
18-500 Final Project Report: 12/16/2020

1

Abstract—A system capable of supporting the gameplay of a

real-time game of Blokus, with participants not being physically

together. We want to allow participants to be able to enjoy the

physical aspects of the board game even when participants may

not be able to be physically present in the same space. The users

primarily interact with a custom-designed Blokus board, with

LEDs lighting up when pieces are placed. A camera with

computer vision is used to track newly placed pieces and

managed through software and a web server to communicate

changes between boards.

Index Terms—AWS, Blokus, Color Detection, Computer

Vision, LEDs, Low Latency, NeoPixel, OpenCV, Arduino Uno,

Social Distancing, Web Server

I. INTRODUCTION

 ur group is targeting the problem of being able to play

board games physically in person during Covid 19

times, specifically focusing on one board game, Blokus. Given

that social distancing is desirable, it may no longer be feasible

to play board games in-person with friends. Yet, board games

often do not translate well when played in a virtual

environment, because much of the appeal comes from the

physical aspect of being able to physically touch pieces and

move pieces on the board. Despite the advent of popular

online board game sites like Board Game Arena and

Tabletopia, board games feel different without the physical

interactions with the board itself. Our group aims to

implement a socially distanced form of the board game,

Blokus, where players can physically place pieces and interact

with the board as per normal, but without needing the other

players to be in the same physical space playing the game. The

board game Blokus is a strategy game with transparent, Tetris-

shaped colored pieces. Pieces are placed touching at least one

corner of your pieces already on the board, without lying

adjacent to any of your pieces. Based on the usual game of

Blokus, our implementation must be able to support 4 players

at a time, playing this board game together. Pieces are placed

on your own board, tracked using a camera. Then, using

computer vision and software to handle detection and state

tracking, information is sent through a web server to the other

players’ boards. There, the local software will get the

respective piece LEDs to light up the corresponding squares

on the grid. We will also ensure that only valid moves are

allowed and implement the ability to resume the game later.

To simulate the real-time component of board games, the key

goal of the project is to be able to implement this with

minimal latency, updating board state within 150ms of a new

piece being placed.

II. DESIGN REQUIREMENTS

The following design requirements have been set up to meet

the functionalities of the board game, as well as to manage the

real-time aspect of the board game itself.

A. Overall System Requirements

There are two main overall goals of the system. First,

accuracy in piece updating in terms of board state across the

entire system. Second, minimizing overall latency of the

system.

• Accuracy – Given a piece placed on one board, the

same piece’s coordinates should light up the LEDs on

all boards, assuming it is a valid piece placed, and not

do anything if the piece placed is invalid.

• Latency – Given a valid piece placed on one board,

the same piece’s coordinates should light up the

LEDs on all boards within 150ms. This 150ms is

further broken down between the computer vision

portion and client portion, the server portion, as well

as the LED portion. This 150ms was set as it is said

that this is the minimum possible latency to be

perceptible by the human eye [12]. This latency

requirement is important so that quality of the

original gameplay is maintained.

B. Computer Vision and Client Requirements

When a piece is placed, the first task is to figure out the

coordinates of the new piece on the board quickly and

determine if the piece is valid or not. This is handled by the

computer vision and the client component.

• Video Stream – Given an input video stream, to be

able to correctly identify the coordinates with error

rate of <1%. This will be split into 3 incremental

tests. First a color identification test, where we test

images being able to pick up a specific color with

different lighting conditions. Given an input image

and a specific color to filter (only testing for the 4

players’ colors), be able to pick out the given colors

on the image, under various lighting conditions.

Second, a coordinate identification test, where we

test images being able to output the correct

coordinates of a certain color. Given an input image

and a specific color to filter (only testing for the 4

players’ colors), be able to pick out the given colors

on the image, as well as the corners of the Blokus

game board, and then correctly determine which

Blokus: A socially distanced board game

Author: Nadine Bao, Jonathan Nee, Aria Zhang: Electrical and Computer Engineering, Carnegie

Mellon University

O

18-500 Final Project Report: 12/16/2020

2

coordinates have pieces placed on them, under

various lighting conditions. Third, the video test

where we have the input be a video stream. Given an

input video stream and a specific color to filter (only

testing for the 4 players’ colors), be able to get

images from the video stream, pick out the given

colors on the image, as well as the corners of the

Blokus board game, and then correctly determine

which coordinates have pieces placed on them, under

various lighting conditions. When a new piece has

been placed on the video stream, be able to correctly

update the coordinates that have pieces placed on

them.

• Client Software Requirements – Given the

coordinates of all the tiles on the board with a

particular color, be able to identify the new piece

that was placed as well as identify if the piece and

position are valid. In addition, have a mechanism to

keep track of player’s turns to facilitate

communication with the game session server as well

as the Arduino. This will be split up into two tests.

First, given a video stream parsed into coordinates

by the CV, be able to determine the new piece that

was placed and whether the position of the new

piece is valid. Second, ensure that the piece

validation process time is <1ms, which is negligible

in the overall latency of the system.

• Performance Requirement – Given a new piece is

placed, be able to detect the new piece within

130ms, from the time that the player’s hand has left

the board. This requirement is necessary since for

any processing to begin, a clear view of the board is

required to detect the changes and to know what

should be updated. This average will be taken using

a software timer, across the various functions.

C. Web Server Requirements

After the client software determines the coordinates of the

new piece that the player has placed, this information must be

passed to the web server so that it can be forwarded to the

opponents’ client software which is responsible for reflecting

the piece on their physical boards. The web server is also

responsible for allowing players to create game sessions and

join other sessions. An additional functionality that the web

server needs to have is the ability to save the state of the board

which allows players to save and resume games later.

• Server Testing – Allow multiple games to occur

concurrently. When a player creates a new game

session, reflect that information to all the other clients

in the game lobby. Also, when a player joins a

particular game session, reflect the increase in current

player count to other clients in the lobby. Also

display the list of saved games the player has. If a

game needs to be restored, fetch the list of pieces

associated with the game session and replay them to

all the players in the game to restore the board state

of all the players.

• Performance Requirement – Given a piece, be able to

send it to the web server and to the other players’

local software within 40ms [2]. This is the round-trip

time, inclusive of sending the information to the

game session server and from the game session

server to the other players, averaged using a software

timer.

D. LED Requirements

After the Arduino receives the coordinates and color of the

new piece, the corresponding LEDs need to light up.

• LED Testing – Provided with coordinates and

corresponding colors, the LEDs matching the given

coordinates should light up in the colors assigned.

Visually inspect that the state of LEDs changes as

expected.

• Performance Requirement – Based on the

coordinates and their corresponding colors sent from

the client software, the Arduino Uno should change

the state of the LEDs to fulfill the request from client

software. A software timer will be used to determine

the execution time of the Arduino software, which

includes writing to the output pin, over 10

executions. The performance requirement for the

Arduino Uno and LEDs should fall under 2ms,

meaning it is required to be an insignificant part of

our overall latency.

III. ARCHITECTURE AND PRINCIPLE OF OPERATION

The overall architecture of our project is split into three

parts, the computer vision software, the game software, and

the custom Blokus board with hardware components, as

shown in Fig. 1 on the next page.

Each player will have a Blokus board that is fitted with 400

LEDs and driven by an Arduino Uno as well as a Logitech

Camera mounted directly above the board. The game client

software will be running locally on the player’s PC, which

includes the computer vision software. The client software as

a whole is responsible for processing input either from the

computer vision thread or the GUI and validating those inputs

before communicating the player’s piece to the game session

thread on the central server which is hosted on AWS using

EC2. The central server acts as the portal of communication

between the players. The central server is composed of a game

lobby manager thread and game session threads. The game

lobby manager thread accepts connections from clients and

then spawns game session threads to handle individual games.

The threads that are part of the central server also have access

to a database to store and retrieve game and player

information. Fig. 1 on the next page shows the flow of the

game as described.

18-500 Final Project Report: 12/16/2020

3

Fig. 1. Overview of the system architecture

When it is a player’s turn, they can place down a piece of

their color onto the board. The camera will be continuously

streaming a live video of the board to the game software. The

client software has two main threads, one that handles the

computer vision and the other that handles the game logic. The

CV thread continuously captures images from the live video

and processes them to determine the coordinate of each tile

that houses a piece of the player’s color. This information is

updated in the shared memory between the CV thread and the

game logic thread. To prevent race conditions between the two

threads, synchronization variables will be used to prevent race

conditions such as stopping the game logic thread from

reading the shared memory when the CV thread is in the

middle of updating the locations.

