
iContact

Team A3: Anna Li, Edward Lucero, Heather Baker

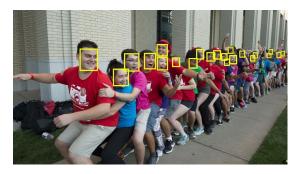
Project Proposal

- How can we better immerse the remote viewer into a video call?
- The solution: An agile camera that keeps the focus on you by physically adjusting the camera
- A bi-camera mechanism on a motorized tripod
 - Utilizes CV and audio detection to locate and physically reposition the camera to focus on the current speaker
 - Can listen for commands to preset/remember a camera angle that can be invoked at a later time during a meeting

Existing Solutions & Use Cases

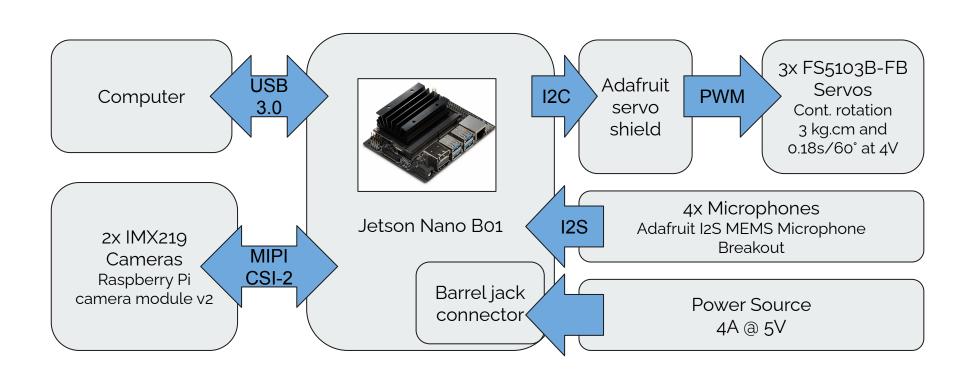
- What makes it unique
 - Rotates on pitch and yaw axes to capture the best angles
 - Spring 2020 Capstone: COMOVO
 - Can raise/lower vertically to adjust to the speaker's height
 - Cheaper than existing products with 360° view
 - Meeting Owl ~\$1,000, Polycom ~\$5,000
- Use cases
 - Video calls (individual or conference)
 - Remote classes
 - Education, fitness, cooking, etc.

Metrics & Requirements


Functionality	Requirements								
Viewing	Compatible with any conferencing software 1080p @30fps								
Working range	360-degree field of view 3ft vertical panning range 10ft microphone pickup range 10ft person detection radius								
Algorithm accuracy	90% centering accuracy (distance between center of head and frame) 90% speaker identification accuracy (based on speaker centered in frame) 90% verbal command comprehension 95% preset position alignment (how close to the preset view the motors can return)								
Speed	<1s motor control for camera adjustment <1s audio input processing latency <1s video input processing latency								

Testing

Functionality	Tests
Viewing	Run with Zoom, Webex, and Google Hangouts
Working range	Stationary or moving speaker around the room at various distances and angles from iContact
Algorithm accuracy	Stationary speakers converse back and forth (identification accuracy) Subject moving while continuing to talk (centering accuracy) Subject presets camera position and invokes using verbal commands
Speed	Stationary speakers rapidly conversing back and forth


Challenges

- Processing audio/visual input and moving cameras quickly to keep up with conversation
- Moving the cameras smoothly and quietly
- Pinpointing a speaker when there are multiple sound sources
- Centering on speaker with stationary/moving objects in frame
- Where to point the cameras when there are no heads in view
 - Will need to be able to identify torsos (→ pan up)
 and use audio detection to locate a talking head

Hardware Design

Spec Comparisons

	Jetson Nano B01 with 4 GB RAM	Raspberry Pi Model 4 with 4 GB RAM					
Video	2 MIPI CSI-2 DPHY lanes	1 MIPI CSI-2 DPHY lanes					
USB	4 USB 3.0	2 USB 3.0, 2 USB 2.0					
GPIO	40 pin GPIO	40 pin GPIO					
Video Decoder	H.264 up to 1080p240	H.264 up to 1080p60					
Audio	2xl2S, (Can wire as stereo for 4 mics)	USB or I2C with ADCs					
CPU	CPU ARM A57	CPU ARM A72 (1 generation newer)					
Motor	4xI2C, 1xPWM	6xI2C, 2xPWM					
Total cost	\$224.70	\$220.65					

