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Abstract—iContact is a mobile camera system that points directly 

at whomever is currently speaking, whether it is a single user moving 
around in a room or a conference room full of people. Using both audio 
detection and facial recognition via computer vision, iContact can 
identify the speaker and maneuver the camera to face that person. Its 
motors can rotate the cameras about the yaw axis, and vertically raise 
and lower the cameras. With iContact, video calls will be made to feel 
more personal and immersive. 
 

Index Terms—Acoustic location, Haar Cascades, I2C, Jetson 
Nano, MIPI CSI-2, OpenCV, PWM, ReSpeaker 
 

I. INTRODUCTION 
ITH the onset of COVID-19, video calls have become 

an absolutely indispensable part of everyone’s daily 
lives, whether it is for attending lectures via Zoom, calling 
friends and family, or even remote internships, most people 
cannot go a day without a video call anymore. Even before 
COVID happened, people have needed video calls for keeping 
in touch with distant friends and family, and many companies 
have relied on conference calls for linking their various 
branches and workers around the world. 

The world has seen how video calls have become 
increasingly crucial over recent years, but video call mechanics 
have not really evolved much – conference calls are all still 
primarily done through a laptop camera or a desktop webcam. 
The question we asked was: How can this project better 
immerse the remote viewer into a video call? The answer is 
iContact, an agile camera that keeps the focus on the speaker in 
any conversation by physically adjusting to center on the 
speaker’s face. 

There are four areas of functionality that the design 
requirements categorize into: conference viewing, working 
range, algorithm accuracy, and speed. For the viewing 
requirement, iContact should be compatible with any 
conferencing software and able to operate at 1080 pixels at 30 
frames per second. For the working range, iContact will aim to 
have a 360-degree field of view, one foot of vertical panning, 
and ten feet of microphone audio pickup and person detection 
radius. The requirements for algorithm accuracy will be set for 
90% with respect to centering, speaker identification, and 
cerebral command comprehension, as well as 95% motor 
positioning accuracy. Lastly, within the speed category, 
iContact should complete motor positioning adjustments, audio 
processing, and video processing within one second. The 
speeds for audio and video processing are important to have 
minimal lag between the conferencing video feed and iContact. 

II. DESIGN REQUIREMENTS 
There are different tests for the various areas of functionality. 

To meet the high compatibility requirement, iContact will be 
tested on Zoom, WebEx, and Google Hangouts. The frame rate 
requirement can be determined by counting the number of 
frames that get sent between iContact and the host computer 
within a certain amount of time. Regarding the working range 
and algorithm accuracy requirements, there are two tests to be 
performed: a stationary speaker test and moving speaker test. 
The stationary speaker test will be conducted at varying 
distances and heights from iContact to test the acoustic location 
range, the vertical panning range, and the centering accuracy of 
an out-of-frame speaker. The distances will be between three to 
fifteen feet, in and out of frame. The heights will be set such 
that the speaker’s head is above and below the camera frame as 
well as above and below the center of the frame. The moving 
speaker test will also be conducted at varying distances and 
varying heights, determined by the working range of iContact 
found from the stationary test. The moving speaker test will be 
used to verify centering accuracy, field of view, and vertical 
panning range. In addition to the previous two tests, there is an 
additional multiple speaker test, which will gauge how 
accurately iContact is able to identify speakers. All previous 
tests mentioned will also record the time of each processing 
component to determine how well iContact meets the speed 
requirements. One additional test to specifically test speed is to 
have multiple speakers conversing back and forth for varying 
speaking time durations. These requirements and tests are listed 
in Table I. 

 

TABLE I.  DESIGN REQUIREMENTS 

iContact 

Authors: Heather Baker, Anna Li, Edward Lucero: Electrical and Computer Engineering  
Carnegie Mellon University 

W 

Functionality Requirements Testing 

Viewing 
High compatibility, 
1080p @30fps 

Run with Zoom, Webex, 
and Google Hangouts 

Working range 

360-degree field of view, 
1ft vertical panning 
range, 10ft acoustic 
location range, 10ft 
person detection radius 

Stationary or moving 
speaker around the room 
at various distances and 
angles from iContact, 
speaking (50-65dB) 

Algorithm 
accuracy 

90% centering accuracy, 
90% speaker 
identification accuracy 

Stationary speakers 
converse back and forth, 
Subject moving while 
continuing to talk 

Speed 

<1s motor control for 
camera adjustment, <1s 
audio input processing 
latency, <1s video input 
processing latency 

Stationary speakers 
conversing back and 
forth, taking turns 
speaking one sentence at 
a time 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
There are two degrees of freedom for the physical design: 

vertical movement and yaw axis rotation. A stepper motor is 
used to control the elevation of the cameras. Each camera is 
attached to a micro servo, which controls yaw rotation (see 
Figure 1). 

The main computing is done through the Jetson Nano (see 
Figure 3) and is powered by a 5-volt, 4-amp power supply. 
Connected to the Nano are two cameras, a microphone array, a 
servo shield, and a motor HAT. The motor HAT connects a 
stepper motor, powered by a separate 12-volt, 5-amp power 
supply, to the Jetson. The two servos are connected to the servo 
shield and powered through the Jetson.  

