degree of audio synthesis that comes with          
typical hardware synthesizer. The LCD screen also allows for         
the product to display a graphical representation of the         
envelopes and waveforms that the user would be modifying,         
which provides a visual element to digital synthesis that has          
generally only been available on software synthesizers. 

F. Achieve 4-note polyphony 
Something we are striving for to differentiate our design         

from many commercial solutions is polyphony, the ability to         
play multiple notes at once. Entry-level solutions at a         
reasonable price are limited to a single note, which would not           
be enough for users that may want to produce live, synthesized           
music, often involving multiple notes for harmony or chords.         
The reason why this isn’t an easy task is because of the area             
limitations on-chip since each note of polyphony requires a         
duplication of the audio processing units. Thus, our design         
strives to have 4-note polyphony to strike a balance between          
hardware limitations and user flexibility. 

G. Apply digital filtering and distortion on audio       
stream 

The key component to our design is its ability to modulate           
the sounds that are passed in real time. Among many such           
manipulations we could have performed, the ones we found by          
far to be the most desired was the ability to modulate pitch and             
amplitude. Fine granular control over these allows for infinite         
different sounds to be produced so we decided to make those           
the basis of how we define success for this project. In addition            
to this, once we have a way to introduce the ability to            
modulate one aspect, we could continue to quickly and easily          
do so for any other effects that are supported by this project.,            
and supported audio effects. 

H. Use 12 configurable envelopes as modulation      
sources 

In audio synthesis, the modulation source used to apply         
modifications to aspects of sounds like pitch or volume or          
other effects is called an envelope. Each envelope in the          
system applies a modification on a singular aspect, for         
example pitch for a particular note. Thus, in order to provide           
this vast versatility, we would need the number of envelopes          
to be very large. Our design aims to have around 12 envelopes            
throughout our model to at the very least perform volume and           

pitch modulation on every note of polyphony, along with 1          
envelope reserved for other various effects. This would        
provide an ample range of possible sounds and modification,         
while still staying within the multiplier limitations of the         
FPGA we plan to use. 

I. The system must have the ability to fully modulate         
pitch, amplitude, and other supported audio effects 

While effects are not the primary goal of this project, we           
felt as though there were a couple notable effects we should           
develop to allow for a greater degree of modularity. Filtering          
and distortion were modulations that we agreed would expand         
the scope of sounds that our device could produce by          
manipulating the frequency using the available envelopes. The        
final version of this project should be able to apply digital           
low-pass filtering, high-pass filtering, and distortion to an        
audio stream. In addition to this, all of these effects can easily            
utilize the envelopes we plan on developing, which would         
grant us modulation of these effects for free once we complete           
the core of this design. 

J. Implement 3 global low frequency oscillators for       
further effects 

In addition to the standard wavetable oscillators, we also         
want to implement low frequency oscillators (LFOs) to        
provide another dimension of modulation to the audio output.         
An LFO can augment the output sound by introducing effects          
like tremolo, vibrato, and phasing. In order to introduce an          
adequate range of effects, we will strive to have 3          
globally-affecting LFOs that interface with every audio       
processing unit in the system. 

K. Save and load at least 10 presets to memory 
On top of all of this, we would like this to be a product that               

musicians and producers continue to use for their synthesis         
needs. Generally, whenever they stumble upon a sound they         
like, they wish to use it down the line again. Thus, for a lasting              
user experience, we thought it was necessary to allow for the           
ability to save and load presets/configurations in memory. All         
the memory on FPGAs tends to be volatile, which means upon           
reset, everything stored in memory is wiped clean. So, it is           
paramount that we design a way to read and write to external            
memory to properly utilize this technology. For our purposes,         
we think it is a reasonable goal to have the ability to save and              
load 10 presets in RAM. This would provide the flexibility to           
have multiple sounds available, while not being too        
encumbering on the limitations of our design. 
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Fig. 1. High level view of the system architecture. 

III. ARCHITECTURE 
The design consists of 3 major components: the MIDI, audio,          
and video layers.  

A. MIDI Layer 
This set of hardware modules functions to convert raw         

MIDI input into a set of 4 notes, described by the frequency,            
velocity, and when the note is pressed or released. 

