
18-500 Final Project Report: 12/18/2020

1

Abstract—iContact is a mobile camera system that points directly

at whomever is currently speaking, whether it is a single user moving
around in a room or a conference room full of people. Using both audio
detection and facial recognition via computer vision, iContact can
identify the speaker and maneuver the camera to face that person. Its
motors can rotate the cameras about the yaw axis, and vertically raise
and lower the cameras. With iContact, video calls will be made to feel
more personal and immersive.

Index Terms—Acoustic location, Haar Cascades, I2C, Jetson
Nano, MIPI CSI-2, OpenCV, PWM, ReSpeaker

I. INTRODUCTION
ITH the onset of COVID-19, video calls have become

an absolutely indispensable part of everyone’s daily
lives, whether it is for attending lectures via Zoom, calling
friends and family, or even remote internships, most people
cannot go a day without a video call anymore. Even before
COVID happened, people have needed video calls for keeping
in touch with distant friends and family, and many companies
have relied on conference calls for linking their various
branches and workers around the world.

The world has seen how video calls have become
increasingly crucial over recent years, but video call mechanics
have not really evolved much – conference calls are all still
primarily done through a laptop camera or a desktop webcam.
The question we asked was: How can this project better
immerse the remote viewer into a video call? The answer is
iContact, an agile camera that keeps the focus on the speaker in
any conversation by physically adjusting to center on the
speaker’s face.

There are four areas of functionality that the design
requirements categorize into: conference viewing, working
range, algorithm accuracy, and speed. For the viewing
requirement, iContact should be compatible with any
conferencing software and able to operate at 1080 pixels at 30
frames per second. For the working range, iContact will aim to
have a 360-degree field of view, one foot of vertical panning,
and ten feet of microphone audio pickup and person detection
radius. The requirements for algorithm accuracy will be set for
90% with respect to centering, speaker identification, and
cerebral command comprehension, as well as 95% motor
positioning accuracy. Lastly, within the speed category,
iContact should complete motor positioning adjustments, audio
processing, and video processing within one second. The
speeds for audio and video processing are important to have
minimal lag between the conferencing video feed and iContact.

II. DESIGN REQUIREMENTS
There are different tests for the various areas of functionality.

To meet the high compatibility requirement, iContact will be
tested on Zoom, WebEx, and Google Hangouts. The frame rate
requirement can be determined by counting the number of
frames that get sent between iContact and the host computer
within a certain amount of time. Regarding the working range
and algorithm accuracy requirements, there are two tests to be
performed: a stationary speaker test and moving speaker test.
The stationary speaker test will be conducted at varying
distances and heights from iContact to test the acoustic location
range, the vertical panning range, and the centering accuracy of
an out-of-frame speaker. The distances will be between three to
fifteen feet, in and out of frame. The heights will be set such
that the speaker’s head is above and below the camera frame as
well as above and below the center of the frame. The moving
speaker test will also be conducted at varying distances and
varying heights, determined by the working range of iContact
found from the stationary test. The moving speaker test will be
used to verify centering accuracy, field of view, and vertical
panning range. In addition to the previous two tests, there is an
additional multiple speaker test, which will gauge how
accurately iContact is able to identify speakers. All previous
tests mentioned will also record the time of each processing
component to determine how well iContact meets the speed
requirements. One additional test to specifically test speed is to
have multiple speakers conversing back and forth for varying
speaking time durations. These requirements and tests are listed
in Table I.

TABLE I. DESIGN REQUIREMENTS

iContact

Authors: Heather Baker, Anna Li, Edward Lucero: Electrical and Computer Engineering
Carnegie Mellon University

W

Functionality Requirements Testing

Viewing
High compatibility,
1080p @30fps

Run with Zoom, Webex,
and Google Hangouts

Working range

360-degree field of view,
1ft vertical panning
range, 10ft acoustic
location range, 10ft
person detection radius

Stationary or moving
speaker around the room
at various distances and
angles from iContact,
speaking (50-65dB)

Algorithm
accuracy

90% centering accuracy,
90% speaker
identification accuracy

Stationary speakers
converse back and forth,
Subject moving while
continuing to talk

Speed

<1s motor control for
camera adjustment, <1s
audio input processing
latency, <1s video input
processing latency

Stationary speakers
conversing back and
forth, taking turns
speaking one sentence at
a time

18-500 Final Project Report: 12/18/2020

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
There are two degrees of freedom for the physical design:

vertical movement and yaw axis rotation. A stepper motor is
used to control the elevation of the cameras. Each camera is
attached to a micro servo, which controls yaw rotation (see
Figure 1).

The main computing is done through the Jetson Nano (see
Figure 3) and is powered by a 5-volt, 4-amp power supply.
Connected to the Nano are two cameras, a microphone array, a
servo shield, and a motor HAT. The motor HAT connects a
stepper motor, powered by a separate 12-volt, 5-amp power
supply, to the Jetson. The two servos are connected to the servo
shield and powered through the Jetson.

For the overall software design of the project there are three
separate components that interact with the main program. These
three components are software programs that control the audio
processing, the motor controller, and the computer vision
software. The main program is responsible for the
communications between other components by controlling
when they start up and making use of the return values from
each program.