For the overall software design of the project there are three 
separate components that interact with the main program. These 
three components are software programs that control the audio 
processing, the motor controller, and the computer vision 
software. The main program is responsible for the 
communications between other components by controlling 
when they start up and making use of the return values from 
each program. 

The system first starts out in an idle state where the camera 
positioning is the most recently set angle from either initial 
startup or from the most recent speaker detected (see Figure 2). 
The first step is to retrieve the most recently detected speaker 
from the audio processing component. The Jetson utilizes the 
microphone array’s firmware to determine the direction of 
arrival of any noises detected, although the Jetson only waits 
for a human voice to be detected. After filtering out noisy values 
and outliers, it then updates the speaker angle to which the 
camera must rotate (about the yaw axis) to point in the general 
direction of the speaker. It sends this angle to the main program 
upon request. 

Once the main program receives an angle from the audio 
component, it can then send instructions to the motor controller. 
The motor controller is responsible for turning the specified 
motors to the desired angle. By using the Adafruit Motor 
Library, motor movement can be done by specifying the angle 
to turn to for the micro servos and the angle amount to turn by 
for the stepper motors. For the stepper motor, a counter tracks 
the current angle relative to the initial angle, to calculate the 
degrees the stepper motor needs to turn. Once the motors have 
set the angle to the correct angle, it responds back to the main 
program that it is finished. The angle calculated by audio 
detection points the camera in an approximate direction of the 
speaker. Computer vision face detection is then utilized to 
perfectly center the speaker in the camera’s view, through 
precise adjustments. Thus, the next step is for the main program 
to tell the computer vision component to start looking for a 
speaker, as well as which of the cameras’ views the speaker is 
in. 

After the computer vision portion has started up, it looks in 
the specified video feed for the speaker. If a speaker is detected 
in the updated frame, the final recentering for the speaker can 
then be computed by telling the main program the final set of 
motor instructions that needs to be set to complete the centering. 
This is a single complete loop of the software state machine.  

Fig. 1. iContact mechanical design  

 

Fig. 2. Software state machine 
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Fig. 3. Hardware system specification  

IV. DESIGN TRADE STUDIES 
The following are justifications for the component selections 

and any changes that were made from the project proposal. 

A. Jetson Nano vs. Raspberry Pi 
We opted to use the Jetson Nano for iContact. As shown in 

Table 1, the Jetson Nano provides more power for video 
decoding and better support for peripherals than the Raspberry 
Pi does. A big advantage of the Jetson Nano is the increase in 
MIPI CSI-2 lanes as this increases the number of cameras we 
could use, which reduces the latency for speaker detection (see 
Section G). The Jetson Nano also has I2S for audio, which is a 
better choice since it is digital, resulting in less noise compared 
to analog and thus better audio quality. While this was our 
original plan, it was later changed as detailed in Section C. 

B. Audio Hardware Comparisons 
Our initial plan for the audio was to use four microphones, two 
connected in stereo to each of the Jetson’s I2S pins. However, 
we soon realized that we would need each individual 
microphone’s audio feed to determine the difference in arrival 
time of the speaker’s sound at each of the microphones. By 
connecting two microphones on one I2S input, we would not be 
able to process their audio feeds separately. We briefly decided 
to switch from using four microphones to just two – one on each 
I2S pin. We moved away from this idea when we realized we 
would never know from which side of the microphone array the 
source would be. As illustrated in Figure 4, the difference in 
arrival time would be the same for the two speakers, since they 
are equidistant from each microphone; the two-microphone 
array would not be able to distinguish between them. 

From here, we abandoned the I2S microphones and made use 
of the three remaining I2C pins on the Jetson (the Jetson has 
four in total, and one is used for the motors). This meant we had 
to switch to analog microphones and an I2C ADC (analog to 
digital converter), as opposed to our I2S microphones with 
digital output. In the search for new analog microphones, we  

 
 
 
 

TABLE II.  JETSON NANO VS. RASPBERRY PI SPEC COMPARISON 

had to make some more tradeoff analyses. We narrowed our 
options down to Adafruit’s MAX4466, which has adjustable 
gain, and MAX9814, which has automatic gain control. The 
MAX4466 was cheaper, but customer reviews revealed the 
production quality varied widely, and it picked up a great deal 
of noise. We ended up choosing the 9814, which was pricier but 
also seemed much more reputable and higher quality.  

However, the ADS1115 ADC, that we obtained to work with 
these new MAX9814 microphones was not sampling quickly 
enough. Even after optimizing our code and setting the Jetson’s 
I2C bus speed to the maximum frequency, we could only 
achieve about 300 samples per second, which, split among the 
three microphones, meant 100 SPS per microphone. This was 
far from the precision we needed, since our goal was to be able 
to detect the difference in arrival time between the 
microphones. Plus, we learned that we would need to sample at 
least 8000 Hz, least twice the maximum frequency of the typical 
voice range to avoid Nyquist aliasing. 

