
18-500 Design Report: 10/19/2020 
 

1 

 
Abstract—iContact is a mobile camera system that points directly 

at whomever is currently speaking, whether it is a single user moving 
around in a room or a conference room full of people. Using both audio 
detection and facial recognition via computer vision, iContact can 
identify the speaker and maneuver the camera to face that person. Its 
motors can rotate the camera side-to-side, tilt up and down, and raise 
and lower. With iContact, video calls will be made to feel more 
personal. 
 

Index Terms—Haar Cascades, I2C, I2S, Jetson Nano, MIPI 
CSI-2, OpenCV, PWM 
 

I. INTRODUCTION 
ITH the onset of COVID-19, video calls have become 

an absolutely indispensable part of everyone’s daily 
lives, whether it is for attending lectures via Zoom, calling 
friends and family, or even remote internships, most people 
cannot go a day without a video call anymore. Even before 
COVID happened, people have needed video calls for keeping 
in touch with distant friends and family, and many companies 
have relied on conference calls for linking their various 
branches and workers around the world. 

The world has seen how video calls have become 
increasingly crucial over recent years, but video call mechanics 
have not really evolved much – conference calls are all still 
primarily done through a laptop camera or a desktop webcam. 
The question we asked was: How can this project better 
immerse the remote viewer into a video call? The answer is 
iContact, an agile camera that keeps the focus on the speaker in 
any conversation by physically adjusting to center on the 
speaker’s face. 

There are four areas of functionality that the design 
requirements categorize into: conference viewing, working 
range, algorithm accuracy, and speed. For the viewing 
requirement, iContact should be compatible with any 
conferencing software and able to operate at 1080 pixels at 30 
frames per second. For the working range, iContact will aim to 
have a 360-degree field of view, one foot of vertical panning, 
and ten feet of microphone audio pickup and person detection 
radius. The requirements for algorithm accuracy will be set for 
90% with respect to centering, speaker identification, and 
cerebral command comprehension, as well as 95% motor 
positioning accuracy. Lastly, within the speed category, 
iContact should complete motor positioning adjustments, audio 
processing, and video processing within one second. The 
speeds for audio and video processing are important to have 
minimal lag between the conferencing video feed and iContact. 

II. DESIGN REQUIREMENTS 
There are different tests for the various areas of functionality. 

To meet the requirement to work with any conferencing 
software, iContact will be tested on Zoom, WebEx, and Google 
Hangouts. The frame rate requirement can be determined by 
counting the number of frames that get sent between iContact 
and the host computer within a certain amount of time. 
Regarding the working range and algorithm accuracy 
requirements, there are two tests to be performed: a stationary 
speaker test and moving speaker test. The stationary speaker 
test will be conducted at varying distances and heights from 
iContact to test the distance of the microphone pickup range, 
the person detection radius, the vertical panning range, and the 
centering accuracy of an out-of-frame speaker. The distances 
will be between three to fifteen feet, in and out of frame. The 
heights will be set such that the speaker’s head is above and 
below the camera frame as well as above and below the center 
of the frame. The moving speaker test will also be conducted at 
varying distances and varying heights. The distance and height 
ranges will be determined by the working range of iContact 
found from the stationary test. The moving speaker test will be 
used to verify centering accuracy, field of view, and vertical 
panning range. In addition to the previous two tests, there is an 
additional multiple speaker test, which will gauge how 
accurately iContact is able to identify speakers. All previous 
tests mentioned will also record the time between start and 
speaker centering to determine how well iContact meets the 
speed requirements. One additional test to specifically test 
speed is to have multiple speakers conversing back and forth 
for varying speaking time durations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

iContact 

Authors: Heather Baker, Anna Li, Edward Lucero: Electrical and Computer Engineering  
Carnegie Mellon University 

W 



18-500 Design Report: 10/19/2020 
 

2 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
There are two main parts to the hardware design: the base 

and the elevator. The base has three microphones and one 
stepper motor that rotates the cameras around the yaw axis (see 
Figure 6). Another stepper motor is used to control the elevation 
of the elevator. On the elevator, there is a platform that holds 
the two cameras as well as the two micro servos. There is one 
micro servo for each camera to adjust the pitch of the cameras 
(see Figure 1). 