The system first starts out in an idle state where the camera
positioning is the most recently set angle from either initial
startup or from the most recent speaker detected (see Figure 2).
The first step is to retrieve the most recently detected speaker
from the audio processing component. The Jetson utilizes the
microphone array’s firmware to determine the direction of
arrival of any noises detected, although the Jetson only waits
for a human voice to be detected. After filtering out noisy values
and outliers, it then updates the speaker angle to which the
camera must rotate (about the yaw axis) to point in the general
direction of the speaker. It sends this angle to the main program
upon request.

Once the main program receives an angle from the audio
component, it can then send instructions to the motor controller.
The motor controller is responsible for turning the specified
motors to the desired angle. By using the Adafruit Motor
Library, motor movement can be done by specifying the angle
to turn to for the micro servos and the angle amount to turn by
for the stepper motors. For the stepper motor, a counter tracks
the current angle relative to the initial angle, to calculate the
degrees the stepper motor needs to turn. Once the motors have
set the angle to the correct angle, it responds back to the main
program that it is finished. The angle calculated by audio
detection points the camera in an approximate direction of the
speaker. Computer vision face detection is then utilized to
perfectly center the speaker in the camera’s view, through
precise adjustments. Thus, the next step is for the main program
to tell the computer vision component to start looking for a
speaker, as well as which of the cameras’ views the speaker is
in.

After the computer vision portion has started up, it looks in
the specified video feed for the speaker. If a speaker is detected
in the updated frame, the final recentering for the speaker can
then be computed by telling the main program the final set of
motor instructions that needs to be set to complete the centering.
This is a single complete loop of the software state machine.

Fig. 1. iContact mechanical design

Fig. 2. Software state machine

18-500 Final Project Report: 12/18/2020

3

Fig. 3. Hardware system specification

IV. DESIGN TRADE STUDIES
The following are justifications for the component selections

and any changes that were made from the project proposal.

A. Jetson Nano vs. Raspberry Pi
We opted to use the Jetson Nano for iContact. As shown in

Table 1, the Jetson Nano provides more power for video
decoding and better support for peripherals than the Raspberry
Pi does. A big advantage of the Jetson Nano is the increase in
MIPI CSI-2 lanes as this increases the number of cameras we
could use, which reduces the latency for speaker detection (see
Section G). The Jetson Nano also has I2S for audio, which is a
better choice since it is digital, resulting in less noise compared
to analog and thus better audio quality. While this was our
original plan, it was later changed as detailed in Section C.

B. Audio Hardware Comparisons
Our initial plan for the audio was to use four microphones, two
connected in stereo to each of the Jetson’s I2S pins. However,
we soon realized that we would need each individual
microphone’s audio feed to determine the difference in arrival
time of the speaker’s sound at each of the microphones. By
connecting two microphones on one I2S input, we would not be
able to process their audio feeds separately. We briefly decided
to switch from using four microphones to just two – one on each
I2S pin. We moved away from this idea when we realized we
would never know from which side of the microphone array the
source would be. As illustrated in Figure 4, the difference in
arrival time would be the same for the two speakers, since they
are equidistant from each microphone; the two-microphone
array would not be able to distinguish between them.

From here, we abandoned the I2S microphones and made use
of the three remaining I2C pins on the Jetson (the Jetson has
four in total, and one is used for the motors). This meant we had
to switch to analog microphones and an I2C ADC (analog to
digital converter), as opposed to our I2S microphones with
digital output. In the search for new analog microphones, we

TABLE II. JETSON NANO VS. RASPBERRY PI SPEC COMPARISON

had to make some more tradeoff analyses. We narrowed our
options down to Adafruit’s MAX4466, which has adjustable
gain, and MAX9814, which has automatic gain control. The
MAX4466 was cheaper, but customer reviews revealed the
production quality varied widely, and it picked up a great deal
of noise. We ended up choosing the 9814, which was pricier but
also seemed much more reputable and higher quality.

However, the ADS1115 ADC, that we obtained to work with
these new MAX9814 microphones was not sampling quickly
enough. Even after optimizing our code and setting the Jetson’s
I2C bus speed to the maximum frequency, we could only
achieve about 300 samples per second, which, split among the
three microphones, meant 100 SPS per microphone. This was
far from the precision we needed, since our goal was to be able
to detect the difference in arrival time between the
microphones. Plus, we learned that we would need to sample at
least 8000 Hz, least twice the maximum frequency of the typical
voice range to avoid Nyquist aliasing.

Specs and Cost

Jetson Nano B01 RaspberryPi Model 4

Price $99 $55

RAM 4 GB 4 GB

Video 2 MIPI CSI-2 DPHY lanes 1 MIPI CSI-2 DPHY lanes

USB 4 USB 3.0 2 USB 3.0, 2 USB 2.0

GPIO 40 pin 40 pin
Video
Decoder H.264 up to 1080p240 H.264 up to 1080p60

Audio 2 I2S No I2S

CPU ARM A57 ARM A72

Motor 4 I2C, 1 PWM 6 I2C, 2 PWM

18-500 Final Project Report: 12/18/2020

4

After realizing the MAX9814 microphones were a lost cause,
we moved to the next idea: mini-USB microphones. These had
a sampling rate of 44100 Hz, which was a massive
improvement and well above the Nyquist frequency. Using the
Jetson’s three USB ports for three microphones, each 1.5 ft
from each other, we were able to get a rudimentary acoustic
location algorithm working -- it simply detected sudden noises
or rises in amplitude among the microphones (i.e. interpreted as
someone beginning to speak), compared the arrival times of the
noise to each microphone, and returned which microphone had
the earliest arrival time. With this implementation seeming to
work thus far, we attempted to integrate more microphones
using a USB splitter. However, this was soon abandoned after
encountering issues with the PyAudio module we were using in
our code -- it could not consistently assign the same device
indices to each microphone, even if, physically, the setup and
connections were precisely the same. Unfortunately, things
continued going downhill from here with regards to
consistency. From the beginning stages of implementing the
USB microphone solution, we found that each microphone had
some delay in its audio detection; we easily managed this by
determining that delay and hardcoding it into the acoustic
location program. After more and more trials, however, we
discovered that this delay fluctuated unpredictably depending
on the number of processes running on the Jetson. Even worse,
the microphones were sometimes “hard of hearing” and could
not dependably detect voices at normal speaking levels.