 
Specs and Cost 

Jetson Nano B01 RaspberryPi Model 4 

Price $99 $55 

RAM 4 GB 4 GB 

Video 2 MIPI CSI-2 DPHY lanes 1 MIPI CSI-2 DPHY lanes 

USB 4 USB 3.0 2 USB 3.0, 2 USB 2.0 

GPIO 40 pin 40 pin 
Video 
Decoder H.264 up to 1080p240 H.264 up to 1080p60 

Audio 2 I2S No I2S 

CPU ARM A57 ARM A72 

Motor 4 I2C, 1 PWM 6 I2C, 2 PWM 



18-500 Final Project Report: 12/18/2020 
 

4 

After realizing the MAX9814 microphones were a lost cause, 
we moved to the next idea: mini-USB microphones. These had 
a sampling rate of 44100 Hz, which was a massive 
improvement and well above the Nyquist frequency. Using the 
Jetson’s three USB ports for three microphones, each 1.5 ft 
from each other, we were able to get a rudimentary acoustic 
location algorithm working -- it simply detected sudden noises 
or rises in amplitude among the microphones (i.e. interpreted as 
someone beginning to speak), compared the arrival times of the 
noise to each microphone, and returned which microphone had 
the earliest arrival time. With this implementation seeming to 
work thus far, we attempted to integrate more microphones 
using a USB splitter. However, this was soon abandoned after 
encountering issues with the PyAudio module we were using in 
our code -- it could not consistently assign the same device 
indices to each microphone, even if, physically, the setup and 
connections were precisely the same. Unfortunately, things 
continued going downhill from here with regards to 
consistency. From the beginning stages of implementing the 
USB microphone solution, we found that each microphone had 
some delay in its audio detection; we easily managed this by 
determining that delay and hardcoding it into the acoustic 
location program. After more and more trials, however, we 
discovered that this delay fluctuated unpredictably depending 
on the number of processes running on the Jetson. Even worse, 
the microphones were sometimes “hard of hearing” and could 
not dependably detect voices at normal speaking levels. 

Yet again, we changed to a new implementation. This time, 
figuring that the sporadic delay with the USB microphones was 
in part due to the built-in audio interface in each microphone 
and the USB protocol, we opted once again for analog 
microphones and an ADC. The analog microphones that we 
used in the I2C implementation worked fine, so we only sought 
out a new ADC. We managed to find an ADC with a 200 kHz 
sampling rate, the MCP3008, which communicated over SPI. 
This was far beyond the frequency we needed, but we 
anticipated that the sampling rate listed in the product’s 
description would inevitably drop in nonideal conditions. Upon 
testing out our new hardware, we were shocked to discover that 
the sampling rate fell to a mere 600 SPS, i.e. 200 SPS for each 
of the three microphones, again much too low for our purposes. 

At this point, after much trial and error and research, we 
realized that we simply would not be able to achieve the 
sampling rate and real-time precision required for accurate 
acoustic location without a dedicated microcontroller running a 
real-time OS, as opposed to our general-purpose Jetson Nano 
running Linux, a time-sharing OS. Luckily, we at last managed 
to find an easily integratable solution: the ReSpeaker v2.0 4-
microphone array. Instead of having to connect four discrete 
microphones to the Jetson, the ReSpeaker had all four 
microphones already integrated and synchronized on this 
singular chipset; all we had to do was plug it into one of the 
Jetson’s USB ports. The ReSpeaker was designed for 
functionality like acoustic location -- in fact, acoustic location 
was one of its built-in algorithms. This solution, not being our 
own implementation from scratch, was not ideal, but it perfectly 
suited our purposes and allowed us to advance our project. 

 
Fig. 4. Two microphone setup  

C. Audio Detection Software Optimizations 
The ReSpeaker’s built-in algorithms for voice detection and 

direction of arrival came in very handy and were easy to use, 
but there were still optimizations to be made. In our original 
code, we updated the angle of the speaker every time a voice 
was detected. This resulted in the speaker angle being updated 
too often, typically only by a few degrees, which made the 
motors “jitter” as they continuously made these insignificant 
adjustments. There was also the occasional outlier, sometimes 
in the complete opposite direction of the speaker. To manage 
these issues, we changed the algorithm such that, upon 
detecting a voice, it would record the next 20 speaker angles 
(with 50 ms between readings) as returned from the built-in 
direction of arrival functionality. From this sequence of angles, 
it would pull the median and use this as the new speaker angle, 
which helped eliminate outliers. Next, it would compare this 
new angle to the current angle; if they differed by at least 10 
degrees, the current angle would be updated to the new angle. 
This prevented the speaker angle from being updated too 
frequently. We also found that the noise from the motors 
moving was interfering with the audio processing, so we 
adjusted the algorithm to pause listening until the motors 
finished moving. 

After making the optimizations, our speaker identification 
accuracy improved considerably. We tested and measured this 
metric by holding conversations between two to three people 
located at various positions 4ft from the iContact. If the 
iContact could detect someone beginning to speak and turn to 
an angle such that that person was somewhere in the camera’s 
view (not necessarily centered), we would count this as a 
successful speaker identification. We ran tests in which there 
were 30 times that a new person would begin speaking. The 
iContact was able to achieve 100% speaker identification 
accuracy between two speakers (on opposite sides of the 
iContact) and 90% among three speakers (equidistant from each 
other and therefore closer together than the two speakers were), 
thus fulfilling our design requirement for this metric. 