On the game logic software side, there are two states that

the software can be in. When it is the current player’s turn, the

game logic software will be continuously polling for piece

location updated by the CV thread. When there is a new

coordinates update, the game logic software will determine the

piece type and piece location. After that, the game logic

software will make sure that the move itself is valid. If the

move is invalid, the software will keep polling for new

updates from the CV thread. If the position of the new piece is

valid, the coordinates of the piece will be sent to the central

server using TCP.

 The game session thread will take the coordinates of the

new piece and store them in memory as well as forward that

piece to all the other players in the game. If a player in the

game chooses to leave before the game is over, the list of

pieces placed during the game session will be persisted into a

database (MongoDB). And the session id of the game will be

stored under the player information for each of the players that

were in the game. This allows the saved game to be displayed

to the players that were part of the game, and furthermore

allows those players to rejoin the session later.

During an opponent’s turn, the client software listens for a

message from the game session thread. When the client

software reads a message from the server, it will send the

coordinates and the color of the piece to the Arduino via serial

communication.

 When the Arduino receives a message through the serial

port, the Arduino will translate these coordinates into a linear

LED address which it will drive with the designated color

which was also passed via serial communication. Thus, on

each of the players’ boards, the coordinates of the piece that

the player placed will be lit up.

The player’s turn then ends, and the next player’s client

software will begin checking for their new piece, and this

process repeats until the game ends.

IV. DESIGN TRADE STUDIES

A. Detecting Pieces and Conveying Moves to Players

The main requirement of our Blokus design is to be able to

detect pieces that have been placed, and then to visually

convey to the player what pieces opponents have placed.

Blokus will support up to four players, meaning that the

Blokus board must be able to display the moves of four

players represented by four different colors. For example, if

the player’s color is red, then the opponents’ colors will be

yellow, blue, and green. There were 5 methods that we

considered for piece detection, and 2 for conveying opponent

moves. We will discuss the methods for conveying piece

detection first, and the pros of cons of each have been

summarized in Fig. 2 below.

18-500 Final Project Report: 12/16/2020

4

Alternatives Sensors PCB RFID

Tagging

Camera

+CV

Size (board

space)
1 4 2 10

Power

Consumption

4 6 8 10

Cost 5 10 6 9

Time

(detection)

8 10 8 5

Time

(production)

7 1 7 10

Able to handle

conveying

moves as well

5 10 5 5

Total 30 37 36 48

Fig. 2. Piece Detection Comparison, 10 is best, 1 is worst

For our metrics, we only consider the amount of board

space it takes up, as external space is irrelevant to keeping the

feel of the original board game, and the main concern is that

the Blokus board itself has limited space to work with. The

first method that we considered was using sensors. There were

two types of sensors that we considered. In both cases, we

used sensors as a threshold detection mechanism, effectively

using the sensors as a switch to determine if there was a piece

on top of a tile on the game board. The first were hall effect

sensors. These sensors measure the magnitude of a magnetic

field, and its output voltage is proportional to the magnetic

field strength through it. This approach would require each

piece to be manipulated with tiny magnets to be able to trigger

the sensor when on the board. When a piece is placed, the

magnitude of the magnetic field nearby increases and triggers

the sensor. The second were light sensors. These sensors

measure the magnitude of light coming through. When a piece

is placed, it blocks off part of the light coming through, as the

pieces are not totally transparent, and using the same concept

of threshold detection, will trigger the sensor. The main

drawback of sensors is the amount of space they would need,

especially given that they are done individually, and so would

need to be hooked up properly for all 400 cells. The second

method was designing our own PCB. This was a very

appealing option, because it would not only be able to handle

piece detection but also help convey player moves at the same

time, given that we could mount LEDs and sensors within the

dimensions desired, handling everything at the same time. It

would also provide the fastest detection time, which is very

important for our project, given a key metric is low latency.

The main drawback for a PCB though is the fact that we are

currently in Covid 19 as we speak, and production time has

drastically increased. Designing a PCB within the United

States is not of the best quality and would still take time and

designing a PCB and shipping it to China to be produced

would take up to several months. In comparison to all the

other items, which are readily available and can be bought and

delivered within a couple of days, there is a longer turnaround

time involved with a PCB. In addition, unlike the other

options, there is a possibility that the design itself had errors,

or if the mask on the PCB board was not done properly. Given

the turnaround time and risk involved, it seemed like a

relatively unsafe option to manage. The third method was

RFID tagging. This would involve tagging each piece with an

RFID tag and having an RFID reader detector attached to the

board. By detecting the distance to the reader, the piece can be

unique identified. This approach was good, but like the

sensors, required modifying pieces and was costly as well. The

last approach involved a camera and computer vision. In this

approach, a camera would send a video feed to a computer,

where computer vision would be used to process the image of

the board and help detect the coordinates of those pieces and

identify the newly placed piece. This approach’s main

drawback was the time for detection.
 We will now discuss the 2 methods for conveying player

moves. The first method that was considered was using

Augmented Reality in which the player would view the

Blokus board through their smartphone camera to see where

the opponents’ pieces are. We found this method to be

unsuitable for our project because it did not align with our

main goal: to allow use of a physical game board while

playing Blokus remotely. With Augmented Reality, players

would not be able to get the hands-on board game experience

we intend to provide through this project. This would make

the board game less seamless, and less desirable to the players.

From this, we concluded that the method used to convey

opponent moves needed to be part of the Blokus board such

that players would not need to use an external device, such as

a smartphone or laptop, to play the game.

 The second method that was considered was using

individual LEDs for each tile that would be lit according to the

players’ color when a piece was played. This meant that

players would be able to immediately see squares physically

on the board where opponents have placed pieces and does not

take away too much from the physical component of the board

game. The only downside to this approach was that we need to

be careful that the LEDs do not bleed into other tiles as it

could be confusing to the player and confusing for the piece

detection portion of our project given that we went for the

computer vision approach.

Ultimately, we decided on using computer vision for piece

detection, and using LEDs for conveying moves. These

methods best fit our needs and based on our analysis above,

were the most suitable for this project.

B. Computer Vision Software

Since the latency of our system is of critical importance, we

did a trade study between C++ versus Python OpenCV

libraries and functions to see which would be able to more

quickly process images to get the desired outputs. Based on

research, we expected C++ to be faster, as Python’s OpenCV

basically does the same functions as in C++ with a wrapper to

provide the ease of use that Python offers. We did a quick test

on a test image and timed how long it would take to isolate

18-500 Final Project Report: 12/16/2020

5

red, as shown in Fig. 3 below.

Fig. 3. Test image and desired output for software trade study

The code we used applied a HSV mask, since that is the

ideal color scheme to do color manipulation on, then a

morphological transform and dilation to isolate a range of

pixel values and smoothen out the resultant pixels found. We

timed how long it took from start to finish and averaged out

the readings to avoid skewing the results due to abnormalities.

We found that implementing this in Python took 0.05s

while it only took 0.007s in C++, using the equivalent function

calls and similar timing mechanisms. As such, this confirmed

our hypothesis, and justified us using C++ for the computer

vision part of our project, since our project was concerned

with latency as a key metric.

C. Computer Vision Method (Resizing)

We also did a design trade study on different computer

vision methods to achieve the low latency requirement we

wanted. Notably, we had a choice in whether we wanted to

resize the image we got. Resizing the image immediately

incurs a latency delay, while not resizing the image incurs

additional latency delays throughout processing the image, as

every additional instance of any function that must loop

through the image will take longer as there are more pixels

involved. For instance, changing the image to HSV color

scheme, filtering out colors, and looping through the image at

the end to check if a given grid cell is filled or not will all

incur additional latency costs. Fig. 4 shows the latency of the

various main steps of the computer vision portion, as well as

how they differ by resizing versus without resizing. We

concluded that the latency cost of resizing the image was too

high, and that the gain in terms of reduced latency in the other

functions were insufficient to justify the latency cost of

resizing and that not resizing the image would give us a lower

overall latency. As such, we ultimately decided not to resize

the image.

 Note that the values in the table are rough estimates, and the

range provided shows the variation. The numbers in each row

do not sum up totally to the whole, because in different

iterations there are different fluctuations for various reasons,

and so in this case the whole is not the sum of its parts, even

though each component was individually measured. For the

smallest activities, we were careful to consider the latency

involved in even setting up the software timer and ensured that

we kept all comparisons constant between the two. In addition,

while the range is large, in general the average latency tended

to be in the lower end of the latency range.