MIDI data is transmitted serially at a rate of 31,250 baud.           
Our FPGA will be running at a clock frequency of 50MHz,           
leaving us with 1,600 clock cycles per MIDI bit. The MIDI           
Sampler uses this information to sample the incoming        
bitstream by detecting an edge and counting the necessary         
number of cycles in order to sample the bit nearest to the exact             
middle of its transmission. Through this method, we are able          
to pass a clocked MIDI serial bitstream down the rest of the            
MIDI pipeline.  

The MIDI Decoder takes in the MIDI bitstream and         
interprets the information embedded in the message. MIDI        
protocol dictates that the controller will hold the transmission         
line low until it is ready to send a packet. Then, to send a              
packet, the MIDI controller will transmit a "command" byte         
followed by zero or more bytes of data, where the number of            
bytes of data is determined by the command byte that prefixes           
the data. In our case, we only care about a subset of the MIDI              
messages: “Note On” events, “Note Off” events, and Pitch         
Bend Changes. From these messages, we can determine when         
notes are being played, as well as their velocity and pitch. The            
MIDI Decoder outputs the relevant information to the event         

dispatcher in the form of a packed struct.  
The Event Dispatcher arbitrates which audio processing unit        

will handle which note press. The method by which it plans to            
load balance is by treating the inputs of the audio processing           
units as a FIFO queue. While the APUs are not currently full,            
the event dispatcher is free to send a new note_on signal to            
any of the other available units. In the case that we receive a             
note_off signal for any of the notes previously pressed, we can           
simply send that signal to corresponding units. Otherwise,        
once full, if we are to receive a note_on event, we have to             
decide which of the following APUs is the oldest and replace           
that particular note. This is due to a limitation in terms of how             
many notes we can play at once. Upon deciding the recipient           
unit, the event dispatcher will output the relevant information,         
which is frequency, velocity, note on, and note off, to the           
corresponding audio processing unit.  

B. Audio Layer 
The audio layer is a set of four identical audio processing           

pipelines and an audio mixer. Each audio processing unit         
(APU), depicted in Fig. 2, produces a 16 bit audio output for a             
single channel; the mixer combines each of these channels into          
a single digital audio stream. 

Each APU has three envelope generators. They each        
produce an Attack, Decay, Sustain, Release (ADSR) curve        
like the example in Fig. 3. The values for each of these four             
parameters within each envelope generator are configurable by        
the rotary encoders and delivered to the  
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Fig. 2. Block diagram of a single Audio Processing Unit 

 
module from the Configuration Settings component. The       
envelope generators output a 32 bit fixed point value ranging          
between 0 and 1 which can be multiplied to any parameter to            
modulate it.  

Each unit also has a set of applicators. The general          
applicator circuit is depicted in Fig. 4. Based on the          
configuration settings, the applicator will multiply its       
dedicated parameter by the output of the appropriate envelope.         
The applicators allow any combination of their modulation        
sources to be applied to any of their possible modulation          
parameters (i.e. pitch, amplitude, filters, and distortion).       
Possible modulation sources are the envelopes, low frequency        
oscillators, and Wavetable Oscillator 1.  

Each unit has two wavetable oscillators, which generate a         
wave at a given frequency. The shape of the wave can be            
configured to choose a sine, square, or sawtooth wave, and the           
oscillators can play frequencies between 20Hz and 4000Hz        
with <1% error. There will be dedicated flash RAM to store           
preconfigured wavetables, which contain 2048 samples of a        
single cycle of a given waveform. The oscillator constantly         
increments a phase offset by a step size, where  

 
tep(f ) N ) / Fs = ( s · f s  (1) 

 
and Ns is the number of samples in the wavetable (2048), Fs is 
sampling frequency (48KHz), and f is the desired output pitch. 
In order to index into a discrete table, the phase is incremented 
by the integral component of the step size on each cycle, while 
the fractional component is accumulated in an error register. 
When the error register overflows to greater than 1, it is added 

to the phase and reset. One wavetable oscillator produces a 
wave at the output pitch of the current note, while the other 
oscillator is used as a modulation source.  

The APU contains a distortion effect as well as two filters,           
which can be toggled between low-pass and high-pass. 

The high-pass and low-pass filters are implemented as an         
infinite impulse-response filter (IIR) and a finite impulse        
response filter (FIR) respectively. We chose these filters        
because they're very effective filters that can be fully         
described by only a handful of coefficients. As well, the FIR           
can be implemented as a special case of the IIR, so the            
hardware will be identical. 