For one lone person moving around the room and speaking 
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at different distances from the iContact (beginning to speak 30 
separate times with at least five seconds between sentences), the 
acoustic location was able to angle the camera such that the 
speaker was in frame 100% of the time up to 4ft, and 90% up 
to 6ft. This fell short of our 10ft acoustic location range design 
requirement. We believe this is, in part, due to the lower volume 
of the speaker’s voice in conjunction with the increased amount 
of sound waves bouncing off of surfaces as the speaker moves 
farther away, which makes it more difficult for the iContact to 
assess voice detection and time delays. 

Throughout testing, we also kept track of the audio input 
processing latency, which we discovered was well below the 
upper bound we had set in our design requirements, averaging 
at 0.6451 seconds with negligible variance. 

D. Panning Range Comparison 
Early on in our project design, the vertical panning range was 

changed from the original plan of three feet to one foot. There 
were multiple justifications for this design change. The taller 
the vertical panning range, the heavier the elevator would be. 
This added weight presented two issues: the base would need to 
be heavier to keep the center of balance low, and the base motor 
would have to be more powerful to provide a higher torque to 
the elevator. In addition, the heavier and larger the entire project 
was, the less practical the iContact became for the user. Another 
metric driven decision was the latency time given by needing to 
move the entire three feet. Using the average data from Table 
#, we can determine that the latency for stepper movement is 
0.313 on average and thus for three feet the movement would 
likely be 0.939 which heavily cuts into our goal of moving in 
under one second. In the end, we were still able to capture a 
reasonable vertical range for our use cases, the elevator was 
able to detect a range of 20 inches when users were one foot 
away from the camera (see Table III). 
 

TABLE III.  RANGE BETWEEN BOTTOM AND TOP OF ELEVATOR AND 
CAMERA FRAME  

E. Motor Selection 
For servo selection, we needed a small servo to fit on the 

elevator and minimize the weight of the device. In addition, we 
wanted the servo to move fast to reduce the motor movement 
latency. At the time, we wanted the servos to have a range of 
180 degrees because the initial design was to move them in the 
pitch axis, so there was no need for movement past 180 degrees 
as it would hit the elevator shaft. We selected the TowerPro 
SG92R micro servos because on paper it met our needs. In 
practice, the servo only moves between 10 and 170 degrees; any 
farther and the servo begins to emit noise, which is undesirable 
as it can affect the speaker detection. Later when we repurposed 
the servo motors to rotate in the yaw axis, the degree limitation 
prevents full 360-degree motor movement; however, the 
cameras have over a 60-degree field of view, so all 360 degrees 

are accessible by camera, and with some adjustments of the 
video feed, the face is centered. For the stepper motor selection, 
we chose to have stepper motors for their angular precision. We 
selected the Adafruit Nema-17 stepper motor as it provided a 
torque of 28 oz-in, as we anticipated our device to be under one 
pound, we believed this would be enough. 

F. Motor Design 
Originally, the goal for the project was to have three degrees 

of freedom; however, the final design choice was to only have 
two degrees: yaw and vertical. The design change was made by 
repurposing the servos from rotating around the pitch axis to the 
yaw axis, and the need for the change arose from the base 
stepper motor not having enough torque to be able to rotate the 
entire system around the yaw axis. There were some benefits 
that came from using servos instead of steppers. Firstly, the 
movement for the servo is much quicker than the movement for 
the stepper because the servo can take one fluid motion to go 
from one location to the other, while the stepper motor requires 
to move step by step. This fluid motion also reduces the amount 
of jitter as seen in the camera frame. Secondly, the micro servos 
are two separate systems. As a result, if there are two speakers 
such that one speaker is in the range of one camera and the other 
speaker is in range of the other camera, the servos will keep the 
cameras pointed at the speakers, while the software swaps 
between the camera inputs.  
 

TABLE IV.  MOTOR TIMES WHEN RUNNING IN THE FINAL PRODUCT 

 
 

 
Fig. 5. Motor movement speed plot 

Distance from Camera (feet) Range of Camera View (inches) 

1 20 

3 43 

6 87 

Test description Motor Time 
Average (seconds) 

Motor Time 
Variance 

Only servo 
movement 

0.115 0.092 

Stepper and 
servo movement 0.449 0.136 
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G.  Video Transmission Selection 
Originally, we planned to send video from one camera to the 

Jetson Nano for processing and then to the user’s computer. The 
design was to edit the Linux kernel of the Jetson Nano before 
flashing it. Linux has Linux Gadget Drivers, such that when a 
USB probe from the user’s computer arrives, the Linux 
computer, AKA the Jetson Nano, would present itself as a USB 
Video Class gadget. For the scope of this class, this seems like 
it could be a risk point because of the time it would take to try 
and get this component working, and how it would cut into the 
already tight time frame we had scheduled for everything else. 

One of the alternatives that we tried was to make use of 
Gstreamer to send the video feed from the Jetson to a port on 
our local machines through local internet. This led to a couple 
of problems. Only Windows 10 can detect the video stream as 
a camera source without additional setup, and the video stream 
needed to be ONVIF (a standardized interface for internet 
protocol-based video streams).[5] We had to reduce the 
framerate down to a maximum of 10 frames per second and the 
pixel width down to 64 pixels and even then, there was blurring 
from missing pixels being sent. There were too many sacrifices 
being made for this design and we needed to pivot to something 
else. 