Activity

Resizing

Latency (ms)

No Resizing

Latency (ms)

Read new image 1 (negligible) 1 (negligible)

Resizing 30-80 -

Change to HSV 10-30 16-40

Filter color of corners 3-10 12-24

Morphological transform 3-5 3-5

Find contours 1-3 3-4

Find bounding rectangles

<1

(negligible)

<1

(negligible)

Calculate grid dimensions

<1

(negligible)

<1

(negligible)

Filter color of player’s

color 9-15 8-30

Calculate if each cell is of

player’s color 5-10 3-7

Total latency range 80-240 60-120

Fig. 4. Resizing Comparison

D. Computer Vision Method (Grid Detection)

Another computer vision method we had to analyze were

the different methods we had to do grid detection. There are

two possible simple ways to do this. The first method involves

detecting the grid from scratch, and there are many well

known ways to do this [16]. Such methods use the difference

in colors between the grid and the surroundings to detect the

gridlines. The problem with such methods that we faced was

caused by two issues, the first is that the Blokus board’s

gridlines within the board itself were thin and gray, and the

second is that pieces placed covered the gridlines themselves.

This caused two problems. First, even on a bare board, we

could not detect the grid just by setting a color range, because

in different lighting conditions, what would be the grid lines

might easily be part of grid cells in other lighting conditions.

This is still resolvable if we use color contrast to isolate the

grid lines. The second and larger problem is that when pieces

were placed over the gridlines, the gridlines were no longer

detectable, as the grey color was no longer detectable from the

image. This problem can be seen from Fig. 3 above as well.

This is, however, a problem that can be mitigated, if we

assume that the board state will not change over the course of

the game, and we calibrate the board position across the video

stream based on fixed grid lines from the start of a new game

or before resuming a saved game. There are inherent

downsides to this, however, in that the board itself is not stuck

to any surface, and so if by accident the board gets shifted

18-500 Final Project Report: 12/16/2020

6

during gameplay piece detection would become impossible.

The second method to do grid detection was simply by placing

colored squares at the corners of the grid, demarcating the

corners of the grid, and searching for these colors instead. The

method we used here was to start from the center of the image

and find the outermost positions in the image where those

colors were detected. This is better than the previous solution

in that practically speaking it is a more robust solution: the

board might get moved from time to time, and this is a method

to detect the grid whenever an image is being processed, that

would help to deal with such issues. For this reason, we chose

this second option instead. That said, there are still downsides

to such a method, for instance, the surroundings cannot be of

the same color as that of the colors used to demarcate the grid.

We believe this is a smaller problem than the one discussed

earlier, because we have perfect freedom in choosing a color

that is likely rare to see on playing surfaces such as a table or

the floor, and so by avoiding common colors like white or

black such an issue can be mitigated.

E. Process of Triggering Piece Storage

A supported feature of this project is the ability to resume a

certain game later. This involves storing the state of the board

in the database when a player chooses to save the game.

Originally, new pieces were supposed to be inserted into the

database by the game session thread on receiving the piece.

Due to feedback from the proposal presentation, more research

was done to measure the latency of a database query. It was

found that the latency overhead of inserting a piece into the

database would be in the 10 to 20ms range. Hence, this

approach was ruled out, as it would directly add to the latency

of updating a piece.

Services like AWS Lambda and AWS SQS were also

considered, and were initially part of the design presentation,

but were ultimately removed. This is because both services are

not provided in the free tier that students get and because the

process of triggering a Lambda function would have been

slower than accessing the database directly since Lambda

functions require time to set up the execution environment.

This contributes to overhead costs which would have been

detrimental to the latency goals set for the round-trip time

from client to server to client.

To keep the latency to a minimum, we concluded that

updating the database on each new piece was simply

unfeasible. Thus, we decided to have the board be saved in

memory until the game has been saved, at which point the

game server would persist the board state to the database.

F. Web Server Choice

The three cloud services that were considered for hosting

the central server were Amazon Web Services (AWS),

Microsoft Azure and Google Cloud Platform. Part of the

reason why AWS was chosen was because it is one of the

most comprehensive cloud platforms that currently exist and is

widely used around the world. Also, the pricing for AWS

services is very competitive compared to the other cloud

services. They offer free tiers of service which some of the

other cloud services providers do not.
The main reason why AWS was chosen was because it was

the cloud provider that our team was most familiar with,

making it easier for us to use, allowing us to be more

productive rather than spending time experimenting with other

cloud providers. The service we will be using from AWS is

EC2. Some of the other services that were also considered

include the Google Compute Engine, Azure Virtual Machines

and IBM Cloud Virtual Servers which were all ruled out

because they were more expensive. Overall, the decision to

use AWS was mainly due to expenses and experience with the

product [5][10].

G. Database

The database that was originally chosen was DynamoDB

since it was assumed that it would be more compatible with

the other AWS services that were being used, but ultimately

the database chosen was MongoDB. This is because it was

very easy to set up a cluster using MongoDB Atlas, a fully

managed cloud database service that is very user friendly.

Also, since our group has had experience with MongoDB

prior, it seemed to be the best choice for the project.

H. Display

The display for the pieces being placed was generated using

OpenGL and GLUT [15], however another choice for the

display could have been through a web application. The web

application would have made this project more accessible as

that would have allowed users to access it through their web

browser instead of having to use frameworks like OpenGL and

GLUT. However, using a web application would have added

additional latency through the number of requests that would

have to be sent back and forth, and would be less efficient

since it is written in languages like Javascript. Updates would

take longer to appear on the web application versus the GUI

which is written in C++ and is updated very frequently. Also,

group members were not very familiar with web development

so sticking with a C++ application using OpenGL was what

the group ended up pursuing.

I. Types of LEDs

 To display opponent moves, the team decided on

constructing a 20 x 20 LED matrix display and installing the

LED display under the Blokus board. To effectively display

opponent moves, the 400 LEDs would need to be individually

programmable/addressable and light up in at least four colors

(red, green, blue, yellow). The following ways of constructing

a LED matrix were considered:
• Prebuilt LED Matrix Display – A ready-made

programmable LED matrix display would have been

ideal for this project, as it would remove any need for

soldering. Unfortunately, the spacing between LEDs

on such displays available for purchase do not fit the

necessary spacing requirements to fit under our

Blokus board. Each square on the Blokus board is

1.5cm apart, center to center, which is much larger

than most prebuilt LED Matrix Displays, which are

meant for having more fine-grained color changing.

• PCB LED Matrix – Another consideration was to

design a custom PCB with the necessary LEDs. The

benefits of this method include being able to control

the spacing of LEDs and eliminating the need for

soldering. The end prototype will also be much neater

18-500 Final Project Report: 12/16/2020

7

due to the lack of wires needed. As discussed earlier,

this could also be integrated with sensors to handle

piece detection at the same time. The main

disadvantage of this method is that it would require a

longer time to obtain a working product that could be

used for testing. The time it would take for the

manufacturer to make and send us the board and

make any revisions would greatly affect the

timeliness in which we could integrate and test the

LED matrix with other components of the project.

This method would be ideal in the situation where

there is more time.

• Individual RGB LEDs – In this method, individual

RGB LED diodes will be used to construct a circuit.

There are not many benefits to this method besides

the ability to control spacing. It is labor intensive and

not the most cost effective as each LED costs over a

dollar. Given that we need 400 lights, this method

would consume over two-thirds of our 600-dollar

budget.

• RGB LED Strip – The LED matrix can be constructed

using RGB LED strips which contain individually

programmable LEDs. The benefit of this method is

that it costs less compared to buying 400 individual

LEDs. It also removes a lot of circuit building work

as the LEDs come wired together. Spacing is more

difficult with this method as manufacturers only sell

LEDs strips with around three variations in spacing;

however, because the strips themselves are flexible,

the position of each LED can be altered to some

extent.

The team found that constructing the 20 x 20 LED matrix

using an individually programmable RGB LED strip would be

the most suitable for our needs. Given our time constraint, this

method would allow fast fixes/revisions if necessary and is

much less labor intensive compared to using individual LEDs.

J. Selecting LED Strips

Model
(60

LEDs/m)

Power

Consumption
Working

Voltage
Price

WS2812B 18 Watts/m DC5V $51.76

WS2815 18 Watts/m DC12V $107.86

Fig. 5. LED Strips Comparison

 When it came down to selecting the right model of LED

strips to use for our project, we had a choice between

WS2812B and WS2815, as shown in Fig. 5 above. Both

models consist of individually programmable LEDs as

required by our project and come in densities of LED, 60

LEDs/meter that would work with our spacing requirement

(LEDs 1.5cm apart, center to center).
 With regards to power consumption, the seller, BTF

lighting, has both models listed at 18 Watts/m which indicates

that 400 LED would use around 120 Watts. This may not be

true in practice as some research online regarding power

consumption of various LEDs indicate that the WS2812B

consumes significantly less power than the WS2815B; in the

30 LEDs/m configuration on max brightness on all channels,

150 WS2812B LEDs consumed 13.65 Watts while 150

WS2815 LEDs consumed 20.184 Watts [14]. This likely

indicates that WS2812B draws less power despite the

measurements provided by the seller and thus comes at an

advantage when it comes to saving power.
 Another benefit the WS2812B has over the WS2815 is its

cost. Purchasing 2 sets of 300 LEDs/m WS2812B to meet our

400 LEDs requirement costs half the amount it would take to

purchase the same quantity of WS2815B (refer to table).