The coefficients for these filters are generated using very         
complex math that is infeasible to do in real-time on hardware.           
To compensate for this, we plan to generate these coefficients          
in software for a variety of frequencies, then linearly         
interpolate between them in hardware to approximate the        
coefficients in a computationally efficient way. 

 

Fig. 3. An example ADSR curve. 
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Fig.4         The general multiply-accumulate circuit inside the applicators.  

 
The distortion effect is relatively simple, and, unlike the         
filters, only operates on the current audio sample, rather than a           
history of audio samples. To create a "distorted" or "saturated"          
effect, we take in a normalized sample that exists in the range            
[-1, 1], and we pass it through a function whose output is also             
constricted to the range [-1, 1]. To create a "distorted" effect,           
we use an S-shaped curve for this function, as shown in Fig. 5. 
The function distort is defined as:  
 

 if istort(x, k) 1 )d  = 1 − ( − x k x ≥ 0 (2) 
 if istort(x, k) 1 )d  =  − 1 + ( + x k x < 0 (3) 

 
In this function, k represents the intensity of the distortion.          

When k = 1, there is no distortion, and as k approaches            
infinity, this function approaches a square wave. The variable         
x is the value of the current sample. This function was chosen            
because it generates an S-like curve without using        
trigonometric functions, exponentiation, or division. The only       
complexity introduced with this function is that k may be          
non-integral—we deal with this by linearly interpolating       
between integral values of k. 
 

 
Fig.5  The distortion function with k=5. 

 
The entire audio layer shares three low-frequency       

oscillators. These oscillators function similarly to the       
wavetable oscillator, except at much lower frequencies, in the         
range of [0Hz, 127Hz]. These oscillators are used by the          
applicators to periodically modulate parameters in addition to        

the ADSR envelopes.  
The four audio processing pipelines are combined in the         

mixing module. This module simply adds the outputs of the          
four audio processing units and normalizes it to a 16 bit digital            
output. This is the final stage of audio processing, and the rest            
of the audio pipeline consists of an external digital-to-analog         
converter which takes in the output of the mixer and converts           
it into playable audio.  

C. Video Layer 
The video display on the FMPGA serves two important         

functions. Its most important role is to serve as a visual           
indication of the settings that the user can affect when          
designing sounds on the synthesizer. Once the sound has been          
created, the display can be configured to show the audio          
waveform as the note plays. 

The display we use has a resolution of 128x64 monochrome          
pixels, and it is driven through an SPI interface. The display           
can only be driven at a maximum clock speed of 20MHz, and            
since our clock runs at 50MHz, that means we can drive the            
display at a speed of 16.67MHz. Because it takes 16 cycles to            
update eight pixels of the display, and the display contains          
8,192 samples, we calculate that updating the screen will take,          
at minimum, to fully update the screen.  /f 83μs2N pixels SP I = 9       
It will take slightly more time than that, as there are more SPI             
packets that need to be sent to configure the display, but in            
total, updating the display shall not take more than 2ms.          
Because we only need to update the display every 16.7ms to           
attain 60 frames per second, we have a lot of time to perform             
rendering calculations. 

To render to the display, we have two separate rendering          
modules that always store their rendered frame in their own          
memory. Then, to render the displays, we simply mux those          
RAM outputs with a select line, and draw to the screen using            
SPI. 

The first rendering module renders the waveform. This        
module records all outgoing samples in a shift register, and          
plots the audio in terms of its squared magnitude. Because we           
attempt to render every 16.7ms, we have to fit 735 samples           
onto a screen that is only 128 pixels wide, which we           
accomplish with averaging. The second rendering module       
displays the configuration settings. This gives the viewer a         
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visual representation of the settings that they modify with the          
rotary encoder, which is fairly trivial—it simply involves        
drawing rectangles dynamically on a background image that is         
stored in memory. 