In the end, our design choice was a video capture card which 
takes in an HDMI input and converts it into a USB video output. 
This solution worked well and was smooth to integrate into our 
system as the Jetson could send video over HDMI and no install 
was needed to have the video capture card be detected as an 
input camera. Table II and III detail the metrics for this design 
choice. In Table II, maximum FPS (frames per second) is the 
maximum FPS possible as specified by our code. In Table 3, it 
was measured by determining the total number of frames sent 
for the whole test run, excluding the time for initializations on 
startup. Latency was measured with a stopwatch by comparing 
the real-time value to the value seen on the video feed. 

 
 

 

TABLE V.   VIDEO CAPTURE CARD VS. IP-CAMERA 

TABLE VI.  VIDEO CAPTURE CARD LATENCY 

 

H. Camera Comparison  
For our cameras, we had the choice between USB cameras and 
MIPI camera modules. USB cameras are easy to use and are 
readily available but the biggest concern for them was the 
greater latency, since the USB protocol includes routing  
through the CPU before it can be used, whereas a MIPI 
connection is sent straight to the memory. In addition to this, 
MIPI cameras were cheaper than a webcam. The final product 
that we landed on was the Raspberry Pi Camera Module V2 
since it was highly rated and known to being compatible with 
the Jetson Nano and other Jetson environments. Our second 
design choice for the cameras was the number of cameras that 
we wanted to use. Part of our design requirements is to 
minimize the amount of time for speaker transitions and part of 
that will come from minimizing the time it takes for the motors 
to adjust the camera. Given that each of the chosen cameras has 
a 62-degree horizontal field of view, we could always have full 
coverage, but we felt that this was unnecessary, as we would 
still need to include rotation for the proper recentering. We 
wanted to choose the number of cameras that would reduce the 
maximum amount of yaw-axis rotation to a reasonable degree 
(see Figure 1). For example, in a single camera setup, the max 
we would need to rotate is 180 degrees to get to the furthest 
point away from our current field of view. We initially wanted 
to work with 3 cameras since that would reduce it to 60 degrees 
as our maximum rotation, but then we ran into the limitations 
of the Jetson Nano. The Nano could potentially accommodate 
additional cameras, but that would require us to purchase 
additional hardware to mux on the MIPI lanes. For this reason, 
we felt that we would still have a reasonable amount of rotation 
using only two cameras, and it would not require additional 
hardware, thus minimizing the total project cost. While testing 
with the servo and stepper motors we eventually came down to 
using only 2 cameras where each was responsible for half of the 
total 360 field of view. 
 
   Video Capture Card IP-Camera 

Maximum 
FPS 

21 10 

Pixel width 1080 64 
Latency 
(seconds) Less than 2 Greater than 2 

OS 
compatibility Windows, Linux, MacOS Windows 10, Linux 

Setup required No Yes 

Test description Latency Average 
(seconds) Latency Variance 

No face in frame 1.04 0.09 

Face in frame 1.79 0.12 
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V. SYSTEM DESCRIPTION 
The hardware system is centered around the Jetson Nano 

B01, which does most of the computation. It is powered by a 5-
volt, 4-amp barrel jack power adapter. Directly connected to the 
Nano is a ReSpeaker v2.0 4-microphone array on one of the 
USB 3.0 ports, two Raspberry Pi V2-8 camera modules 
connected via MIPI CSI-2, and a Adafruit v2.3 motor HAT and 
Adafruit 16-channel Servo Shield on one of the I2C ports. 
Connected to the servo shield are two TowerPro SG92R micro 
servos, and to the motor HAT is a Adafruit Nema-17 stepper 
motor. All motors communicate to their respective motor 
controllers via PWM. 

For the overall structure of the software, there are three 
distinct parts that all need to communicate with each other. 
These three components are the motor controller, the audio 
processor, and the speaker tracker. These components are all 
connected to a main program that will keep track of the current 
state of the software cycle. It will request new input from the 
audio processor, give motor instructions to the motor controller 
and signal to the speaker tracker when to start and expect a 
result from it as well. Threads for each of these components are 
all going to be concurrently running. [7, 11] 

A. Motor Software 
To control the motors, we utilized Adafruit CircuitPython, 

specifically the MotorKit and ServoKit libraries. [3] The micro 
servos are easily controlled by specifying angle within a range 
of 180 degrees to turn to. The stepper motors can only move by 
taking a 1.6-degree step at a time. To keep track of the location 
of the cameras, the main program keeps track of the latest angle 
for each servo. This is tracked in the main program because the 
information is needed to determine new angles based on the 
audio software. For the stepper motor, the motor controller 
software keeps track of how many steps the stepper has taken. 
The bottom of the elevator is at a 0 step count, and the top is at 
a 480 step count. To ensure our software can accurately place 
the vertical location of the cameras, iContact has a 
predetermined starting position for the stepper motors at the 
bottom of the elevator, and at shutdown will return to this 
position. 