However, the cheaper price is likely the result of the

WS2812B’s shortcomings compared to WS2815. With

WS2812B, since the working voltage is DC5V, a single DC5V

power supply would struggle to evenly light up a strip of 400

LEDs as there are not many DC5V power supplies for sale

that have high power ratings. This means that to have 400

LEDs light up in addition to having the LEDs light up evenly,

it would require multiple power supplies and power injections

at multiple points along the strip. This adds bulky components

to the matrix display setup and increases the cost due to the

need to purchase multiple power supplies.

The voltage drop across the LEDs has more consequences

in terms of even lighting when the power rating of the supply

is low. This issue is fixed by using the WS2815 which is

DC12V compatible. DC12V supplies usually come with a

higher power rating; in this project, we managed to purchase a

reasonably priced power supply rated at 360 Watts. This

higher power rating allows us to not have to perform power

injection, which saves us cost on purchasing multiple power

supplies and makes for a neater build.
The team chose to use the WS2815 despite its higher power

usage and cost because it was a safer and more compact

solution that provided a better end product. With WS2812B,

the power supplies used will have lower power ratings. This

means that with such a long LED strip, the strip will likely be

drawing near max power which can easily lead to overheating

of the power supply. With the WS2815, the LED strip can

draw power from a 360-Watt supply which prevents the issue

of overdrawing power and provides leeway for when power

draw increases due to modifications to the strip. Additionally,

the cost of purchasing WS2815 with a compatible DC12V

power supply would end up costing less than the cost of

purchasing WS2812B with the necessary amount of DC5V

power supplies.

K. Board Integration

One important aspect of this project is integrating the LEDs

into the Blokus game board we purchased. This involves

centering each of the 400 LEDs under each of the 400 squares.

There were two ways by which we could make the LED lights

under the Blokus game board visible to the player. One

method was increasing the brightness of the LEDs such that

they show through the board. While this method would have

been aesthetically pleasing, we did not choose to do this due to

risk of the LEDs overheating. The LEDs are very warm at

high levels of brightness, so it did not seem safe to have them

on high brightness levels while placing them in a confined

space inside the Blokus game board. As a result, we opted to

run the LEDs at low brightness (around 30 out of 255) and

18-500 Final Project Report: 12/16/2020

8

drill holes in each of the 400 squares on the Blokus game

board so that the player can see which LEDs are lit. The holes

would also allow for better air flow, which is important

keeping LEDs cool especially when they are near each other.

Before drilling the holes, we needed to decide between

using an electric drill or a hand drill. We ultimately decided on

using a hand drill because it would have cost us less to

purchase compared to buying an electric drill which costs

around $50. While opting to use a hand drill has saved us

more of our $600 budget, it did lead us to spending more time

on board construction and integration as each hole had to be

drilled by hand. We found that the tradeoff between time and

cost was worth it as our budget was rather limited; the money

remaining would be better off saved in case we needed to buy

replacement parts.

Positioning the LEDs was another design challenge we had

to face. Initially, we had planned to attach the LEDs directly

on the inside of the Blokus game board; however, during

construction we realized that adhesive did not stick

particularly well to the plastic material of the Blokus game

board and permanently fixing the LEDs to the game board

using glue would make repairs very difficult to make. Hence,

we instead attached the LEDs to a flat, square cardboard

surface that would be placed underneath the Blokus game

board. The carboard surface with LEDs can be easily detached

from the gameboard anytime we needed to make repairs to the

LED matrix. Fig. 6 below shows our completed LED board as

well as an image of what our game board looks like.

Fig. 6. LED Strips

V. SYSTEM DESCRIPTION

A. Computer Vision

Fig. 7. Computer Vision Schematic

Fig. 7 above shows the process for the computer vision

portion. The first stage of each turn is the player’s move, and

this portion of the code was written in C++, as discussed in

Section B in the design trade studies, using the OpenCV

library [6][9]. We use a Logitech C270 camera to maintain a

live video feed of the board. When it is the player’s turn, for

each frame received, we first apply a HSV mask, since that is

the ideal color scheme to do color manipulation on. We then

apply a morphological transform and dilation to isolate a range

of pixel values and smoothen out the resultant pixels found.

We do this twice, once for the grid detection, by searching for

bounding rectangles in the image, and then again for color

detection of a specific player’s color, depending on which

player the board is being used for. Thereafter, we plot out

which pixels correspond to which coordinates on the original

board and calculate all grid coordinates with pieces that

belong to the player in a 20x20 array. The computer vision

portion then passes all the coordinates belonging to that player

to the turn-based software. This process continuously happens

regardless whether it is the player’s turn. The turn-based

software handles processing of the coordinates sent by the CV

portion only when it is that player’s turn. This means that

players can make their move in advance before their turn if

they so choose, and such moves, if valid, will be picked up

immediately when their turn starts. Fig. 8 below shows an

image of this processing being done, on the player who is

using the red pieces. The left image shows the instantaneous

image as captured by the Logitech camera, while the right

image shows the processed perceived grid lines as well as all

the pieces detected from the given image on the left.

Fig. 8. Video Stream (left) and Computer Vision Post Processing (Right)

isolating the color red

B. Game Software

The client software is composed of five threads with the

bulk of the work being done on the game logic thread, the

computer vision thread, and the GUI thread. The other two

threads help read input from standard in as well as read

messages from the game session thread. The software is

written in C++ and uses the OpenGL and GLUT frameworks.

A tuple hash template was also used which can be credited to

Leo Goodstadt[8].

• Game Logic

There are two main parts of the game logic thread: turn

recognition and piece validation.

o Turn-based logic

The game logic thread can be in one of two states, player turn

or opponent turn. During opponents’ turns, the software

constantly listens for messages sent by the game session thread

running on the central server. When the game session thread

sends the coordinates of a piece to the client, the client forwards

those coordinates to the Arduino along with the color of the

piece through serial communication. The Arduino then drives

18-500 Final Project Report: 12/16/2020

9

the LEDs to reflect the piece that was just placed by the

opponent.

The other state the software can be in is the player turn

state. During this state, the software continuously checks the

memory it shares with the CV thread. If there are new

coordinates, the client software finds which coordinates

belong to the new piece placed. After isolating the new piece

coordinates, the piece must be validated. If the piece is invalid,

i.e. the player does not have a piece left in their inventory that

matches the new piece shape or if the location of the piece is

invalid then the client software will wait for another update

from the CV thread and attempt to validate again until

eventually a valid piece is played. When a valid piece is

placed, the coordinates of that piece are updated in the copy of

the board on the client side and then the coordinates of the

new piece is sent to the game session thread via TCP as well

as the Arduino through serial communication. Note that when

the client software detects a new valid piece, that piece is

finalized, and the player can no longer remove that piece from

the board. The group debated on allowing the user to amend

the piece they placed by adding an undo button, but any

amending processes would just add an unnecessary delay to

the system, and since our goal was to minimize the latency,

that idea was scrapped.

o Move Validation

Fig. 9. Player’s starting inventory of pieces and the number of orientations

for each piece

Pieces in software are represented as a list of coordinates

that can either have length 1, 2, 3, 4, or 5. Each piece can have

between 1 and 8 orientations. For example, the piece of size 1

only has 1 orientation while some of the pieces in Fig. 9 above

have up to 8 orientations. Thus, each orientation needs to be

considered when trying to determine what piece was just

placed on the board. While there are only 21 Blokus pieces,

when orientation is accounted for there are about 91 different

piece orientations to search through when trying to determine

the piece that was placed, as shown in Fig. 9 above.

Generating and checking through 91 different pieces is not a

trivial amount of work, especially when our design is focused

on latency as a key metric. To speed up the processing, before

the game starts the client software will read in the 21 standard

Blokus pieces from a csv file and then generate all possible

orientations for those pieces and place them in an unordered

map that links the normalized piece coordinates to the piece

type (a number from 0 to 20). This allows the client software

during the game to perform on average a O(1) look up for

piece type after first normalizing the coordinates it reads from

the CV thread.