The main computing is done through the Jetson Nano (see 
Figure 3). Connected to the Nano are two cameras, three 
microphones, and a motor HAT. Connected to the motor HAT 
are two micro servos and two stepper motors. The motors are 
on a separate power supply from the Jetson Nano. 

For the overall software design of the project there are three 
separate components that interact with the main program. These 
three components are software programs that control the audio 
processing, the motor controller, and the computer vision 
software. The main program is responsible for the 
communications between other components by controlling 
when they start up and making use of the return values from 
each program.  

The system first starts out in an idle state where the camera 
positioning is the most recently set angle from either initial 
startup or from the most recent speaker detected (see Figure 2). 
The first step is to wait for the audio processing component to 
send its results to the main program. The Jetson analyzes the 
three microphones’ audio feeds to determine the difference in 
time it takes for the acoustic source’s sound to reach each of the 
microphones. Using these time differences, it can then calculate 
the angle by which the camera must rotate (relative to the yaw 
axis) to point in the general direction of the speaker, which it 
sends back to the main program. 

Once the main program receives its instructions from the 
audio component, it can then send the instructions to the motor 
controller. The motor controller is responsible for turning the 
specified motors to the desired angle. By using the Adafruit 
MotorKit Library, motor movement can be done by specifying 
the angle to turn to for the micro servos and the angle amount 
to turn by for the stepper motors. For each of the stepper motors, 
a counter tracks the current angle relative to the initial angle, to 
calculate the degrees the stepper motor needs to turn. Once the 
motors have set the angle to the correct angle, it responds back 
to the main program that it is finished. The angle calculated by 
audio detection points the camera in an approximate direction 
of the speaker. Computer vision face detection is then utilized 
to perfectly center the speaker in the camera’s view, through 
precise adjustments. Thus, the next step is for the main program 
to tell the computer vision component to start looking for a 
speaker, as well as which of the cameras’ views the speaker is 
in. 

After the computer vision portion has started up, it looks in 
the specified video feed for the speaker. There are now two 
paths that can be taken here. If a speaker is not in view, that 
implies either the speaker is below the camera or the audio 
estimation was not good enough. In the former case, the camera 
is adjusted until a face is detected or it is in the bottom most 

position. If iContact still has not detected a face, then we 
assume that it is the latter case. In the latter case, the program 
tells the main program that a speaker has not been found and 
that it should just wait for the next detection. If a speaker is 
detected, the final recentering for the speaker can then be 
computed by telling the main program the final set of 
instructions. This is a single complete loop of the software state 
machine.  

Fig. 1. iContact mechanical design  

 

 

 
 

Fig. 2. Software state machine 



18-500 Design Report: 10/19/2020 
 

3 

 
Fig. 3. Hardware system specification  

IV. DESIGN TRADE STUDIES 
The following are justifications for the component selections 

and any changes that were made from the project proposal. 

A. Jetson Nano vs. Raspberry Pi 
We opted to use the Jetson Nano for iContact. As shown in 

Table 1, the Jetson Nano provides more power for video 
decoding and better support for peripherals than the Raspberry 
Pi does. A big advantage of the Jetson Nano is the increase in 
MIPI CSI-2 lanes as this increases the number of cameras we 
could use, which reduces the latency for speaker detection (see 
Section G). The Jetson Nano also has I2S for audio, which is a 
better choice since it is digital, resulting in less noise compared 
to analog and thus better audio quality. While this was our 
original plan, it was later changed as detailed in Section C. 

Originally, the increased support of peripherals provided by 
the Jetson Nano allows for less additional boards that would be 
needed for a Raspberry Pi; however, as the project evolves, we 
are realizing that this may no longer be the case and will be an 
analysis point in the final report. For now, the Nano’s better 
peripheral support is a benefit because it enables additional 
cameras, which may be needed for the final product to meet the 
timing requirements. 