The thread for motor control also has some control over the 
audio and video processing threads. This changed from our 
original plan of the main thread controlling all communications 
between threads. During integration we discovered two issues. 
Firstly, and most concerning, was the stepper motor started to 
move very slowly. Secondly, the servo movement was loud and 
sudden enough for the audio processing to recognize as a voice. 
We reasoned the first issue arose from the addition of the audio 
processing; with the increase of workload for each thread, the 
motor thread was being interrupted more. Since the stepper 
motor could only move one step at a time, the audio processing 
would interrupt this critical section and thereby increase the 
latency between steps. To resolve this issue, we utilized the 
event class from Python’s threading library. One thread signals 
an event and other threads wait for it. The motor controller 
thread signals an event and then waits for the other threads to 
finish their current iteration of processing. After the other  

Fig. 6. Our project 

threads are done processing; they wait for the motor event to be 
done. Once motor movement is complete, the motor controller 
thread clears the event, and all threads resume (See Figure 7).[11] 
This solution solved the slow stepper movement by only letting 
the motor controller thread run for that code section. This 
solution also fixed the second issue because the audio processor 
no longer collected data during the time the motors were 
running.  
B. Audio Subsystem 

The audio program makes use of the Python library [8] 
provided by the manufacturer of the ReSpeaker microphone 
array. Three of the built-in algorithms that we utilized were 
voice detection, which returns a Boolean value indicating 
whether the sound being picked up is that of a person’s voice, 
and direction of arrival, which returns the angle of the sound 
being picked up relative to a designated zero-position on the 
microphone array. Both functions retrieve their values from the 
firmware on the ReSpeaker. 

The voice detection algorithm distinguishes voices from 
other sounds based on the amplitude, frequency, and duration. 
With regards to amplitude, human voices, within the pickup 
range of the ReSpeaker’s microphones, tend to be between 30 
and 60 dB. Similar to how a voice’s amplitude is expected to be 
within a certain range, human voices are typically between 300 
and 3400 Hz (which is also the frequency range that phones  
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Fig. 7. Event flowchart 

accommodate) in frequency. Lastly, a speech segment -- even a 
single word -- is usually at least 300 microseconds in duration. 
Any noises beyond these ranges are considered incidental 
noises and not detected as human voices [12]. 

The acoustic location algorithm works by utilizing the 
physics of the traveling of sound waves and the differences in 
arrival times of the speaker’s sound to each microphone. From 
the measurements noted in Figure 8 and the speed of sound, c, 
we can get the time difference between one pair of microphones 
as: 

 Δt = (d/c) sin(a + π/2 - x + θ) (1) 

From this [4], we can solve for x, the direction of the source. 
The ReSpeaker calculates the direction of the source among 
each pairing of its four microphones and returns the average [8]. 

Knowing how the built-in capabilities of the ReSpeaker 
worked, we were able to confidently utilize them for the 
iContact. While the microphone array can, of course, pick up 
all kinds of sounds, the iContact is only concerned with human 
voices. Thus, we took advantage of the ReSpeaker’s voice 
detection functionality, such that the iContact is constantly 
listening but will ignore any sounds that are not a human voice. 
In the event that a voice is heard, the program begins collecting 
a sequence of 20 angles, as returned by the direction of arrival 
algorithm, waiting 50 milliseconds in between readings. Then, 
it compares the median of this sequence to the current speaker 
angle; if the two values differ by at least 10 degrees, the current 
speaker angle is updated to the median of the sequence. 
Otherwise, it is ignored, and the loop begins anew by collecting 
another sequence of angles. 

 
 

C. Computer Vision Software 
When called upon, the computer vision software will track 

for the face of a person [2]. These cameras are connected to the 
Jetson Nano via two MIPI lanes. The first step is to identify all 
the people in the current frame. This is done with the use of haar 
cascades. haar cascades are pre-optimized models for OpenCV 
and can detect a pattern within the image it is scanning through. 
After the frame has been processed by the OpenCV, there is a 
possibility that multiple people are detected. When this happens 
choose the center most person because we rely on the accuracy 
of the audio processing to properly give us the most accurate 
speaker. From here the motor instruction is created by 
approximating the angle by scaling the position in frame to the 
camera’s field of view. The Raspberry Pi Camera Module v2 
has a horizontal field of view of 62.2 degrees the distance of a 
person’s face to the center of the frame was calculated and 
scaled to the horizontal field of view. After testing we found 
that the approximations gave us an average accuracy of 87.4% 
and a standard deviation of 12.6%. This can  

Fig. 8. Four microphone algorithm 
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be explained by our linear scaling which meant that if the 
speaker was already close to the center of the frame it would 
have a more accurate update than if the speaker started off 
farther away from the center. Due to the relatively accurate 
acoustic locating, it meant that we were less likely to have the 
extreme cases that detected faces closer to the edges of the 
frame. For the vertical update of the cameras, it was harder to 
calculate an exact degree step because we were using the motor 
to control a chain that would rotate. We instead gathered data 
on how an update on the motors would change the image that 
was being captured. We did our testing by having the program 
capture a single frame and find a face then update the motor to 
change its elevation and then look for the same face. The pixel 
distance was then divided by the number of steps we had the 
motor run and we found that in a 1080 image, 1 pixel was 
approximately a double step for our stepper motor. This vertical 
panning had similar problems in how a linear scale would not 
always work well but since the vertical field of view of the 
camera was lower, 42 degrees, the actual accuracy was at 90% 
with a standard deviation of 5%. Here we were able to barely 
meet our requirements and the standard deviation is still quite 
high, but the vertical centering was significantly better than the 
horizontal centering. With these two combined we were able to 
accurately center a face in the frame after a motor update. One 
of the key issues with using servo motors to adjust these 
cameras was that we could not actually have either camera set 
to watch at the degree ranges of 350 to 10 degrees and 170 to 
190 degrees. Setting the servos to those degrees would lead to 
the servos to function improperly so we set a max range that the 
cameras could be set to. In order to still get a centered image, 
we crop the image around the face instead and aim to use as 
many pixels as possible. Instead of altering the image to fit the 
screen size we opted to maintain the quality of the image and 
just filled the empty pixels with black. This allowed us to 
maintain centering for the edges of our cameras’ range. 