Yet again, we changed to a new implementation. This time,
figuring that the sporadic delay with the USB microphones was
in part due to the built-in audio interface in each microphone
and the USB protocol, we opted once again for analog
microphones and an ADC. The analog microphones that we
used in the I2C implementation worked fine, so we only sought
out a new ADC. We managed to find an ADC with a 200 kHz
sampling rate, the MCP3008, which communicated over SPI.
This was far beyond the frequency we needed, but we
anticipated that the sampling rate listed in the product’s
description would inevitably drop in nonideal conditions. Upon
testing out our new hardware, we were shocked to discover that
the sampling rate fell to a mere 600 SPS, i.e. 200 SPS for each
of the three microphones, again much too low for our purposes.

At this point, after much trial and error and research, we
realized that we simply would not be able to achieve the
sampling rate and real-time precision required for accurate
acoustic location without a dedicated microcontroller running a
real-time OS, as opposed to our general-purpose Jetson Nano
running Linux, a time-sharing OS. Luckily, we at last managed
to find an easily integratable solution: the ReSpeaker v2.0 4-
microphone array. Instead of having to connect four discrete
microphones to the Jetson, the ReSpeaker had all four
microphones already integrated and synchronized on this
singular chipset; all we had to do was plug it into one of the
Jetson’s USB ports. The ReSpeaker was designed for
functionality like acoustic location -- in fact, acoustic location
was one of its built-in algorithms. This solution, not being our
own implementation from scratch, was not ideal, but it perfectly
suited our purposes and allowed us to advance our project.

Fig. 4. Two microphone setup

C. Audio Detection Software Optimizations
The ReSpeaker’s built-in algorithms for voice detection and

direction of arrival came in very handy and were easy to use,
but there were still optimizations to be made. In our original
code, we updated the angle of the speaker every time a voice
was detected. This resulted in the speaker angle being updated
too often, typically only by a few degrees, which made the
motors “jitter” as they continuously made these insignificant
adjustments. There was also the occasional outlier, sometimes
in the complete opposite direction of the speaker. To manage
these issues, we changed the algorithm such that, upon
detecting a voice, it would record the next 20 speaker angles
(with 50 ms between readings) as returned from the built-in
direction of arrival functionality. From this sequence of angles,
it would pull the median and use this as the new speaker angle,
which helped eliminate outliers. Next, it would compare this
new angle to the current angle; if they differed by at least 10
degrees, the current angle would be updated to the new angle.
This prevented the speaker angle from being updated too
frequently. We also found that the noise from the motors
moving was interfering with the audio processing, so we
adjusted the algorithm to pause listening until the motors
finished moving.

After making the optimizations, our speaker identification
accuracy improved considerably. We tested and measured this
metric by holding conversations between two to three people
located at various positions 4ft from the iContact. If the
iContact could detect someone beginning to speak and turn to
an angle such that that person was somewhere in the camera’s
view (not necessarily centered), we would count this as a
successful speaker identification. We ran tests in which there
were 30 times that a new person would begin speaking. The
iContact was able to achieve 100% speaker identification
accuracy between two speakers (on opposite sides of the
iContact) and 90% among three speakers (equidistant from each
other and therefore closer together than the two speakers were),
thus fulfilling our design requirement for this metric.

For one lone person moving around the room and speaking

18-500 Final Project Report: 12/18/2020

5

at different distances from the iContact (beginning to speak 30
separate times with at least five seconds between sentences), the
acoustic location was able to angle the camera such that the
speaker was in frame 100% of the time up to 4ft, and 90% up
to 6ft. This fell short of our 10ft acoustic location range design
requirement. We believe this is, in part, due to the lower volume
of the speaker’s voice in conjunction with the increased amount
of sound waves bouncing off of surfaces as the speaker moves
farther away, which makes it more difficult for the iContact to
assess voice detection and time delays.

Throughout testing, we also kept track of the audio input
processing latency, which we discovered was well below the
upper bound we had set in our design requirements, averaging
at 0.6451 seconds with negligible variance.

D. Panning Range Comparison
Early on in our project design, the vertical panning range was

changed from the original plan of three feet to one foot. There
were multiple justifications for this design change. The taller
the vertical panning range, the heavier the elevator would be.
This added weight presented two issues: the base would need to
be heavier to keep the center of balance low, and the base motor
would have to be more powerful to provide a higher torque to
the elevator. In addition, the heavier and larger the entire project
was, the less practical the iContact became for the user. Another
metric driven decision was the latency time given by needing to
move the entire three feet. Using the average data from Table
#, we can determine that the latency for stepper movement is
0.313 on average and thus for three feet the movement would
likely be 0.939 which heavily cuts into our goal of moving in
under one second. In the end, we were still able to capture a
reasonable vertical range for our use cases, the elevator was
able to detect a range of 20 inches when users were one foot
away from the camera (see Table III).

