
FMPGA: The
Frequency-Modulating

Programmable Gate Array

Joe Finn, Eric Schneider, Manav Trivedi

A4

1

Application Area

We provide an FPGA solution for on the fly digital audio synthesis.

Unlike previous FPGA solutions, we are providing:

● The ability to generate audio streams, rather than operate on existing streams.
● The ability for a user to modulate pitch, oscillators, amplitude, filters, and distortion in

real time.

Unlike commercial solutions, we are combining extremely low latency with a very high level
of control over sound synthesis while maintaining 4 note polyphony.

2

System Specification

3

● MIDI Layer
● Audio Processing Layer
● Video Layer
● External components

MIDI Layer

4

● Sampler: samples the MIDI
input at a dynamic rate

● MIDI Decoder: converts
bitstream to a list of distinct
“events”

● Event Dispatcher:
determines the destination
and handling of events

● Arbitrator: fairly distribute
the load and balance 4-note
polyphony

Video Layer

5

● Waveform Buffer - stores
the history of samples so
that an image of the
waveform can be rendered

● I2C Encoder - Converts the
rendered display buffer
into a stream of bits to
communicate with the
display

● Waveform Renderer -
Converts the waveform to
an image

● Configuration Renderer -
Displays settings for the
current sound

Audio Processing Layer

6

Audio Processing Unit

● Envelopes: allow user to on-the-fly adjust/modulate arbitrary parameters
● LFO: low frequency oscillator, allows user to apply a periodic modulation to

arbitrary parameters.
● Applicators: apply an envelope to a particular parameter
● Wavetable oscillator: generates a wave at an audible frequency
● Filters/distortion: modulated audio effects that can be applied to the sound

7

Implementation Plan

● We are designing all FPGA components, including the MIDI, audio
processing, and video layers.

● We are buying the FPGA itself, the external display, the control knobs, and
the DAC. We are also buying a MIDI keyboard for testing.

● We have designed a robust system for testing SystemVerilog against Python
models.

8

Metrics & Verification

- Software simulators & unit tests for each module in design
- Software simulator of entire MIDI layer, audio layer, and video layer

- Verify accuracy of MIDI processing
- Verify accuracy of modulations and effects on pitch
- Verify video functionality and communications

- Physical verification: verification of latency using high speed audio capture,
tuner to measure intonation

9

Bill of materials

10

Updated Schedule

11

Conclusion

We will design a system that allows real time frequency modulation and effects
to be applied to a standalone MIDI keyboard.

Thanks for your attention!

12