B. Microphone Algorithm Analysis 
We decided to use acoustic location in our design to facilitate 

the process of locating the speaker without having to entirely 
rely on the cameras. For this, we used the physics of the 
traveling of sound waves to determine the direction of the 
speaker based on the difference in time of arrival of the 
speaker’s sound to each microphone. From the measurements 
noted in Figure 4 and the speed of sound, c, we can get the time 
difference between one pair of microphones as: 

 Δt = (d/c) sin(a + π/2 - x + θ) (1) 

From this, we can solve for x, the direction of the source. 

 
 
 

 

TABLE I.  JETSON NANO VS. RASPBERRY PI SPEC COMPARISON 

 
Specs and Cost 

Jetson Nano B01 RaspberryPi Model 4 

Price $99 $55 

RAM 4 GB 4 GB 

Video 2 MIPI CSI-2 DPHY lanes 1 MIPI CSI-2 DPHY lanes 

USB 4 USB 3.0 2 USB 3.0, 2 USB 2.0 

GPIO 40 pin 40 pin 
Video 
Decoder H.264 up to 1080p240 H.264 up to 1080p60 

Audio 2 I2S No I2S 

CPU ARM A57 ARM A72 

Motor 4 I2C, 1 PWM 6 I2C, 2 PWM 

 
 

 

Fig. 4. Two microphone setup  

 



18-500 Design Report: 10/19/2020 
 

4 

C. Microphone Two vs. Three vs. Four Comparison 
Our initial plan for the audio was to use four microphones, 

two connected in stereo to each of the Jetson’s I2S pins. 
However, we soon realized that we would need each individual 
microphone’s audio feed in order to determine the difference in 
arrival time of the speaker’s sound at each of the microphones, 
and by connecting two microphones in stereo on one I2S input, 
we would not be able to process their audio feeds separately. 
We briefly decided simply to switch from using four 
microphones to just two -- one on each I2S pin. We did not stay 
with this idea for long, as we realized that we would never know 
from which side of the microphone array the source would be. 
The difference in arrival time would be the same for the two 
speaker locations, as illustrated in Figure 5, since both are 
equidistant from each microphone; the two-microphone array 
would not be able to distinguish between them. 
From here, we resolved to abandon our I2S microphones and 
make use of the three remaining I2C pins on the Jetson (the 
Jetson has four in total, and one is being used for the motors). 
This unfortunately meant we had to switch to analog 
microphones, as opposed to our I2S microphones with digital 
output. In the search for new analog microphones, we had to 
make some more tradeoff analyses. We narrowed our options 
down to Adafruit’s MAX4466, which has adjustable gain, and 
MAX9814, which has automatic gain control. The automatic 
gain control made the 9814 the more appealing choice, but it 
was also more expensive; we initially figured that we could deal 
with managing the gain ourselves on the 4466 if it meant 
minimizing the cost of the iContact. However, upon reading 
customer reviews of the 4466, we found that the production 
quality seemed to vary widely, and that it picked up a great deal 
of noise. We ended up choosing the 9814, which was pricier but 
also seemed much more reputable and higher quality, based on  
its reviews. Plus, of course, the automatic gain control was a 
solid bonus. 

D. Panning Range Comparison 
The vertical panning range was changed from the original plan 
of three feet to one foot because it became too much of a 
mechanical challenge. The focus for this project is on the 
electrical and algorithmic challenges presented.  

E. Motor Selection 
The motor selection was made based on the choice to use the 

Adafruit motor HAT v2.3. The use of the motor HAT simplifies 
motor control because the Jetson can easily send controls to the 
motor HAT via I2C and using the Adafruit MotorKit Library. 
In addition, Jetson Nano does not have support for PWM 
(pulse-width modulation), which was a must to get the fine 
angle selection for the micro servos controlling the camera 
angle. The motor HAT allows the use of PWM communication 
with the micro servos and stepper motors. The motors then 
selected were ones known to be compatible with the motor 
HAT, as suggested by Adafruit. 