IV. SYSTEM IMPLEMENTATION AND DESIGN TRADE STUDIES 

A. Choice of FPGA 
Our requirement of four note polyphony necessitates that        

we use an FPGA which is large enough to hold four copies of             
our audio processing pipeline. As a result, we had to choose an            
FPGA such that we maximized the number of logic elements          
and on-board multipliers. We identified two FPGAs, shown in         
Table 1, that were suitable for our needs. The DE-10 has a            
larger area but fewer multipliers, while the 5CEBA5 has less          
area but more multipliers. Both choices seemed reasonable, so         
we selected the one which is easiest to work with, the DE-10.            
A breakout board is readily available and provided by CMU,          
so it’s much easier to obtain than the 5CEBA5, which is hard            
to find on a breakout board at a reasonable price.  

B. Memory type  
Due to the volatile nature of on-chip memory, it is          

necessary to have some form of external memory that allows          
our design to read and write without the fear of loss of data.             
This led us to the crossroad of debating between either flash           
memory or SD cards. Both methods seem equally challenging         
and the more appealing option as of now is flash memory           
since we do not need to interface with any other peripherals. 

C. Display 
In order to retain the ease-of-use of software synthesizers,         

we need to include visual feedback for the current settings of           
the synthesizer. The user will be able to cycle through the           
different modulation sources and see their individual state.        
They will also be able to view the output waveform in real            
time. A reasonable display for our use case needs to simply be            
black and white since we have no particular need for color.           
The pixel density for this screen should be enough to display a            
waveform. We reasoned based on the pictures and reviews of          
the particular 128x64 LCD panel, we decided that it was          
sufficient enough to display numbers and waves. 

TABLE I. FPGA OPTIONS 

FPGA Logic Elems 27x27 Multipliers 

Terasic DE-10 110k 112 

Cyclone 5CEBA5 77k 150 

 

D. Audio Layer Latency Analysis 
The audio layer is the critical path of our design, and will            

determine if we can meet our timing requirement of <10ms          
latency. We needed to verify this latency is realistic for our           
proposed design, so we performed the following estimation. 
 

First, we made the following assumptions:  
 

i. Sampling rate Fs = 48KHz 
ii. Total audio pipeline stages NA will lie in the         

conservative range of 0 005 ≤ N A ≤ 4  
iii. FPGA clock frequency FC will be in the        

range 0MHz 0MHz1 ≤ F C ≤ 5  
 

To meet our latency requirement, it is necessary that:  
0ms N  / F1 ≥  A c  (4) 

In the worst case, we maximize NA and minimize FC. By           
combining (4) with assumptions (i) and (ii), we get a latency           
of 40μs. This leaves us with over 9ms to decode MIDI and            
pass our output through the DAC, which we estimate is very           
feasible. 

V. PROJECT MANAGEMENT 

A. Schedule 
Initially, we were very ambitious with creating a very tight          

schedule for ourselves: we planned to be done with         
simulations within the first 7 weeks. We quickly realized that          
the burden of other classes deemed this schedule unrealistic,         
so we adjusted it to spread out our time more evenly over the             
course of the semester. We redistributed our workload to         
spend more time designing and planning in software, which         
extends the amount of time before we get a working          
prototype; however, it has the enormous benefit of allowing us          
to complete hardware implementations much more efficiently.       
Our schedule is available on the last page of this document as            
Fig. 7. 

B. Team Member Responsibilities 
Because of the modular nature of this project, we decided to           

break up responsibility based on each of the layers described          
in Section III. 

Manav's primary responsibilities are the MIDI layer to        
convert serial input to a series of discrete events that are           
arbitrated to the APUs, interfacing with flash memory to write          
and retrieve configuration settings, and the DAC interface to         
convert digital signal to audio out.  

Joe’s responsibility is the audio layer, which consists of the          
oscillators, which are used to generate a digital wave;         
envelopes to perform modulation on pitch, volume, and other         
effects; effects such as low-pass, high-pass, and distortion for         
a greater range of sounds; LFOs to generate effects like          
vibrato, tremolo, and phasing.; and a polyphony mixer to         
generate a combined wave that can be used as output.  

Eric’s responsibilities are the video layer, which consist of         
the I2C interface for the LCD to display the waves and           
configuration settings; the input encoders to gather user input         
to modify and the modulations and effects applied; and the          
configuration settings module to serve as the centralized hub         
for modifying the system. 

C. Budget 
Though not an official requirement, we have planned the         
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project since the beginning with a goal of being low cost. Our            
goal was under roughly $200; since we are not purchasing an           
FPGA, we did research to find an appropriate FPGA to use           
should we manufacture our product, to see if our price target           
was indeed reasonable. 