Since the CV software returns coordinates on the board,

before trying to determine what piece those coordinates

represent, the coordinates need to be normalized first. The

coordinates (row, col) received from the CV thread are

normalized by finding the minimum row and the minimum

column out of all the coordinates for that piece. Then each

coordinate is normalized by subtracting the row by the

minimum row and subtracting the column by the minimum

column. The coordinates also need to be sorted by the smallest

row and if coordinates are on the same row, the tiebreaker is

the coordinate with the smaller column. An example

representation of a normalized piece is shown in Fig. 10

below. This normalization process is critical because

coordinates from the board cannot be directly passed into the

unordered map as one piece could have a multitude of offsets.

Fig. 10. Multiple orientation of pieces as well as example of normalized piece

representation

If the piece is not in the map that means the piece is not an

actual piece. This could mean the player might have just tried

to place multiple pieces on the board during one turn. If the

piece is in the map, then the piece type is extracted (there are

21 unique values for pieces) and checked against what

remaining pieces are in the player’s inventory. If the piece is

not in the inventory, then that means the player has tried to

place a duplicate piece that was already placed before, which

is an invalid move.

 While the piece itself could be valid, the location where the

piece was placed may not be. One of the rules for placing

pieces in Blokus is the first piece placed for each color must

be placed on one of the board’s four corners. This rule can

easily be checked based on the coordinates passed by the CV

thread on each player’s first turn. Another rule is that each

piece must be placed so that it touches at least one piece of the

same color corner to corner. Edges of pieces of the same color

are also not allowed to touch. This validation is done by

looping through each coordinate of the piece being placed and

checking all four edges as well as the four corners of the

coordinate for what colors are at its edges and corners. To

18-500 Final Project Report: 12/16/2020

10

make sure no pieces of the same color are at non corner

positions, and that there is at least one corner where there is a

piece of the same color and that there isn’t already a color at

the coordinate.

• GUI

The GUI was created using OpenGL as well as GLUT, the

OpenGL Utility Toolkit. The GUI was originally created to

facilitate debugging as it was useful to have a way of

displaying the state of the in-memory board; however, it also

became another possible way of playing the game. If a player

does not have access to a camera and Blokus game board, they

can use the GUI as a way of inputting pieces onto the board.

Using the up and down arrows, users can select the piece that

they want to place, and the “1”, “2”, “3”, “4” number keys

allow the user to rotate the piece. The “enter” key can be used

to reflect the piece across the y-axis and by clicking, the

player can place the piece if it is a valid move. The GUI is also

used to detect user inputs such as saving which users can do

by pressing the “S” key and giving up which can be signaled

by pressing the “L” key. Fig. 11 below shows an example of

what the GUI looks like when a game is ongoing.

Fig. 11. Image of the GUI midgame

The other primary responsibility of the GUI is to display the

open game sessions. When a client connects to the game lobby

manager that is running on the central server, the client

receives information about the current ongoing game sessions.

Up to six of these game sessions are displayed to the user on

the GUI, the displayed information about the game session

include the name of the session, the session id, the current

number of players that have joined the session and the total

number of players needed for the session. This allows the user

to see what game sessions are available for them to join. An

image of the lobby GUI display is shown in Fig. 12.

Fig. 12. Image of the GUI midgame

• CV Communication

The computer vision thread communicates with the game

logic thread through shared memory. Delving deeper into the

implementation, the shared memory is a vector of coordinates

protected by a mutex and a variable called update_num. On

the other end, the game logic thread also has a local variable

called current_update_num. Update_num and

current_update_num are both initialized to 0. When the CV

thread calculates a new batch of coordinates for a frame of the

live feed, the coordinates are not stored directly into shared

memory. Instead, after the CV thread finishes compiling a list

of new coordinates it grabs the mutex and then wipes the old

coordinates in the vector and copies the new coordinates into

shared memory. Before unlocking the mutex, the CV thread

also increments the update_num. The game logic thread, when

it is the player’s turn, continuously loops and checks the

update_num and compares it against its current_update_num.

Spin waiting around updated_num should not be an issue since

we are using a multi core processor. If update_num >

current_update_num then that means there are new piece

coordinates in shared memory, so at that point the game logic

thread will then start attempting to lock the mutex. When it

does, it can then copy the coordinates out of shared memory

into a local vector and set its current_update_num equal to the

update_num. Then the mutex will be unlocked and the game

logic thread can proceed with validating the new piece placed.

C. Server Software

The server software runs on an EC2 instance and is

composed of one main game lobby manager thread and

multiple game session threads depending on the number of

ongoing game sessions. An additional thread is also used to

constantly accept connections from clients.

18-500 Final Project Report: 12/16/2020

11

Fig. 13. Image of the GUI midgame

• Game Lobby Manager

To join a game session and start playing the game, the client

software must first establish communication with the game

lobby management thread. The client communicates with the

game lobby manager through TCP. A thread is constantly

listening for new connections from clients. After receiving a

new connection, the thread creates a new player object and

adds the socket descriptor to the object and places it in a queue

protected by a mutex for the game lobby manager thread to

process.

The client software sends the game lobby manager its

username and the game lobby management server. It then

queries the player information collection in the MongoDB

Capstone database to see if the username exists. If the

username exists, the game lobby manager fills the player

object with the player’s id as well as a list of saved games that

it got from the query to the player information collection. If

the username does not exist, then the game lobby manager

then creates a new entry in the database for the user.

The game lobby manager maintains a map of public game

sessions that any player can request to join. Information saved

about the public game sessions include the name of the

session, the session id which is a unique number, the number

of current players that have joined the session, and the total

number of players that need to join the session before it can

begin. The total number is customizable and can range from 2

to 4 depending on how many players the user creating the

session wants to play with. When players connect with the

game lobby manager, the manager also adds their profile to

the active player map which maps the player id to information

about the player, including their username and a list of game

session ids. This list contains the game session ids of the

games that the player has saved for later and is used to display

the option of joining saved games to only the players that were

originally in the game when it was saved.

Another responsibility that the game lobby manager has is

sending game session updates to the clients that have

connected with the game lobby manager and have not yet

picked a game session to join. Those clients will receive

updates when a new game session is created, or a player

decides to join a game session. Using the map of active

players, the game manager lobby can keep track of which

players are in-game and which players are in-lobby and should

receive updates. When a game session update is triggered, the

game lobby manager sends a message in this form:

<session_id>:<session_name>:<current_num_players>:<total

_player_num>/

<session_id>:<session_name>:<current_num_players>:<tot

al_player_num>/... of all the games that they can join to all the

players marked as in-lobby. Note that while all players will get

information about public games, some players will get

additional game session information if they have previously

saved games. This information is then parsed and reflected to

the client’s GUI.

When the game lobby manager receives a request from a

client to join a particular game session, the manager marks the

player as in-game and updates the current number of players

count that is associated with a game session. When that

number reaches the total number of players the game session

is removed, and the game lobby manager spawns a game

session thread and passes along the information of the players

that have joined the session. That game session thread can

then initialize the game based on the information provided.

This flow is shown in Fig. 13 above.

18-500 Final Project Report: 12/16/2020

12

• Game Sessions

The main purpose of the game session thread is to forward

along piece information from one client to all the other clients

in the game. The first thing that the game session server does

is send each player the color that they will be. The color is

dependent on the order that the players joined the game except

when restarting a saved game. In that case the color of each

player is the original colors of the players when the game was

saved. By sending the colors over to the client software, the

client software then knows that the game is starting and then

transitions to the replay state. In the replay state, the client

software listens for pieces sent over by the server and does not

allow inputs from the user until the game session server sends

over an end of replay packet.

If the game session is not a saved session, then the game

session thread will immediately send over the end of replay

packet to the players. Otherwise, the game session thread will

use the list of pieces associated with the saved game session

which is stored in the game session collection in the database.

The ordering in this list is the order that the pieces were

originally placed. Thus, a slight artificial delay is added

between the game session thread sending replay pieces over to

the clients so that the clients get a nice replay of the order that

pieces were placed originally which helps them get a refresher

on the game before it begins again. Part of the game of Blokus

is trying to counter the moves of the opponent, as such, it is

important to know the order of the pieces that were placed,

and it would be too jarring if the pieces all showed up at once.

When the replay stage ends, the game session thread starts

listening for a piece from the player whose turn it is. The

server then forwards the piece to all the other players in the

game. It also appends the piece to the list of pieces that it

maintains. Along with pieces, players can also send over two

other types of packets to signal either a save request or a give

up request. To end a game each of the players must send a

give up request in which case the game session server will

then exit the loop and free the piece list that it has maintained

since the game ended without any player saving. If the game

session that ended was a saved game, the game session thread

will also remove the game session id from each of the player’s

saved game session list because the game has then been

officially finished. On the other hand, only one save request is

needed before the game session saves the game. For the game

to be saved, the game session id must be saved along with a

list of player ids and the list of pieces. Also, on each of the

player profiles the current game session must be appended if it

is not already in the list.