 
 
 

Fig. 5. Two microphone setup  

 

F. Webcam Setup Selection 
Originally, the Jetson Nano was planned to send video data 

from one of the cameras to the computer. The plan for this was 
to edit the Linux kernel of the Jetson Nano before flashing it. 
Linux has Linux Gadget Drivers, such that when a USB probe 
from the user’s computer arrives, the Linux computer, AKA the 
Jetson Nano, would present itself as a USB Video Class gadget. 
For the scope of this class, this seems like it could be a risk point 
because of the time it would take to try and get this component 
working. To free up time to focus on speaker detection, 
iContact will be using a regular webcam for the minimum 
viable project. This camera will be placed directly next to one 
of the Raspberry Pi cameras and will be used as the video feed. 

G. Camera Comparison  
For our cameras, we had the choice between USB cameras 

and MIPI camera modules. USB cameras are very easy to use 
and are readily available but the biggest concern for them was 
the greater latency, since the USB protocol includes routing 
through the CPU before it can be used, whereas a MIPI 
connection is sent straight to the memory. In addition to this, 
MIPI cameras were cheaper than a webcam. The final product 
that we landed on was the Raspberry Pi Camera Module V2 
since it was highly rated and known to being compatible with 
the Jetson Nano and other Jetson environments. Our second 
design choice for the cameras was the number of cameras that 
we wanted to use. Part of our design requirements is to 
minimize the amount of time for speaker transitions and part of 
that will come from minimizing the time it takes for the motors 
to adjust the camera. Given that each of the chosen cameras has 
a 62-degree horizontal field of view, we could have full 
coverage at all times, but we felt that this was unnecessary, as 
we would still need to include rotation for the proper 
recentering. We wanted to choose the number of cameras that 
would reduce the maximum amount of yaw-axis rotation to a 
reasonable degree (see Figure 6). For example, in a single 
camera setup, the max we would need to rotate is 180 degrees 



18-500 Design Report: 10/19/2020 
 

5 

to get to the furthest point away from our current field of view. 
We initially wanted to work with 3 cameras since that would 
reduce it to 60 degrees as our maximum rotation, but then we 
ran into the limitations of the Jetson Nano. The Nano could 
potentially accommodate additional cameras, but that would 
require us to purchase additional hardware to mux on the MIPI 
lanes. For this reason, we felt that we would still have a 
reasonable amount of rotation using only two cameras, and it 
would not require additional hardware, thus minimizing the 
total project cost.  

V. SYSTEM DESCRIPTION 
Our hardware system is made up of a Jetson Nano B01, two 

Adafruit Nema-17 stepper motors, two TowerPro SG92R micro 
servos, one Adafruit v2.3 motor HAT, and two Raspberry Pi 
V2-8 camera modules. 

The Jetson is the brains operating our entire device. It is 
powered from its microUSB port connected to a USB on the 
host laptop; this same connection is also used for video data 
transfer. The Jetson is what controls the motors, which are 
connected by the motor HAT to one of the Jetson’s I2C pins 
and powered by a 12-volt, 2-amp power supply. The remaining 
three I2C pins on the Jetson are connected to an Adafruit 
ADS1115 analog-to-digital converter, which receives its analog 
input from three Adafruit MAX9814 auto-gain control 
microphones and passes along the converted digital signal to 
the Jetson.  

Upon booting the Jetson Nano, a script to start the iContact 
software will begin [7]. For the overall structure of the software, 
there are three distinct parts that all need to communicate with 
each other. These three components are the motor controller, 
the audio processor, and the speaker tracker. These components 
are all connected to a main program that will keep track of the 
current state of the software cycle. It will expect new input from 
the audio processor, give motor instructions to the motor 
controller and signal to the speaker tracker when to start and 
expect a result from it as well. These are all going to be 
concurrently running so part of the challenge will be to ensure 
we do not have race conditions.  