TABLE III. RANGE BETWEEN BOTTOM AND TOP OF ELEVATOR AND
CAMERA FRAME

E. Motor Selection
For servo selection, we needed a small servo to fit on the

elevator and minimize the weight of the device. In addition, we
wanted the servo to move fast to reduce the motor movement
latency. At the time, we wanted the servos to have a range of
180 degrees because the initial design was to move them in the
pitch axis, so there was no need for movement past 180 degrees
as it would hit the elevator shaft. We selected the TowerPro
SG92R micro servos because on paper it met our needs. In
practice, the servo only moves between 10 and 170 degrees; any
farther and the servo begins to emit noise, which is undesirable
as it can affect the speaker detection. Later when we repurposed
the servo motors to rotate in the yaw axis, the degree limitation
prevents full 360-degree motor movement; however, the
cameras have over a 60-degree field of view, so all 360 degrees

are accessible by camera, and with some adjustments of the
video feed, the face is centered. For the stepper motor selection,
we chose to have stepper motors for their angular precision. We
selected the Adafruit Nema-17 stepper motor as it provided a
torque of 28 oz-in, as we anticipated our device to be under one
pound, we believed this would be enough.

F. Motor Design
Originally, the goal for the project was to have three degrees

of freedom; however, the final design choice was to only have
two degrees: yaw and vertical. The design change was made by
repurposing the servos from rotating around the pitch axis to the
yaw axis, and the need for the change arose from the base
stepper motor not having enough torque to be able to rotate the
entire system around the yaw axis. There were some benefits
that came from using servos instead of steppers. Firstly, the
movement for the servo is much quicker than the movement for
the stepper because the servo can take one fluid motion to go
from one location to the other, while the stepper motor requires
to move step by step. This fluid motion also reduces the amount
of jitter as seen in the camera frame. Secondly, the micro servos
are two separate systems. As a result, if there are two speakers
such that one speaker is in the range of one camera and the other
speaker is in range of the other camera, the servos will keep the
cameras pointed at the speakers, while the software swaps
between the camera inputs.

TABLE IV. MOTOR TIMES WHEN RUNNING IN THE FINAL PRODUCT

Fig. 5. Motor movement speed plot

Distance from Camera (feet) Range of Camera View (inches)

1 20

3 43

6 87

Test description Motor Time
Average (seconds)

Motor Time
Variance

Only servo
movement

0.115 0.092

Stepper and
servo movement 0.449 0.136

18-500 Final Project Report: 12/18/2020

6

G. Video Transmission Selection
Originally, we planned to send video from one camera to the

Jetson Nano for processing and then to the user’s computer. The
design was to edit the Linux kernel of the Jetson Nano before
flashing it. Linux has Linux Gadget Drivers, such that when a
USB probe from the user’s computer arrives, the Linux
computer, AKA the Jetson Nano, would present itself as a USB
Video Class gadget. For the scope of this class, this seems like
it could be a risk point because of the time it would take to try
and get this component working, and how it would cut into the
already tight time frame we had scheduled for everything else.

One of the alternatives that we tried was to make use of
Gstreamer to send the video feed from the Jetson to a port on
our local machines through local internet. This led to a couple
of problems. Only Windows 10 can detect the video stream as
a camera source without additional setup, and the video stream
needed to be ONVIF (a standardized interface for internet
protocol-based video streams).[5] We had to reduce the
framerate down to a maximum of 10 frames per second and the
pixel width down to 64 pixels and even then, there was blurring
from missing pixels being sent. There were too many sacrifices
being made for this design and we needed to pivot to something
else.

In the end, our design choice was a video capture card which
takes in an HDMI input and converts it into a USB video output.
This solution worked well and was smooth to integrate into our
system as the Jetson could send video over HDMI and no install
was needed to have the video capture card be detected as an
input camera. Table II and III detail the metrics for this design
choice. In Table II, maximum FPS (frames per second) is the
maximum FPS possible as specified by our code. In Table 3, it
was measured by determining the total number of frames sent
for the whole test run, excluding the time for initializations on
startup. Latency was measured with a stopwatch by comparing
the real-time value to the value seen on the video feed.

TABLE V. VIDEO CAPTURE CARD VS. IP-CAMERA

TABLE VI. VIDEO CAPTURE CARD LATENCY

H. Camera Comparison
For our cameras, we had the choice between USB cameras and
MIPI camera modules. USB cameras are easy to use and are
readily available but the biggest concern for them was the
greater latency, since the USB protocol includes routing
through the CPU before it can be used, whereas a MIPI
connection is sent straight to the memory. In addition to this,
MIPI cameras were cheaper than a webcam. The final product
that we landed on was the Raspberry Pi Camera Module V2
since it was highly rated and known to being compatible with
the Jetson Nano and other Jetson environments. Our second
design choice for the cameras was the number of cameras that
we wanted to use. Part of our design requirements is to
minimize the amount of time for speaker transitions and part of
that will come from minimizing the time it takes for the motors
to adjust the camera. Given that each of the chosen cameras has
a 62-degree horizontal field of view, we could always have full
coverage, but we felt that this was unnecessary, as we would
still need to include rotation for the proper recentering. We
wanted to choose the number of cameras that would reduce the
maximum amount of yaw-axis rotation to a reasonable degree
(see Figure 1). For example, in a single camera setup, the max
we would need to rotate is 180 degrees to get to the furthest
point away from our current field of view. We initially wanted
to work with 3 cameras since that would reduce it to 60 degrees
as our maximum rotation, but then we ran into the limitations
of the Jetson Nano. The Nano could potentially accommodate
additional cameras, but that would require us to purchase
additional hardware to mux on the MIPI lanes. For this reason,
we felt that we would still have a reasonable amount of rotation
using only two cameras, and it would not require additional
hardware, thus minimizing the total project cost. While testing
with the servo and stepper motors we eventually came down to
using only 2 cameras where each was responsible for half of the
total 360 field of view.