D. LED Matrix Display

Fig. 14. LED Matrix Display Schematic

The LED matrix display used to display opponents’ moves

to the player is constructed from three main components: a

DC12V 360W power supply, an Arduino Uno, and a WS2815

individually programmable RGB LED strip, as shown in Fig.

14 above. This matrix display is installed under the Blokus

board and indicates the pieces played by opponents of three

different colors.

 It is expected that the LED strip will draw at a maximum

around 120 Watts from the power supply, when all color

channels are at full brightness. However, the LEDs will likely

not be used at maximum brightness due to the proximity of the

player to the Blokus board; LEDs that are too bright will hurt

the player’s eyes. The power supply takes in 110V (via power

cable plugged into the wall) and has a 12V output which is

connected to the 12V input of the LED strip. The LED strip’s

ground (GND) is connected to the power supply’s ground as

well as the Arduino Uno’s ground. The data input (DI) of the

LED is connected to D2 of the Arduino Uno. The backup

input (BI) is connected to ground; each individual LED on the

strip has a backup input that is connected to the data input of

the previous LED such that if one LED in the chain were to

malfunction, it would not affect LEDs connected to it.

 The Arudino Uno receives from the client software via

serial communication (using the SerialPort Library[17]) the

coordinate and color of the square on the board that needs to

be lit up. This information will be used in conjunction with the

software written in the Arduino IDE using the NeoPixel[1]

Library to send the necessary output through the D2 output to

light up the corresponding square. The NeoPixel Library was

selected because it is a widely used and well documented LED

strip control library. The Arduino Uno can perform digital

writes to D2 within a few microseconds, so it does not

contribute significantly to our overall latency.

VI. PROJECT MANAGEMENT

A. Schedule

Refer to the last page for our Gantt chart. Our schedule

breaks the timeline down into mostly 4-day chunks, which we

believe is necessary to achieve a mini milestone. While we

had originally built-in slack into our Gantt chart nearer the end

to give ourselves time to manage any integration issues, we

ended up needing most of the slack time due to additional

complexities during integration and small fixes that we needed

once we got the game up and running. Ultimately, we mostly

stayed on track and managed to complete everything we

18-500 Final Project Report: 12/16/2020

13

expected to achieve for the project, most notably meeting our

low latency requirement. Additionally, we are all mainly

helping with integration together because it would be too

challenging to try and integrate each other’s parts individually.

The team members working on each part relevant to the

integration worked together to assist in the integration of the

relevant portions.

B. Team Member Responsibilities

Aria is responsible for the turn-based game portion of the

client software as well as the web communication portion of

this project. Her tasks include the following: researching the

most suitable web services needed to communicate player

moves to allow remote gameplay and writing software that

handles interactions between players which consists of

receiving moves from opponents, communicating moves to

opponents, and checking for valid/invalid moves.
Jonathan is responsible for the player move detection

through computer vision. His tasks consist of the following:

setting up the camera, researching OpenCV library, and

writing the computer vision portion of the client software to

find all coordinates of squares that are in the players’ color.
Nadine is responsible for the LED matrix display that

indicates players’ moves on the Blokus board. Her tasks

include assembling the components for the LED matrix

display, writing Arduino software needed to control the LEDs,

and integrating the LED matrix into the Blokus game board.
To ensure smooth interfacing between the three portions of

the project, Aria and Nadine will work together on the serial

communication between the client software and the Arduino.

Jonathan and Aria will work together on the communication of

Blokus board state between the computer vision and turn

based portion of client software.

C. Budget

Our group has spent a total of $269.76 so far (including the

cameras we are buying this week). Fig. 15 shows our AWS

Usage and Fig. 16 shows our overall cost, broken down by the

various components.

Fig. 15. AWS Usage

1 This part came from our inventory.
2 Equivalent to 0.075 credits

Purchases Costs

2x WS2815 LED Strips (Ip30, 16.4ft,

300 LEDs)

$107.86

DC12V 30A Power Supply $20.12

Power Cable $10.30

Arduino Uno w/ USB Cable $301

2x Blokus Board Game $49.98

2x Logitech Webcam $81.50

Amazon Web Services Credit $0.75 12

Hand Drill $12.71

Ethernet to USB Dongle $13.903

Total Cost Spent on Project: $296.374

Fig. 16. Cost breakdown of various components

D. Risk Management

One risk that the team identified was that it will be

challenging to meet latency goals of <150ms. This latency is

the sum of computer vision execution time, turn based

software execution time, web communication latency, and

Arduino digital pin output latency. The team was most

concerned about the computer vision processing time as

preliminary tests showed that filtering and transforming one

image for color detection takes 7 milliseconds in OpenCV

C++. As this is only a portion of the computer vision client

software and one of many images that need to be processed

every turn, our latency may not hit the target goal of 150ms.

The team will mitigate this risk by examining the execution

time of each stage of the computer vision color and coordinate

detection process and determine in which ways a stage can be

sped up if needed.
 Another challenge that the team may encounter is external

factors affecting the accuracy of piece detection. The accuracy

of detection could possibly vary depending on the lighting

condition of the room. Accuracy could also differ between

using a Blokus board with or without LEDs installed. Hence,

it would be necessary to test the accuracy of piece detection in

various lighting conditions and with different states (color,

on/off, brightness) of the LEDs. This would help the team

determine the optimal conditions for piece detection as well as

adjust the computer vision software to be effective in a larger

variety of environments. Another external factor that would

affect the accuracy of piece detection would be hands and

3 Bought for the Raspberry Pi, which we did not use as we swapped to an
Arduino Uno instead.

4 Theoretical Total Cost (including parts from inventory): $327.12

18-500 Final Project Report: 12/16/2020

14

external objects that may come in between the camera and the

Blokus board. To mitigate the effects such conditions would

have on piece detection accuracy, resampling of the Blokus

board will be performed.
 One other challenge the team faces is the timeliness of the

LED matrix display construction. Without the display

constructed and integrated into the Blokus board, it will not be

possible to test computer vision software on the final state of a

board, which is a Blokus board equipped with working LEDs.

To mitigate the effects of such risks, the team will prioritize

LED matrix display construction after the design review such

that it can be available for computer vision and gameplay

testing.

VII. SYSTEM VALIDATION AND RESULTS

A. Overall System Results

Fig. 17. Overall System Results

Our overall system results have to do with end-to-end

latency and accuracy. We discuss the various components of

end-to-end latency more in the sections below, but it is

summarized for the entire system in this section as well. In

addition, overall accuracy of the system was measured by

playing 10 games from one board to the opponent’s board and

ensuring that the piece placed on the first board lit up the

respective LED colors on the opponent’s board when the

move was valid, and to not do anything otherwise. In addition,

this also checked that the turn-based system worked as

expected and the player turn did not advance when the move

was invalid.

As shown in Fig. 17 above, our results meet our

requirements that we set out to achieve. Most notably, we

invited a tester to try out the entire game for himself, to great

success.

B. Computer Vision Results

There was a total of 2 requirements for the computer vision

component, for latency and for accuracy. For accuracy, these

tests were done incrementally, as described earlier in Section

II. Given reasonable lighting conditions, we tested that the

computer vision portion could correctly determine the

coordinates of the piece placed. Our tests showed that our

coordinate identification works under various lighting

conditions and passed all the different tests we tried. We had a

test for latency as well, and here there was the greatest

variance among all the components for latency. Our

measurements reflect a range of 60ms to 120ms, with an

average of 82ms over 100 timed runs. The range is slightly

wide, with occasional measurements taking longer. We have

tried to time the individual components within the CV code,

but there is a decent variance, notably in how long it takes to

convert the image to HSV color scheme, which we have

discussed and broken down in Section IV when discussing

resizing. These results are summarized in Fig. 18 below.

Component Req. Testing Method Result

Color +

Coordinate

Identifica-

tion Video

Test

100%

pass

Given piece placed in

video stream, to

correctly determine

coordinates of a

certain color and send

set of 20x20

coordinates to client

piece detection

software

20/20

tests

Latency <130

ms

Timing from when

image is received to

coordinates being sent

to client piece

detection
(100 trials)

Avg:

82ms

(60ms-

120ms)

Fig. 18. CV Validation Results

C. CV to Client Piece Detection and Move Validation

Accuracy

The functionality of the video stream to valid piece

detection was tested by playing 10 games with one client that

was using computer vision to get player input with the three

other players using the GUI as input. During each of the CV

client’s turns, the user always initially tried to play an invalid

move such as trying to place multiple pieces, overlap pieces

with turned on LEDs, and playing illegal moves. After

checking to make sure that the invalid move does not register,

the player then moves the piece to a valid location, and it is

checked that the LEDs under the piece light up which signals

that the valid move is recognized by the client software. The

validation and piece detection process behaved exactly as

expected for each game.