A. Motor Software 
The motor implementation is done with an Adafruit motor 

HAT to control the micro servos and the stepper motors. The 
motor HAT uses PWM to communicate with the micro servos 
and stepper motors. The Jetson Nano controls the motors 
through the motor HAT using I2C. The Adafruit MotorKit 
Library in Python is used to code the controls. The micro servos 
are easily controlled by specifying angle to turn to. The stepper 
motors can only specify the amount of degrees to turn, so 
iContact will have a predetermined starting position for the 
stepper motors, and at shutdown will return to this position. 
This is especially important for the base stepper motor because 
the software algorithm needs to know where the stepper motor 
is in relation to the microphones to be able to adjust the base 
motor so the cameras point at a suspected speaker location. 
When a new speaker has been detected as talking, and there is 
currently no  

Fig. 6. Camera rotation 

speaker in frame, the algorithm in Figure 7 details how the 
motor control for face centering is done. Upon shutdown of the 
Jetson, motors are returned to their predetermined starting 
position. 
 Motor angle adjustment differs for the micro servos and the 
stepper motors. The micro servos can be adjusted by specifying 
an angle within a 180-degree range. The stepper motors are 
adjusted by 1.8-degrees at a time. A counter is used to keep 
track of the current angle of the stepper motor, relative to its 
initial position. 

B. Audio Software 
Our audio implementation plan is to sample 16 bits at a time 

from each microphone at 860 samples per second (the sample 
size and rate are both limited by the ADCs). For each 
microphone, we partition the sample set, find the peak in 
amplitude of each partition (which we assume refers to the same 
sound within the same partition across the microphones), then 
calculate the time difference between peaks of the same 
partition across each pair of microphones. Next, we calculate 
the average time difference across all the microphones, which 
we use along with the relative distance and angles between each 
pair of microphones, to determine the angle of the acoustic 
source relative to the arbitrary axes defined by our microphone 
arrangement. 

C. Computer Vision Software 
When called upon, the computer vision software will track 

for the face of a person. These cameras are connected to the 
Jetson Nano via two MIPI lanes. The first step is to identify all 
the people in the current frame. This is done with the use of 
Haar cascades. Haar cascades are pretrained models for 
openCV and can detect a pattern within the image it is scanning 
through. We plan on using a mix of both facial and full body 
detection to search for figures within each frame. If there is only  



18-500 Design Report: 10/19/2020 
 

6 

Fig. 7. Motor movement algorithm  

one speaker in the frame, we will assume that this is the speaker. 
We will also verify that this is the true speaker by detecting 
mouth movement over multiple frames will help us determine 
if the detected person is speaking. This same algorithm will be 
even more important for when multiple speakers are detected 
within a single frame. Here we must apply the algorithm across 
all the different detected people. One issue with this is that we 
might not successfully detect certain facial features on each of 
the frames which can lead to error. When we hit situations like 
these, we will first try to use the little information we have and 
if that is still not enough, we will simply report back to the main 
function that we could not find any speakers in the frame. If we 
can successfully identify the speaker, the final step is to 
calculate the degree of movement necessary to center the 
speaker in the camera frame. Whether or not we are successful 
in detecting the speaker, we still send the message back to the 
main program to interpret any changes in the rotation that is 
necessary. 

D. Jetson Nano 
For the computation power, iContact utilizes a Jetson Nano 

B01. It is powered by a micro USB cable connected to the host 
laptop. This connection will also be used for the video data 
transfer. 

E. Motors 
The Jetson controls the motors through an Adafruit motor 

HAT v2.3. The motors being used are two Adafruit Nema-17 
Stepper Motors and two TowerPro SG92R Micro Servos. A 12-
volt, 2-amp power supply is used to power the motors. (See 
Figure 3) 

 
 
 

 
 

F. Microphones 
For the audio aspect of our project, we ultimately decided on 
using three Adafruit MAX9814 microphones with automatic 
gain control, all of which would be connected to the Jetson via 
an Adafruit ADS1115 16-bit analog-to-digital converter to 
minimize the noise on each signal (see Figure 8).  
 