 Video Capture Card IP-Camera

Maximum
FPS

21 10

Pixel width 1080 64
Latency
(seconds) Less than 2 Greater than 2

OS
compatibility Windows, Linux, MacOS Windows 10, Linux

Setup required No Yes

Test description Latency Average
(seconds) Latency Variance

No face in frame 1.04 0.09

Face in frame 1.79 0.12

18-500 Final Project Report: 12/18/2020

7

V. SYSTEM DESCRIPTION
The hardware system is centered around the Jetson Nano

B01, which does most of the computation. It is powered by a 5-
volt, 4-amp barrel jack power adapter. Directly connected to the
Nano is a ReSpeaker v2.0 4-microphone array on one of the
USB 3.0 ports, two Raspberry Pi V2-8 camera modules
connected via MIPI CSI-2, and a Adafruit v2.3 motor HAT and
Adafruit 16-channel Servo Shield on one of the I2C ports.
Connected to the servo shield are two TowerPro SG92R micro
servos, and to the motor HAT is a Adafruit Nema-17 stepper
motor. All motors communicate to their respective motor
controllers via PWM.

For the overall structure of the software, there are three
distinct parts that all need to communicate with each other.
These three components are the motor controller, the audio
processor, and the speaker tracker. These components are all
connected to a main program that will keep track of the current
state of the software cycle. It will request new input from the
audio processor, give motor instructions to the motor controller
and signal to the speaker tracker when to start and expect a
result from it as well. Threads for each of these components are
all going to be concurrently running. [7, 11]

A. Motor Software
To control the motors, we utilized Adafruit CircuitPython,

specifically the MotorKit and ServoKit libraries. [3] The micro
servos are easily controlled by specifying angle within a range
of 180 degrees to turn to. The stepper motors can only move by
taking a 1.6-degree step at a time. To keep track of the location
of the cameras, the main program keeps track of the latest angle
for each servo. This is tracked in the main program because the
information is needed to determine new angles based on the
audio software. For the stepper motor, the motor controller
software keeps track of how many steps the stepper has taken.
The bottom of the elevator is at a 0 step count, and the top is at
a 480 step count. To ensure our software can accurately place
the vertical location of the cameras, iContact has a
predetermined starting position for the stepper motors at the
bottom of the elevator, and at shutdown will return to this
position.

The thread for motor control also has some control over the
audio and video processing threads. This changed from our
original plan of the main thread controlling all communications
between threads. During integration we discovered two issues.
Firstly, and most concerning, was the stepper motor started to
move very slowly. Secondly, the servo movement was loud and
sudden enough for the audio processing to recognize as a voice.
We reasoned the first issue arose from the addition of the audio
processing; with the increase of workload for each thread, the
motor thread was being interrupted more. Since the stepper
motor could only move one step at a time, the audio processing
would interrupt this critical section and thereby increase the
latency between steps. To resolve this issue, we utilized the
event class from Python’s threading library. One thread signals
an event and other threads wait for it. The motor controller
thread signals an event and then waits for the other threads to
finish their current iteration of processing. After the other

Fig. 6. Our project

threads are done processing; they wait for the motor event to be
done. Once motor movement is complete, the motor controller
thread clears the event, and all threads resume (See Figure 7).[11]
This solution solved the slow stepper movement by only letting
the motor controller thread run for that code section. This
solution also fixed the second issue because the audio processor
no longer collected data during the time the motors were
running.
B. Audio Subsystem

The audio program makes use of the Python library [8]
provided by the manufacturer of the ReSpeaker microphone
array. Three of the built-in algorithms that we utilized were
voice detection, which returns a Boolean value indicating
whether the sound being picked up is that of a person’s voice,
and direction of arrival, which returns the angle of the sound
being picked up relative to a designated zero-position on the
microphone array. Both functions retrieve their values from the
firmware on the ReSpeaker.

The voice detection algorithm distinguishes voices from
other sounds based on the amplitude, frequency, and duration.
With regards to amplitude, human voices, within the pickup
range of the ReSpeaker’s microphones, tend to be between 30
and 60 dB. Similar to how a voice’s amplitude is expected to be
within a certain range, human voices are typically between 300
and 3400 Hz (which is also the frequency range that phones

18-500 Final Project Report: 12/18/2020

8

Fig. 7. Event flowchart

accommodate) in frequency. Lastly, a speech segment -- even a
single word -- is usually at least 300 microseconds in duration.
Any noises beyond these ranges are considered incidental
noises and not detected as human voices [12].