Software Design

CV Component

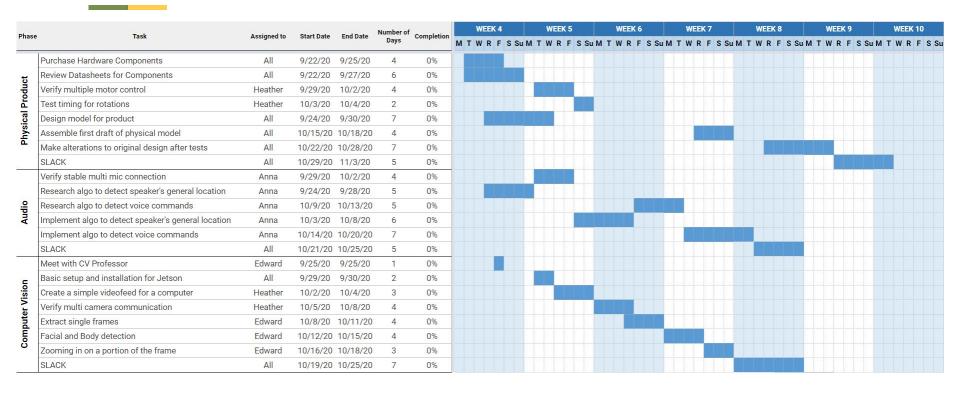
- Will extract multiple frames to pinpoint the speaker
- Sends instructions back to main to adjust motors
- OpenCV 3.3.1

Main program that awaits new data

- Audio feed gives us new motor instructions and tells CV component to search as well
- CV component gives us more instructions
- Python

Audio Feed

- Tells the Main program where a speaker's general location is
- Feeds the audio as well to forward later
- cuDNN 7.5.0


Motor Control

 Will accept instructions from the Main and execute

Division of Labor

Area	Task	Anna	Edward	Heather			
Signals	Audio processing	V					
Software	Video processing (CV)		V	V			
Hardware	Motor control			V			
	Camera input to Jetson	Camera input to Jetson					
	Microphone input to Jetson	V		V			
	Transmitting audio feed to computer	V					
	Transmitting video feed to computer		V				

Schedule

Schedule: Continued

Phase	Task	Assigned to	Start Date	End Date	Number of	Completion	WE	EK 9	WEEK 10		WEEK 11	WEEK 12	WEEK 13	WEEK 14	WEEK 15
	. aun	Acoigned to	Start Date	Liid Date	Days	Completion	MTW	R F S Su M	M T W R F	S Su M	T W R F S Su	M T W R F S S	uMTWRFSS	IM T W R F S SI	M T W R F S Su
	Integrate the video passthrough	Edward	10/23/20	10/28/20	6	0%									
Integrat	Integrate audio into the passthrough	Anna	10/23/20	10/28/20	6	0%									
	Integrate motor movement with presets	A/H	10/29/20	11/2/20	4	0%									
	Integrate motor movement with CV component	E/H	10/29/20	11/2/20	4	0%									
	SLACK	All	11/3/20	11/9/20	7	0%									
βı	Test Latency of the system	All	11/12/20	11/17/20	6	0%									
esting	Optimize Latency	All	11/17/20	11/22/20	6	0%									
i e	SLACK	All	11/23/20	11/29/20	7	0%									
S	Project Proposal	All	9/14/20	9/21/20	8	100%									
ogistics	Design Presentation	All	10/12/20	10/14/20	3	0%									
ogi	Demo 1	All	11/9/20	11/11/20	3	0%									
97	Demo 2	All	11/30/20	12/2/20	3	0%									
	Final Presentation	All	12/3/20	12/9/20	7	0%									
()	Final Report	All	12/8/20	12/13/20	6	0%									