D. Move Validation Latency

Most of the processing time needed to be allotted to the

computer vision and client to server communication, so it was

crucial for the move validation process to take a negligible

amount of time which our group defined as sub 1ms. Through

the optimizations described in the game logic section of the

paper, the move validation latency was brought down to an

average of 0.047ms with a maximum of 0.073ms and a

Comp-

onent

Req. Testing Method Result

End-to-

end

Latency

150ms End to end latency

from piece placed

to LED being lit

Avg time of

individual

components, using

software timers

CV: 82ms

(60-120ms)

Server: 28ms

(23-37ms)

Arduino: 2ms

(1.26-2ms)

Total: ~112ms

Accuracy <99% Accuracy of piece

placed on one

board to LED

lighting up on

opponent board,

including invalid

moves

Measured from one

board to lighting up

on board with

LEDs

20/20 tests

passed,

accuracy of

100%.

18-500 Final Project Report: 12/16/2020

15

minimum of 0.035ms. This measurement was done by timing

100 trials of how long it took for the GUI to receive a mouse

input to when the piece would display on the screen. This is

well under the goal of 1ms which meant that the move

validation latency was negligible as desired.

E. Client To Server To Client Latency

For piece information to be sent to other clients in the game,

the piece must first be sent to the central server which then

relays the piece to the other players in the games. Thus, it

must be ensured that the client to server to client transmission

time takes a minimal amount of time so that placed pieces can

appear on other players’ boards with minimal delay.

The goal for this portion of the project was to have the

client to server to client latency be sub 40ms. Through 200

trials of round-trip time testing, the average latency was

measured to be 28.4ms with the maximum latency of 37.4ms

and a minimum latency of 23.5ms. This means that the goal of

being sub 40ms was reached, and it can be noted that even the

maximum latency was smaller than the goal. This allowed

additional time to be allotted to other parts of the system.

F. Concurrent Games

One of the goals for the server side of the software was to

allow multiple games to occur concurrently. This was tested

by spawning multiple clients and having them all play game

sessions concurrently. During testing 9 simultaneous game

sessions were created, with each session having two players.

This testing was limited by the number of clients that can be

spawned locally on one machine. The server was functioning

as normal with 9 concurrent games and was still sending game

session lobby updates in a timely manner. Pieces were also

showing up almost simultaneously on the opponent boards. It

would have been interesting to stress test the server more, but

the local resources were not adequate to do such a thing since

each client was running a GUI using OpenGL that was

updating very frequently. Nonetheless, this testing showed that

the server meets the goal of allowing multiple games to be

played at the same time just like an actual dedicated game

server. Fig. 19 below shows an example of three concurrent

game sessions in progress.

Fig. 19. Example of Three Concurrent Game Sessions

G. Game Session Display Accuracy

The game session display was first tested by spawning two

client processes that both stay connected to the game session

manager thread throughout the testing process without

entering any games. Then six more threads were spawned, and

each created a new game session with different names. The

GUI of the two initial clients is checked to ensure that each

game session is displayed correctly and arrived in a timely

manner. Then all the clients are killed, since the number of

clients that can be spawned is limited by local resources. After

all the clients are killed, the process is repeated five more

times. For each trial done, the two clients always displayed the

correct game sessions, and they were always displayed in a

timely manner.

 The second test checked that when other players joined a

game session, the number of current players in the session

updated to the correct amount. Also, it checked that when the

current number of players reached the total players, the game

session is no longer displayed. Two client processes were

initially spawned and stayed connected to the game session

manager throughout the testing process without entering any

games. Then four other clients are spawned and one of those

clients creates a new game session with a capacity of four

players. Then the other three clients join the game, and when

they do, the GUI of the two initial clients are monitored to

make sure the current number of players is updated correctly.

Finally, when the last of the three clients join the game

session, the GUIs of the original clients are checked to make

sure that the game session has disappeared. Then all the client

processes were killed, and this process was repeated three

more times.

H. Saved Game Replay Accuracy

The functionality of the replay was first tested by playing

the game with four clients. At some point during the game, the

state of the board is recorded and then one of the players

initiates a save. Then the players all disconnect and reconnect

to the game lobby manager and they all join the saved game.

After the replay finishes the state of the board is compared

against the state of the board that was recorded. This process

was repeated ten times and each time the boards were

identical. A summary of the client and software validation

results are shown in Fig. 20 and Fig. 21 below.

Component Req. Testing Method Result

CV to Client

Piece

Detection

and Move

Validation

Accuracy

100%

pass

Given piece placed,

local client to

determine validity
Placed a piece down,

and measured if

software correctly

responded to

valid/invalid move

10/10

tests

Valid Move

Verification

Latency

<1ms Timing when GUI

received mouse input

to displaying on screen
(100 trials)

Avg:

0.047ms
Max:

0.073ms
Min:

0.035ms

Fig. 20. Client Software Validation Results

18-500 Final Project Report: 12/16/2020

16

Component Req. Testing Method Result

Client To

Server To

Client

Latency

Less

than

40ms

Sending messages

from client to server to

client (200 trials)

Average:

28.3ms
Max:

37.4ms
Min:

23.5ms

Concurrent

Games

More

than 3

at

once

Number of concurrent

games (Note: this was

limited by the

resources on the local

machine doing the

testing, not by the

server)

9

concurr-

ent

games

Game

Session

Display

Accuracy

100%

pass

Each game session is

displayed correctly

and arrives in a timely

manner

5/5 tests

Fig. 21. Server Software Validation Results

I. Arduino Software Execution Time

Because this project emphasizes low latency, we needed to

make sure that the execution time for the Arduino software,

which would handle inputs from the client software and output

signals to change the state of the LEDs, would be insignificant

relative to our overall latency requirement.

The Arduino software takes in 15 bytes which indicate the

color and coordinates (row and column) of 5 squares (max

number of squares a Blokus piece can have). Based on this

information, the software will determine which LED index

needs to be changed and the color it needs to be changed to.

Then it will write to D2, the digital output pin on the Arduino

Uno connected to the digital input (DI) of our LED matrix to

change the state of the LEDs. The average execution time of

this software over 10 tests is around 0.78ms, making it a very

small portion of our overall latency.

J. LED Behavior Accuracy

To determine if the LEDs are behaving as expected, we

preformed over 20 visual tests. These tests were simply done

by having the client software send the color and coordinates of

Blokus pieces to the Arduino examining that the respective

LEDs lit up in given color. We passed visual inspection for 20

of the 20 tests we had planned to do. The LEDs behavior is

accurate and as intended. A summary of the LED verification

results is shown in Fig. 22 below.

Component Req. Testing Method Result

Arduino

Code

Execution

Time

<1ms Time necessary to:

Parse row, col, color

Calculate LED index

Determine RGB

values

~.78 ms

10 timed

code

execut-

ion

Accurate

LEDs

Behavior

100%

pass

Expected color and

coordinates of each

piece

Given a color and

coordinate, to light up

that respective LED

that color

20/20

visual

tests

passed

Fig. 22. LED Validation Results

VIII. RELATED WORK

There were many sources of inspiration for this project.

Other capstone groups in the past have attempted to create a

physical representation of a board game that can communicate

with other players that are not in the same physical location.

For example, the Spring 2019 Capstone group Team AC

created a Smart Chess board [13] that allows players to play

chess with each other from far away on a physical board. It

lights up to show legal and illegal moves by using lights and

sensors under a transparent chess board. While our team was

inspired by the project, the approaches that this team took was

not feasible for the board game that was chosen. Another

capstone team during Spring 2016 created a project called

Catan-omous Dealer which featured an autonomous dealer for

distributing resource cards for the board game Settlers of

Catan. While the aim of their project was very different from

this project, we were inspired by their use of computer vision

to keep track of board state to determine what cards to deal to

each person.

Another product that is like our project is Mind Sport

International’s Scrabble board [7] that uses RFID chips to

detect tiles and transmit tile information to other players in the

game. This allows players to instantly see what words and

scores players have. However, to purchase one of these game

boards, each player would have to spend about $31,800 for

this sophisticated technology. In comparison, our budget is to

be under $600 where possible. Given the similar idea to be

able to transmit game information in real-time, at a fraction of

the course, we believe our prototype is a cost-effective

solution with minimal loss in terms of latency that does not

really impede the game flow.

A direction that the team was considering was an AR

version of Blokus so that no physical pieces are needed at all.

