
BLOKUS

Team A1: Blokus
Nadine Bao, Jonathan Nee, Aria Zhang

Use Case
● Goal of Blokus

○ Get rid of all your pieces
○ Prevent others from doing so
○ Play pieces in turn-based order
○ Pieces can only be placed corner to corner

● Socially-distanced Blokus board game
○ Playing on separate physical boards with other players in their own

locations
● Area

○ Software + Hardware (Circuits)

> 6 feet

Game Requirements
● Support up to 4 players per game
● Game play mechanics:

○ Place pieces down on your own board
○ See opponents’ board light up based on your move via LEDs

● Only allow valid moves
● Ability to resume game at a later time

Technical Requirements (LEDs)
● 3 possible approaches

○ LEDs with corresponding colors to show where pieces are placed
○ AR/MR
○ Display in software and users have to place the piece themselves

● Each blokus board will have custom LEDs
● LEDs light up orange if moves are invalid
● When a piece is placed on 1 board, the corresponding LEDs light up

on opponents’ boards
● Sufficient power for 400 LEDs (~4-15 Watts/m of strip LED)
● RPi GPIO latency negligible

Technical Requirements (CV)
● 4 possible approaches

○ Camera with CV to track board state
○ Sensors (Hall effect/Light sensors)
○ RFID tagging of pieces
○ PCB

● Can detect changes in board state when new pieces are placed
● Can accurately detect when there is a hand in the image
● Can process given images within 100 ms
● CV color detection algorithm for a board is highly parallelizable

Technical Requirements (Software)
● 2 possible approaches

○ Server-Client
○ Peer-to-Peer

● Lower latency (40 ms for client → server → client)
● Easier to implement (solid architecture)
● Scalable
● Persist board state to DB

System Overview

Solution Approach
● Web Server:

○ Deploy to AWS EC2
○ MongoDB Atlas for persisting game state

● Computer Vision:
○ OpenCV to process live video from Logitech/Raspberry Pi camera

● LEDs:
○ RPi + long strip of 400 LEDs + external power supply

Testing, Verification, and Metrics

Requirement Testing Strategy Metrics

Functional
Blokus game

Software
testbench

Valid/invalid moves, player turns

Working LEDs MCU testing Ability to control specific LEDs to change color

CV detection Software + Visual Ability to correctly identify tiles with pieces

Total latency Software timer CV + Software + Web latency + MCU < 150ms

Risks/Challenges
● Biggest challenge: low latency

○ Potential bottlenecks
■ CV processing
■ Client-server communication

● Accuracy of detected pieces
○ Lighting of the room could affect CV
○ Need to avoid detecting hands/external objects as pieces

■ Resampling if this is the case
● Timeliness of LED circuit construction

○ Necessary for integration/testing

Tasks

● LED & Blokus Board Design (Nadine)
○ Pi program
○ Integrate LEDs into Blokus board

● Computer Vision (Jonathan)
○ Recognize pieces placed on board
○ Avoid other objects (e.g. hands placing the piece)

● Game Logic & Web Server (Aria)
○ Game mechanisms
○ Multiplayer
○ Game lobbies

Gantt Chart