The acoustic location algorithm works by utilizing the
physics of the traveling of sound waves and the differences in
arrival times of the speaker’s sound to each microphone. From
the measurements noted in Figure 8 and the speed of sound, c,
we can get the time difference between one pair of microphones
as:

 Δt = (d/c) sin(a + π/2 - x + θ) (1)

From this [4], we can solve for x, the direction of the source.
The ReSpeaker calculates the direction of the source among
each pairing of its four microphones and returns the average [8].

Knowing how the built-in capabilities of the ReSpeaker
worked, we were able to confidently utilize them for the
iContact. While the microphone array can, of course, pick up
all kinds of sounds, the iContact is only concerned with human
voices. Thus, we took advantage of the ReSpeaker’s voice
detection functionality, such that the iContact is constantly
listening but will ignore any sounds that are not a human voice.
In the event that a voice is heard, the program begins collecting
a sequence of 20 angles, as returned by the direction of arrival
algorithm, waiting 50 milliseconds in between readings. Then,
it compares the median of this sequence to the current speaker
angle; if the two values differ by at least 10 degrees, the current
speaker angle is updated to the median of the sequence.
Otherwise, it is ignored, and the loop begins anew by collecting
another sequence of angles.

C. Computer Vision Software
When called upon, the computer vision software will track

for the face of a person [2]. These cameras are connected to the
Jetson Nano via two MIPI lanes. The first step is to identify all
the people in the current frame. This is done with the use of haar
cascades. haar cascades are pre-optimized models for OpenCV
and can detect a pattern within the image it is scanning through.
After the frame has been processed by the OpenCV, there is a
possibility that multiple people are detected. When this happens
choose the center most person because we rely on the accuracy
of the audio processing to properly give us the most accurate
speaker. From here the motor instruction is created by
approximating the angle by scaling the position in frame to the
camera’s field of view. The Raspberry Pi Camera Module v2
has a horizontal field of view of 62.2 degrees the distance of a
person’s face to the center of the frame was calculated and
scaled to the horizontal field of view. After testing we found
that the approximations gave us an average accuracy of 87.4%
and a standard deviation of 12.6%. This can

Fig. 8. Four microphone algorithm

18-500 Final Project Report: 12/18/2020

9

be explained by our linear scaling which meant that if the
speaker was already close to the center of the frame it would
have a more accurate update than if the speaker started off
farther away from the center. Due to the relatively accurate
acoustic locating, it meant that we were less likely to have the
extreme cases that detected faces closer to the edges of the
frame. For the vertical update of the cameras, it was harder to
calculate an exact degree step because we were using the motor
to control a chain that would rotate. We instead gathered data
on how an update on the motors would change the image that
was being captured. We did our testing by having the program
capture a single frame and find a face then update the motor to
change its elevation and then look for the same face. The pixel
distance was then divided by the number of steps we had the
motor run and we found that in a 1080 image, 1 pixel was
approximately a double step for our stepper motor. This vertical
panning had similar problems in how a linear scale would not
always work well but since the vertical field of view of the
camera was lower, 42 degrees, the actual accuracy was at 90%
with a standard deviation of 5%. Here we were able to barely
meet our requirements and the standard deviation is still quite
high, but the vertical centering was significantly better than the
horizontal centering. With these two combined we were able to
accurately center a face in the frame after a motor update. One
of the key issues with using servo motors to adjust these
cameras was that we could not actually have either camera set
to watch at the degree ranges of 350 to 10 degrees and 170 to
190 degrees. Setting the servos to those degrees would lead to
the servos to function improperly so we set a max range that the
cameras could be set to. In order to still get a centered image,
we crop the image around the face instead and aim to use as
many pixels as possible. Instead of altering the image to fit the
screen size we opted to maintain the quality of the image and
just filled the empty pixels with black. This allowed us to
maintain centering for the edges of our cameras’ range.

D. Motors
The Jetson controls the stepper motor through an Adafruit

motor HAT v2.3 and the servos through an Adafruit 16-channel
servo shield. Located on each shield is a PWM chip driver,
specifically the PCA9685 from NXP, which is a I²C-bus
controlled 16-channel LED controller, but the PWM signal for
controlling LEDs works for controlling motors. The Jetson
communicates to each PWM chip driver using one of its I²C
ports at a frequency of 100Hz. I²C is a communication protocol
that allows one master, in this case the Jetson, to communicate
to multiple devices of different addresses. There are two wires
that are used as the bus: SDA for data and SCL for the clock.
To communicate to the devices, the Jetson sends out the address
of the device to establish communication with. Then the Jetson
sends data regarding which motor it wants to control and at
what speed or angle the motor should turn to. In our project, the
two different PWM chip drivers are addressed such that the
motor HAT’s address is 0x60 and the servo shield’s address is
0x40. After the PWM chip driver gets an instruction from the
Jetson using I²C then it controls the motors by signaling through
PWM.[6]

Fig. 9. Centering accuracy plot

PWM stands for pulse width modulation. There is one wire
for signaling and it conveys information using duty cycle. One
period of the signal would be the length of time the signal is
high plus the length of time the signal is low before it goes high
again. Duty cycle is the percentage of the period that the signal
was turned on for. The signal has a set frequency. For the
stepper motor, the frequency needs to be above 1600Hz. The
servos require 50Hz for operating. This difference in frequency
necessitated the use of two shields because the PCA9685 cannot
be set to operate at two different frequencies.