While we decided to pivot away from this idea due to some of

the limitations, we felt came with using AR technology, there

are products out there that focus on bringing AR to the board

game genre. One of the most prominent of these products is

the Tilt Five, which uses a game board, AR glasses and a

wand controller. When players put on the AR glasses, they can

see animated pieces as 3D holograms on the table. Interacting

with these pieces are done using the wand. Due to the complex

18-500 Final Project Report: 12/16/2020

17

nature of all these technologies and the limited time capstone

imposes, our team decided against a similar approach since it

seemed outside the scope of capstone. However, this approach

is an interesting take on the board game genre that we would

like to explore in the future.

IX. SUMMARY

The team managed to reach the broad goals of the project

and created a product that we believe is well-suited for the

purpose of playing a physically distanced game of Blokus. We

managed to meet the latency requirement we set for ourselves,

and we believe that this project is a good base to use to adapt

other similar board games as well. The current latency is a low

bound already, given the need to process an image as well as

to send it over the server to other players. In addition, even

when playing the game using our board, the latency difference

is not noticeable, and the additional delay does not detract

from the playing experience.

In the future, using the framework we developed during

capstone, all grid-based board games can be adopted to use

similar technologies using the hardware, CV, and

infrastructure we created. There is also opportunity for this

project to be shifted into the realm of augmented reality as that

is what the state of board games seems to be heading toward.

We had several lessons learnt throughout this project. The

first was that unexpected issues can and will arise during

integration. For our project, we stumbled heavily during

integration, particularly when dealing with Mac and Windows

differences and libraries in the tools we used. A second issue

was always making sure we had backup components. This was

the main reason for our switch from a Raspberry Pi to an

Arduino. This was also vital in ensuring that our LED board

was buildable, as the LEDs were prone to breaking. Another

issue we encountered was compatibility. There is always a

tradeoff to be made between ease of use and performance. In

our case, we were optimizing heavily for latency, but the

result of that was libraries that were harder to use or where

documentation was not as clear. One instance of this was the

documentation between OpenCV in Python and in C++, and

another instance was using the C++ MongoDB driver instead

of the python MongoDB driver which would have been easier

to set up. If we had less time for this project, perhaps we could

have gone the well documented path and to use more

compatible technologies and sacrifice some latency in the

process. Lastly, planning is great, but it is impossible to plan

for every single contingency plan and foresee every possible

problem. And so, it is important to also learn when to just dive

into the problem. This was especially true for the LED board

construction. There was a lot of worry initially about the LEDs

and how a lit LED might bleed into the surrounding squares,

but I think the images show that the bleeding is minimal

(Refer to Fig. 6 above).

Lastly, if future capstone teams are considering attempting

to create a physical board game that can be played while

players are in different locations, this team would recommend

them consider all the possible approaches discussed in the

trade discussion portion of the paper for creating the hardware

for the board itself. CV may not be the best way to take if the

tiles on the board are very large, or if there are not that many

tiles. In addition, if teams are very good at designing PCBs,

that might be an interesting approach to take as well. Overall,

future teams should make sure that the approach they take fits

the board they are trying to emulate.

REFERENCES

[1] Adafruit. (n.d.) Adafruit NeoPixel Überguide. Retrieved from

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-
use

[2] AWS Latency Rivenes, Logan. (2016, April 28). “Optimizing Latency

and Bandwidth for AWS Traffic.” Amazon, AWS,
aws.amazon.com/blogs/startups/optimizing-latency-and-bandwidth-for-

aws-traffic/

[3] Blokus Game Guide wikiHow Staff Editor. (2020, April 2). “How to
Play Blokus.” WikiHow, www.wikihow.com/Play-Blokus.

[4] DB Query Time K. R. (2020, April 16). 11 Things You Wish You Knew

Before Starting with DynamoDB. Retrieved October 17, 2020, from
https://blog.yugabyte.com/11-things-you-wish-you-knew-before-

starting-with-dynamodb/

[5] EC2 “Amazon EC2 Alternatives & Competitors.” G2, G2,

www.g2.com/products/amazon-ec2/competitors/alternatives.

[6] Fernando, S. (n.d.). Install OpenCV with Visual Studio. Retrieved from

https://www.opencv-srf.com/2017/11/install-opencv-with-visual-
studio.html

[7] Fincher, J. (2015, May 02). The world's most high-tech (and expensive)

Scrabble board. Retrieved October 17, 2020, from
https://newatlas.com/worlds-most-high-tech-and-expensive-scrabble-

board/25097/

[8] Goodstadt, L. (2011, Aug 18) “Generic Hash for Tuples in
unordered_map / unordered_set.” Stack Overflow. Retrieved from

https://stackoverflow.com/questions/7110301/generic-hash-for-tuples-

in-unordered-map-unordered-set
[9] Hachcham, A. (2020, April 21). Install and configure OpenCV-4.2.0 in

Windows 10 - VC++. Retrieved from

https://towardsdatascience.com/install-and-configure-opencv-4-2-0-in-
windows-10-vc-d132c52063a1

[10] Harvey, Cynthia, and Andy Patrizio. (2020, March 17). Pros vs cons of

cloud computing resources “AWS vs. Azure vs. Google: Cloud

Comparison.” Datamation, www.datamation.com/cloud-computing/aws-

vs-azure-vs-google-cloud-comparison.html.

[11] Holographic Tabletop Gaming. (n.d.). Retrieved October 17, 2020, from
https://www.tiltfive.com/

[12] Pubnub (2020, May 08). How Fast Is Realtime? Human Perception and

Technology. Retrieved from https://www.pubnub.com/blog/how-fast-is-
realtime-human-perception-and-technology/

[13] Team AC: Smart Chess board. (2019, May 06). Retrieved October 17,

2020, from http://course.ece.cmu.edu/~ece500/projects/s19-teamac/
[14] The Hook Up. (2019, August 05). The COMPLETE guide to selecting

individually addressable LED strips. Retrieved October 17, 2020, from

http://www.thesmarthomehookup.com/the-complete-guide-to-selecting-
individually-addressable-led-strips/

[15] The Khronos Group. (n.d.). The Industry's Foundation for High
Performance Graphics. Retrieved from https://www.opengl.org/

[16] Watson, R. (2020, May 10). Multiple Color Detection in Real-Time

using Python-OpenCV. Retrieved from
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-

using-python-opencv/

[17] ZainUIMustafa. (2018, July 16). Connect-And-Use-Arduino-via-Cpp-
Software-Made-In-Any-IDE. Retrieved from

https://github.com/ZainUlMustafa/Connect-And-Use-Arduino-via-Cpp-

Software-Made-In-Any-IDE

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use
http://www.aws.amazon.com/blogs/startups/optimizing-latency-and-bandwidth-for-aws-traffic/
http://www.aws.amazon.com/blogs/startups/optimizing-latency-and-bandwidth-for-aws-traffic/
http://www.wikihow.com/Play-Blokus
https://blog.yugabyte.com/11-things-you-wish-you-knew-before-starting-with-dynamodb/
https://blog.yugabyte.com/11-things-you-wish-you-knew-before-starting-with-dynamodb/
http://www.g2.com/products/amazon-ec2/competitors/alternatives
https://www.opencv-srf.com/2017/11/install-opencv-with-visual-studio.html
https://www.opencv-srf.com/2017/11/install-opencv-with-visual-studio.html
https://newatlas.com/worlds-most-high-tech-and-expensive-scrabble-board/25097/
https://newatlas.com/worlds-most-high-tech-and-expensive-scrabble-board/25097/
https://stackoverflow.com/questions/7110301/generic-hash-for-tuples-in-unordered-map-unordered-set
https://stackoverflow.com/questions/7110301/generic-hash-for-tuples-in-unordered-map-unordered-set
https://towardsdatascience.com/install-and-configure-opencv-4-2-0-in-windows-10-vc-d132c52063a1
https://towardsdatascience.com/install-and-configure-opencv-4-2-0-in-windows-10-vc-d132c52063a1
http://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
http://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
https://www.tiltfive.com/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
http://course.ece.cmu.edu/~ece500/projects/s19-teamac/
http://www.thesmarthomehookup.com/the-complete-guide-to-selecting-individually-addressable-led-strips/
http://www.thesmarthomehookup.com/the-complete-guide-to-selecting-individually-addressable-led-strips/
https://www.opengl.org/
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-using-python-opencv/
https://www.geeksforgeeks.org/multiple-color-detection-in-real-time-using-python-opencv/
https://github.com/ZainUlMustafa/Connect-And-Use-Arduino-via-Cpp-Software-Made-In-Any-IDE
https://github.com/ZainUlMustafa/Connect-And-Use-Arduino-via-Cpp-Software-Made-In-Any-IDE

18-500 Final Project Report: 12/16/2020

18

APPENDIX A

Fig. 23. Gantt Chart