D. Motors 
The Jetson controls the stepper motor through an Adafruit 

motor HAT v2.3 and the servos through an Adafruit 16-channel 
servo shield. Located on each shield is a PWM chip driver, 
specifically the PCA9685 from NXP, which is a I²C-bus 
controlled 16-channel LED controller, but the PWM signal for 
controlling LEDs works for controlling motors. The Jetson 
communicates to each PWM chip driver using one of its I²C 
ports at a frequency of 100Hz. I²C is a communication protocol 
that allows one master, in this case the Jetson, to communicate 
to multiple devices of different addresses. There are two wires 
that are used as the bus: SDA for data and SCL for the clock. 
To communicate to the devices, the Jetson sends out the address 
of the device to establish communication with. Then the Jetson 
sends data regarding which motor it wants to control and at 
what speed or angle the motor should turn to. In our project, the 
two different PWM chip drivers are addressed such that the 
motor HAT’s address is 0x60 and the servo shield’s address is 
0x40. After the PWM chip driver gets an instruction from the 
Jetson using I²C then it controls the motors by signaling through 
PWM.[6]   

 
Fig. 9. Centering accuracy plot 

PWM stands for pulse width modulation. There is one wire 
for signaling and it conveys information using duty cycle. One 
period of the signal would be the length of time the signal is 
high plus the length of time the signal is low before it goes high 
again. Duty cycle is the percentage of the period that the signal 
was turned on for. The signal has a set frequency. For the 
stepper motor, the frequency needs to be above 1600Hz. The 
servos require 50Hz for operating. This difference in frequency 
necessitated the use of two shields because the PCA9685 cannot 
be set to operate at two different frequencies. 

For the two servos, the width of the PWM signal pulse 
indicates the angle at which the servo should turn to. 0.75 
milliseconds are the minimum pulse width and indicated an 
angle of 0 degrees, while 2.25 milliseconds is for an angle of 
180 degrees. For the stepper motor, six PWM signals go to a 
Driver IC for Dual DC motors (TB6612FNG). The stepper 
motor has two coils and the two separate signals for each DC 
motor instead go to each coil. Each coil is controlled by three 
PWM signals that are used to determine which of the five states 
of operation the coil should be in: clockwise, counterclockwise, 
standby, short brake, and stop.[9, 10] 
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VI. PROJECT MANAGEMENT 

A. Schedule 
Our project schedule had changed little up to Week 7, as we 

had managed, for the most part, to stay on track. The only major 
change was the removal of the section of our plan where we 
intended to implement verbal command functionality, which 
we realized early on would be too great of a challenge on top of 
our existing design. 

Beyond Week 7, there were some relatively substantial 
changes to the schedule for some of the individual components 
of the project as we scrambled to get them working for 
integration. Most notable of these changes were the extended 
time allocated for video passthrough, which proved to be a 
greater challenge than anticipated because of a lack of well-
documented solutions, and the multiple changes in audio 
implementation plans. The latter resulted in the most schedule 
deviation, but these changes only minorly impacted integration 
and testing, which we were able to complete on time. 

B. Team Member Responsibilities 
We have divided the work for our project such that Heather’s 

primary task is motor control, Edward’s CV, and Anna’s audio. 
As for our secondary tasks, Heather and Edward are working 
jointly on hardware communication for the video feed (i.e. 
camera to Jetson to computer), while Anna and Heather are 
working together on hardware communication for the audio 
feed (i.e. microphone to Jetson to computer). Given that we are 
all in different locations for this remote semester, Heather, 
alone, took on the additional task of physically assembling the 
device. When it was time to integrate and test, we worked 
together remotely over Zoom while Heather ran the iContact. 

C. Budget 
Our bill of materials may be referred to in Figure 10. We had 

to purchase multiple (sets of) items, such as the Jetson Nano, 
cameras, and microphones, so that each of us could have our 
own partial implementation of the project, since we are all 
working remotely. The blue rows are the items that we planned 
to purchase from the start; the yellow rows are the items that we 
did not initially plan to purchase but ended up needing; and the 
red rows are the items that we purchased but did not use. The 
“Cost to Budget” column shows what we spent our given $600 
budget on (shipping and tax included), with the green rows at 
the bottom showing the total spent and how much we had left 
over. The neighboring “Cost of iContact” column shows the 
cost (not including shipping and tax) of the components 
required to construct one iContact, with the total in the green 
row at the bottom. 

D. Risk Management 
From the beginning of our project, we did a great deal of 

planning to minimize the many risks -- particularly with respect 
to integration -- that would inevitably come with working on a 
mechanical design while the three of us were all in different 
locations. For example, knowing integration would be perhaps 
the most challenging part of our project, we made sure that none 
of the integration tasks were solo tasks. 