For the two servos, the width of the PWM signal pulse
indicates the angle at which the servo should turn to. 0.75
milliseconds are the minimum pulse width and indicated an
angle of 0 degrees, while 2.25 milliseconds is for an angle of
180 degrees. For the stepper motor, six PWM signals go to a
Driver IC for Dual DC motors (TB6612FNG). The stepper
motor has two coils and the two separate signals for each DC
motor instead go to each coil. Each coil is controlled by three
PWM signals that are used to determine which of the five states
of operation the coil should be in: clockwise, counterclockwise,
standby, short brake, and stop.[9, 10]

18-500 Final Project Report: 12/18/2020

10

VI. PROJECT MANAGEMENT

A. Schedule
Our project schedule had changed little up to Week 7, as we

had managed, for the most part, to stay on track. The only major
change was the removal of the section of our plan where we
intended to implement verbal command functionality, which
we realized early on would be too great of a challenge on top of
our existing design.

Beyond Week 7, there were some relatively substantial
changes to the schedule for some of the individual components
of the project as we scrambled to get them working for
integration. Most notable of these changes were the extended
time allocated for video passthrough, which proved to be a
greater challenge than anticipated because of a lack of well-
documented solutions, and the multiple changes in audio
implementation plans. The latter resulted in the most schedule
deviation, but these changes only minorly impacted integration
and testing, which we were able to complete on time.

B. Team Member Responsibilities
We have divided the work for our project such that Heather’s

primary task is motor control, Edward’s CV, and Anna’s audio.
As for our secondary tasks, Heather and Edward are working
jointly on hardware communication for the video feed (i.e.
camera to Jetson to computer), while Anna and Heather are
working together on hardware communication for the audio
feed (i.e. microphone to Jetson to computer). Given that we are
all in different locations for this remote semester, Heather,
alone, took on the additional task of physically assembling the
device. When it was time to integrate and test, we worked
together remotely over Zoom while Heather ran the iContact.

C. Budget
Our bill of materials may be referred to in Figure 10. We had

to purchase multiple (sets of) items, such as the Jetson Nano,
cameras, and microphones, so that each of us could have our
own partial implementation of the project, since we are all
working remotely. The blue rows are the items that we planned
to purchase from the start; the yellow rows are the items that we
did not initially plan to purchase but ended up needing; and the
red rows are the items that we purchased but did not use. The
“Cost to Budget” column shows what we spent our given $600
budget on (shipping and tax included), with the green rows at
the bottom showing the total spent and how much we had left
over. The neighboring “Cost of iContact” column shows the
cost (not including shipping and tax) of the components
required to construct one iContact, with the total in the green
row at the bottom.

D. Risk Management
From the beginning of our project, we did a great deal of

planning to minimize the many risks -- particularly with respect
to integration -- that would inevitably come with working on a
mechanical design while the three of us were all in different
locations. For example, knowing integration would be perhaps
the most challenging part of our project, we made sure that none
of the integration tasks were solo tasks.

Fig. 10. Centering Accuracy Plot

Throughout our project, there were multiple times where we
realized we had misjudged just how critical and arduous an
individual’s task was. To ensure that these tasks were executed
well and that all our bases were covered, we would designate
one or two other team members to join in the work. For
example, the video transmission communications turned out to
be much more involved than any of us had anticipated. As a
result, we changed this problem into a two-person endeavor for
the next couple of weeks. During this semester, there were
many instances where we had to reprioritize.

Moreover, we spent a great deal of time coming up with what
components to use in our design and the potential risks that
came with each decision. One of the biggest decisions we made
was whether to use a Jetson Nano or a Raspberry Pi, which
would be the brains of our entire device. The primary features
we were examining while deciding between the two was the
peripheral support. Our overarching ideology was “the more
peripherals, the better” -- it is, of course, always easier to add
components or change protocols with an excess of ports than a
lack thereof. For instance, we knew our project would require
the use of either one or two cameras, but at this early stage, we
were still unsure of which quantity we would ultimately agree
upon. In that respect, the Jetson, having two video lanes, was
the safer bet compared to the Raspberry Pi, with its singular
video lane. When it came to choosing microphones, we initially
opted for I2S, in part because it is designed to be digital (and
would thus have less noise than analog), and because it would
not use up any of the USB ports, which we wanted to keep open
in case we needed to add any other components to our project
down the road. Lastly, in general, we did our best to minimize
our spending to leave us enough room in the budget for
unexpected purchases to be made in the future. We went
through numerous rounds of trial and error with different audio
hardware, so our frugality from earlier in the semester paid off
and allowed us the flexibility to try new implementations.

18-500 Final Project Report: 12/18/2020

11

VII. RELATED WORK
Aside from iContact, there are several other similar products

that seek to make video calls more personal using smart
cameras that dynamically focus on whomever is commanding
attention. One such existing solution is the Meeting Owl, a
smart video conferencing camera that captures 360-degree
video and audio. Its single omnidirectional camera takes in a
static, panoramic view of the room from the center of the table,
then displays the section of that view where the current speaker
is located. One of last semester’s CMU ECE Capstone projects,
COMOVO, was also a smart video conferencing camera to be
placed at the center of the table. Instead of having a panoramic
view of the room like the Meeting Owl, this unidirectional
camera was motorized and capable of turning to whoever is
speaking either automatically or by interpreting physical
gestures. Other devices, like Google Meet’s video conferencing
hardware, Polycom’s Poly Studio, and Facebook’s portal
feature a stationary, unidirectional camera to be placed at the
front of a conference room such that it has a full view of
everyone present and can zoom in on the current speaker. What
sets iContact apart from all these products, which seem limited
to one plane of view, are its abilities to raise and lower, giving
it a vertical range of view that existing solutions cannot achieve.