 

 
 
Fig. 8. Microphone hardware 

 

G. Webcam 
A Microsoft Lifecam will be attached directly next to one of the 
RaspberryPi Module v2 cameras. This webcam will connect to 
the user’s computer.  
 
 
 

 
  



18-500 Design Report: 10/19/2020 
 

7 

VI. PROJECT MANAGEMENT 

A. Schedule 
Our project schedule has changed little up to this point (Week 

7), as we have managed for the most part to stay on track. The 
only major change has been the removal of the section of our 
plan where we intended to implement verbal command 
functionality, which we realized early on would be too great of 
a challenge on top of our existing design. 

From this point on, our schedule will be significantly 
ramping up in involvement as we enter the second half of the 
semester. By the end of next week, we plan to have our 
individual components finished, such that by Week 9, we can 
commence integration, which will be a sizable hurdle as we 
bring our various pieces of the project together while our team 
is scattered across the country. Directly following integration 
will be rigorous testing, after which our project will end with 
the final presentation and report. 

B. Team Member Responsibilities 
We have divided the work for our project such that Heather’s 

primary task is motor control, Edward’s CV, and Anna’s audio. 
As for our secondary tasks, Heather and Edward are working 
jointly on hardware communication for the video feed (i.e. 
camera to Jetson to computer), while Anna and Heather are 
working together on hardware communication for the audio 
feed (i.e. microphone to Jetson to computer). 

C. Budget 
Our bill of materials may be referred to in Figure 9. We had 

to purchase multiple (sets of) items, such as the Jetson Nano, 
cameras, and microphones, so that each of us could have our 
own partial implementation of the project, since we are all 
working together remotely. The blue rows are the items that we 
planned to purchase from the start; the yellow rows are the 
items that we did not initially plan to purchase but ended up 
needing; and the red rows are the items that we purchased but 
did not use. 

D. Risk Management 
From the beginning of our project, we did a great deal of 

planning to minimize the many risks -- particularly with respect 
to integration -- that would inevitably come with working on a 
mechanical design while the three of us were all in different 
locations. For example, knowing integration would be perhaps 
the most challenging part of our project, we made sure that none 
of the integration tasks were solo tasks. 

Moreover, we spent a great deal of time coming up with what 
components to use in our design and the potential risks that 
came with each decision. One of the biggest decisions we made 
was whether to use a Jetson Nano or a Raspberry Pi, which 
would be the brains of our entire device. The primary features 
we were examining while deciding between the two was the 
peripheral support. Our overarching ideology was “the more 
peripherals, the better” -- it is, of course, always easier to add 
components or change protocols with an excess of ports than a 
lack thereof. For instance, we knew our project would require 
the use of either one or two cameras, but at this early stage, we  

Fig. 9. Bill of Materials 

were still unsure of which quantity we would ultimately 
agree upon. In that respect, the Jetson, having two video lanes, 
was the safer bet compared to the Raspberry Pi, with its singular 
video lane. When it came to choosing microphones, we opted 
for I2S, in part because it is designed to be digital (and would 
thus have less noise than analog), and because it would not use 
up any of the USB ports, which we wanted to keep open in case 
we needed to add any other components to our project down the 
road. Lastly, in general, we did our best to minimize our 
spending to leave us enough room in the budget for unexpected 
purchases to be made in the future. 

With regards to audio, when we realized that our original 
four-microphone plan would not work and we were left with 
two options, we resolved to go with one of the options (a two-
microphone I2S setup) but ordered the components necessary 
and took time to consider the design of the second option (a 
three-microphone I2C setup) to prepare it as a fallback for the 
first option. We did end up needing to abandon the first option 
and resort to the second, so our prior risk mitigation certainly 
paid off. 