Fig. 10. Centering Accuracy Plot 

Throughout our project, there were multiple times where we 
realized we had misjudged just how critical and arduous an 
individual’s task was. To ensure that these tasks were executed 
well and that all our bases were covered, we would designate 
one or two other team members to join in the work. For 
example, the video transmission communications turned out to 
be much more involved than any of us had anticipated. As a 
result, we changed this problem into a two-person endeavor for 
the next couple of weeks. During this semester, there were 
many instances where we had to reprioritize. 

Moreover, we spent a great deal of time coming up with what 
components to use in our design and the potential risks that 
came with each decision. One of the biggest decisions we made 
was whether to use a Jetson Nano or a Raspberry Pi, which 
would be the brains of our entire device. The primary features 
we were examining while deciding between the two was the 
peripheral support. Our overarching ideology was “the more 
peripherals, the better” -- it is, of course, always easier to add 
components or change protocols with an excess of ports than a 
lack thereof. For instance, we knew our project would require 
the use of either one or two cameras, but at this early stage, we 
were still unsure of which quantity we would ultimately agree 
upon. In that respect, the Jetson, having two video lanes, was 
the safer bet compared to the Raspberry Pi, with its singular 
video lane. When it came to choosing microphones, we initially 
opted for I2S, in part because it is designed to be digital (and 
would thus have less noise than analog), and because it would 
not use up any of the USB ports, which we wanted to keep open 
in case we needed to add any other components to our project 
down the road. Lastly, in general, we did our best to minimize 
our spending to leave us enough room in the budget for 
unexpected purchases to be made in the future. We went 
through numerous rounds of trial and error with different audio 
hardware, so our frugality from earlier in the semester paid off 
and allowed us the flexibility to try new implementations. 
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VII. RELATED WORK 
Aside from iContact, there are several other similar products 

that seek to make video calls more personal using smart 
cameras that dynamically focus on whomever is commanding 
attention. One such existing solution is the Meeting Owl, a 
smart video conferencing camera that captures 360-degree 
video and audio. Its single omnidirectional camera takes in a 
static, panoramic view of the room from the center of the table, 
then displays the section of that view where the current speaker 
is located. One of last semester’s CMU ECE Capstone projects, 
COMOVO, was also a smart video conferencing camera to be 
placed at the center of the table. Instead of having a panoramic 
view of the room like the Meeting Owl, this unidirectional 
camera was motorized and capable of turning to whoever is 
speaking either automatically or by interpreting physical 
gestures. Other devices, like Google Meet’s video conferencing 
hardware, Polycom’s Poly Studio, and Facebook’s portal 
feature a stationary, unidirectional camera to be placed at the 
front of a conference room such that it has a full view of 
everyone present and can zoom in on the current speaker. What 
sets iContact apart from all these products, which seem limited 
to one plane of view, are its abilities to raise and lower, giving 
it a vertical range of view that existing solutions cannot achieve. 

VIII. SUMMARY 
Overall, we were able to meet the majority of the 

requirements that we set out. The requirements that we did not 
reach were in the fields of acoustic location range and the 
centering of the cameras. For the acoustic location detection, 
we were primarily limited by the complexities of sound wave 
reflections as the speaker moved farther away from the 
iContact. The horizontal centering accuracy varied a lot because 
of our linear approximation for calculating the motor angle 
update. Given additional time, we could improve our system 
performance with more sensitive microphones and enhancing 
the centering algorithm to be more accurate. Another 
improvement we could try is converting our software to be 
based in C rather than Python, which would increase execution 
speed on the overall system so that every update is fastern the 
overall system so that every update is faster.  

 
 

TABLE VII.  DESIGN REQUIREMENTS RESULTS 

A. Lessons Learned 
One crucial lesson we learned was that, for a project of this 

scale, something will go wrong, and the team needs to be 
prepared for that from the beginning. That means, in the early 
stages of the project, leaving lots of room in the schedule for 
rerouting, as well as minimizing costs to ensure that the budget 
can sustain changes in implementations throughout the 
semester. It is also important to document as much as possible, 
including failed implementations and even ideas that were 
never implemented. Looking back on these notes will help with 
defining the trajectory of the project and making decisions in 
the future. 
  

Functionality Requirements Results 

Viewing 
High compatibility 
1080p @30fps 

✓ 
× 

Worked with Zoom, WebEx, Google Hangouts 
1080p @21fps 

Working range 

360-degree field of view 
1ft vertical panning range 
10ft acoustic location range 
10ft person detection radius 

✓ 
✓ 
× 
✓ 

Can turn to any direction 
Full range of motion up/down 1ft shaft 
100% accuracy up to 4ft; 90% up to 6ft 
100% accuracy up to 10ft 

Algorithm accuracy 90% centering accuracy 
90% speaker identification accuracy 

× 
✓ 

Horizontal: 70-90%; vertical: 90% 
100% with 2 speakers; 90% with 3 speakers 

Speed 
<1s motor control for camera adjustment 
<1s audio input processing latency 
<1s video input processing latency 

✓ 
✓ 
✓ 

0.3957s 
0.6451s 
0.2749s 
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