VIII. SUMMARY
Overall, we were able to meet the majority of the

requirements that we set out. The requirements that we did not
reach were in the fields of acoustic location range and the
centering of the cameras. For the acoustic location detection,
we were primarily limited by the complexities of sound wave
reflections as the speaker moved farther away from the
iContact. The horizontal centering accuracy varied a lot because
of our linear approximation for calculating the motor angle
update. Given additional time, we could improve our system
performance with more sensitive microphones and enhancing
the centering algorithm to be more accurate. Another
improvement we could try is converting our software to be
based in C rather than Python, which would increase execution
speed on the overall system so that every update is fastern the
overall system so that every update is faster.

TABLE VII. DESIGN REQUIREMENTS RESULTS

A. Lessons Learned
One crucial lesson we learned was that, for a project of this

scale, something will go wrong, and the team needs to be
prepared for that from the beginning. That means, in the early
stages of the project, leaving lots of room in the schedule for
rerouting, as well as minimizing costs to ensure that the budget
can sustain changes in implementations throughout the
semester. It is also important to document as much as possible,
including failed implementations and even ideas that were
never implemented. Looking back on these notes will help with
defining the trajectory of the project and making decisions in
the future.

Functionality Requirements Results

Viewing
High compatibility
1080p @30fps

✓
×

Worked with Zoom, WebEx, Google Hangouts
1080p @21fps

Working range

360-degree field of view
1ft vertical panning range
10ft acoustic location range
10ft person detection radius

✓
✓
×
✓

Can turn to any direction
Full range of motion up/down 1ft shaft
100% accuracy up to 4ft; 90% up to 6ft
100% accuracy up to 10ft

Algorithm accuracy 90% centering accuracy
90% speaker identification accuracy

×
✓

Horizontal: 70-90%; vertical: 90%
100% with 2 speakers; 90% with 3 speakers

Speed
<1s motor control for camera adjustment
<1s audio input processing latency
<1s video input processing latency

✓
✓
✓

0.3957s
0.6451s
0.2749s

18-500 Final Project Report: 12/18/2020

12

REFERENCES
[1] Industries, Adafruit. “Micro Servo.” Adafruit Industries Blog RSS,

www.adafruit.com/product/169.
[2] Kumar, Akshay. “Real-Time Face Detection on Jetson Nano Using

OpenCV: Nvidia Jetson.” Maker Pro, Maker Pro, 7 Feb. 2020,
maker.pro/nvidia-jetson/tutorial/real-time-face-detection-on-jetson-
nano-using-opencv.

[3] LeBlanc-Williams, M. “CircuitPython Libraries on Linux and the
NVIDIA Jetson Nano.” Adafruit Learning System, Adafruit,
learn.adafruit.com/circuitpython-libraries-on-linux-and-the-nvidia-
jetson-nano/circuitpython-dragonboard.

[4] Nehorai, A. “Interaural Time Difference.” Interaural Time Difference -
an Overview | ScienceDirect Topics, Elsevier B.V., 2015,
www.sciencedirect.com/topics/engineering/interaural-time-difference.

[5] ONVIF, www.onvif.org/.
[6] PCA9685, NXP Semiconductors, 16 Apr. 2015,

www.nxp.com/docs/en/data-sheet/PCA9685.pdf.
[7] “Queue - A Synchronized Queue Class.” Queue - A Synchronized

Queue Class - Python 3.9.1 Documentation,
docs.python.org/3/library/queue.html.

[8] ReSpeaker, jerryyip. “Respeaker/usb_4_mic_array.” GitHub, Seeed, 11
June 2019, github.com/respeaker/usb_4_mic_array.

[9] “STEMMA.” Adafruit Learning System, learn.adafruit.com/assets/9536.
[10] “TB6612FNG.” TB6612FNG | Brushed DC Motor Driver ICs | Toshiba

Electronic Devices & Storage Corporation | Americas – United
States, toshiba.semicon-storage.com/us/semiconductor/product/motor-
driver-ics/brushed-dc-motor-driver-ics/detail.TB6612FNG.html.

[11] “Threading - Thread-Based Parallelism.” Threading - Thread-Based
Parallelism - Python 3.9.1 Documentation,
docs.python.org/3/library/threading.html.

[12] Zuo, Baozhu. “ReSpeaker Mic Array v2.0.” Seeedstudio, Seeed
Technology Co., wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/.

18-500 Final Project Report: 12/18/2020

13

	I. Introduction
	II. Design Requirements
	III. Architecture and/or Principle of Operation
	IV. Design Trade Studies
	A. Jetson Nano vs. Raspberry Pi
	B. Audio Hardware Comparisons
	C. Audio Detection Software Optimizations
	D. Panning Range Comparison
	E. Motor Selection
	F. Motor Design
	G. Video Transmission Selection
	H. Camera Comparison

	V. System Description
	A. Motor Software
	B. Audio Subsystem
	C. Computer Vision Software
	D. Motors

	VI. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Budget
	D. Risk Management

	VII. Related Work
	VIII. Summary
	A. Lessons Learned

	References