TABLE II. BUDGET 

Part Name Quantity Price Total 

FPGA - Terasic DE-10 Standard 
(Provided by CMU) 1 $0.00 $0.00 

---------- 5CEBA5F23C8N (price if we 
were to manufacture it) 1 $88.04 $88.04 

Rotary Encoders (EN11-HSM1BF20) 10 $1.08 $10.80 

Digital to Analog Converter 
(DAC101S101CIMK/NOPB) 1 $1.69 $1.69 

MIDI DIN connector 2 $1.75 $3.50 

LCD Display 
(NHD-C12864A1Z-FSW-FBW-HTT) 1 $22.69 $22.69 

MIDI Keyboard - Novation Launchkey 
Mini mk3 (for testing) 1 $109.99 $109.99 

---------- Estimated cost of PCB and 
other misc. manufacturing costs 1 $50.00 $50.00 

 Cost for Project $149.62 

 Cost to Manufacture $176.67 

D. Risk Management 
In terms of time, we attempted to be very realistic about           

how much of a time investment this project would be and           
made sure to allocate an adequate amount of slack near the tail            
end of our project to make up for any unforeseen          
circumstances. 

In order to increase our hardware design efficiency, we have          
been trying to design each part of each subsystem to be           
extremely modular such that we avoid large, grotesque        
modules that are hard to test. This way, once we can ensure            
that the singular element is working correctly, we can assume          
down the line, any emergent issues are with other elements in           
the design. Paired with a detailed verification platform, we can          
be assured that the final design works as smoothly as possible. 

In terms of resources, we have accounted for the fact that           
many of the smaller pieces like rotary encoders, buttons, and          
so on are bound to break, so we added slightly more than            
necessary to our budget as a backup. 

On a planning level, we tried to make sure that the FPGA            
we plan on using had more than enough multipliers and logic           
elements to make sure we don’t find that our board is           
insufficient for our use case.  

VI. VERIFICATION 
There was a significant emphasis placed on verification and         

testing from the very beginning of this project. We understand          
that large hardware-based projects are often hard to test and in           
the real world have entire teams dedicated to verification, thus          
we wanted to incorporate a strict testing platform as a priority.           

We wanted to make sure that we were testing throughout the           
span of the project, rather than leaving it all at the end, causing             
more hassle than necessary. We still have a dedicated time for           
verification of the whole project near the end of our schedule,           
but this is meant to represent testing the high level design and            
fine tuning. 

Before we start implementing any hardware for the design,         
we ensure that we have a working software prototype designed          
in Python. The purpose of this is two-fold: first, to provide us            
with a general understanding of how to design the         
SystemVerilog description of the module, given that software        
is generally easier to implement; and second, to allow us to           
systematically compare the inputs and outputs at every clock         
cycle to determine exactly when unexpected behavior occurs.        
Developing such a robust software model of our design has          
allowed us to engage in test-driven development for the         
entirety of the semester. 

The testing environment is derived from the Universal        
Verification Methodology (UVM). The exact flow can be seen         
in Fig. 6. We designed a module that monitors all inputs and            
outputs exchanged between a SystemVerilog testbench and the        
device-under-test (DUT). It outputs these signals to files in a          
standardized format. A Python module then reads these files         
and turns them into cycle-by-cycle input and output streams,         
respecting the names and bitwidths of each signal. The inputs          
are fed into a Python test driver, which sends them to a Python             
“golden” model of the DUT. The outputs of the golden model           
are then automatically compared to the outputs of the         
SystemVerilog DUT within the test driver in order to verify          
the design. All of this functionality is automated through a          
script, aside from the creation of the DUT, the testbench, and           
the golden model, which are necessarily custom to each         
module. 

Almost all of our verification can be done using this          
method, since it allows us to bring up and verify the entire            
design in simulation. The only further verification that needs         
to be done post-simulation is (a) verifying the accuracy of          
intonation through the DAC using a tuner, (b) verifying the          
latency from keypress to audio-output using high speed audio         
capture, and (c) verifying that the output of the LCD is to our             
liking. 

 
 
 

 

Fig.6  Flow chart of our test environment 
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Fig.7  Schedule and division of labor 

 