VII. RELATED WORK 
Aside from iContact, there are several other similar products 

that seek to make video calls more personal using smart 
cameras that dynamically focus on whomever is commanding 
attention. One such existing solution is the Meeting Owl, a 
smart video conferencing camera that captures 360-degree 
video and audio. Its single omnidirectional camera takes in a 
static, panoramic view of the room from the center of the table, 
then displays the section of that view where the current speaker 
is located. One of last semester’s CMU ECE Capstone projects, 
COMOVO, was also a smart video conferencing camera to be 
placed at the center of the table. Instead of having a panoramic 
view of the room like the Meeting Owl, this unidirectional 
camera was motorized and capable of turning to whoever is 
speaking either automatically or by interpreting physical 



18-500 Design Report: 10/19/2020 
 

8 

gestures. Other devices, like Google Meet’s video conferencing 
hardware, Polycom’s Poly Studio, and Facebook’s portal 
feature a stationary, unidirectional camera to be placed at the 
front of a conference room such that it has a full view of 
everyone present and can zoom in on the current speaker. What 
sets iContact apart from all these products, which seem limited 
to one plane of view, are its abilities to raise and lower and to 
tilt up and down, giving it a vertical range of view that existing 
solutions cannot achieve. 

VIII. SUMMARY 
So far, we have learned a lot about teamwork and setting and 

meeting our own deadlines. We have been following our 
schedule well, so we are optimistic for the project’s 
continuation throughout the rest of the semester.  

REFERENCES 
[1] OpenCV, https://docs.opencv.org/4.1.1/  
[2] ScienceDirect, 

https://www.sciencedirect.com/topics/engineering/interaural-time-
difference 

[3] Wikipedia, https://en.wikipedia.org/wiki/Acoustic_location  
[4] RidgeRun, 

https://developer.ridgerun.com/wiki/index.php/How_to_use_the_audio_
gadget_driver  

[5] Microsoft, https://docs.microsoft.com/en-us/windows-
hardware/drivers/stream/usb-video-class-driver-overview  

[6] RidgeRun, https://www.ridgerun.com/usb-video-class-gadget  
[7] Nvidia Developer Forum, https://forums.developer.nvidia.com/t/how-to-

auto-run-shell-script-made-by-me-when-tx2-system-is-booted/57991/4  
 

 
  

https://docs.opencv.org/4.1.1/
https://www.sciencedirect.com/topics/engineering/interaural-time-difference
https://www.sciencedirect.com/topics/engineering/interaural-time-difference
https://en.wikipedia.org/wiki/Acoustic_location
https://developer.ridgerun.com/wiki/index.php/How_to_use_the_audio_gadget_driver
https://developer.ridgerun.com/wiki/index.php/How_to_use_the_audio_gadget_driver
https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/usb-video-class-driver-overview
https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/usb-video-class-driver-overview
https://www.ridgerun.com/usb-video-class-gadget
https://forums.developer.nvidia.com/t/how-to-auto-run-shell-script-made-by-me-when-tx2-system-is-booted/57991/4
https://forums.developer.nvidia.com/t/how-to-auto-run-shell-script-made-by-me-when-tx2-system-is-booted/57991/4


18-500 Design Report: 10/19/2020 
 

9 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  



18-500 Design Report: 10/19/2020 
 

10 

 


	I. Introduction
	II. Design Requirements
	III. Architecture and/or Principle of Operation
	IV. Design Trade Studies
	A. Jetson Nano vs. Raspberry Pi
	B. Microphone Algorithm Analysis
	C. Microphone Two vs. Three vs. Four Comparison
	D. Panning Range Comparison
	E. Motor Selection
	F. Webcam Setup Selection
	G. Camera Comparison

	V. System Description
	A. Motor Software
	B. Audio Software
	C. Computer Vision Software
	D. Jetson Nano
	E. Motors
	F. Microphones
	G. Webcam

	VI. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Budget
	D. Risk Management

	VII. Related Work
	VIII. Summary
	References

