
18-500 Final Project Report: 12/18/20

1

Abstract—A system capable of providing real-time feedback to

users as they exercise. The system provides users with customized

workouts based on their target areas and as they work out, they

will get periodic feedback regarding their posture performing the

appropriate exercise. The system involves a display and a side

camera that takes images and periodically relays the images to an

FPGA that does the image processing to identify the joints, which

are then post-processed and analyzed to provide feedback on the

users’ screen.

Index Terms— Computer Vision, Fitness Assistant, FPGA, HLS,

OpenCV, Posture Tracking, PyGame, Real Time Analysis, Spotify,

SQLite, UART, Vivado

I. INTRODUCTION

HE global spread of the novel coronavirus (COVID-19), has

truly changed the way that we live. In order to mitigate the

spread of the virus, we have transitioned to a remote

environment where contact with one another is limited. This has

impacted not only the way we work but also our ability to stay

in shape. This has led to a rise in the popularity of at home

workout options ranging from free fitness applications such as

the Nike Training App to high-end workout systems such as

Tonal and Mirror. The workout system Mirror provides users

with personalized workouts, a video of a trainer performing the

corresponding exercises, and biometric information such as

heart rate and calories burned.

 Our workout system strives to build upon this system by

providing the same functionality as well as the capability to

receive real-time feedback pertaining to the posture of the

current exercise being performed. Falcon will be able to detect

the users’ joints at an accuracy of 90%. It will then parse this

information and generate feedback that matches 100% to our

designed models and ability to provide feedback to the user in

less than 1.5 seconds, which corresponds to the average time it

takes to perform 1 rep of a particular exercise.

II. DESIGN REQUIREMENTS

A. Joint Tracking

 The main requirements of the joint tracking algorithm is

split into pre-processing the image and pinpointing the

trackers. We will have a software testbench to ensure that the

pixel is downscaled and converted into a 160x120 pixel image

in an HSV format. There should be a 100% size and format

match because we are calling library functions. For

pinpointing the trackers, there will be a lot of noise and the

color of the lighting might affect the accuracy of the

algorithm. Our software testbench will ensure that we have a

90% accuracy rate. We chose this so that an average set of 10

reps will have 1 rep misclassified at most. The inputs to our

testbench will be a random image of a user wearing the dark

suit, and we will compare the joint location to the expected

joint location determined manually by tracing the image.

B. Transfer Protocol

 The main requirements for the transfer protocol pertain to

latency and accuracy. The latency to transmit the data from the

CPU to the FPGA and back from the FPGA to the CPU has to

be under 1 second to be able to provide the feedback at an

appropriate rate. Likewise, the data that is transferred via

UART has to be 100% accurate to ensure that we are able to

extract the appropriate information after processing the image.

Both of these requirements will be analyzed with the assistance

of a hardware testbench where we analyze various packets of

data sent between the computer and the FPGA to determine the

accuracy and latency of the system.

C. Posture Analysis

 For the posture analysis, we want to ensure that the algorithm

performs 100% based on our model. Our model will have

predetermined thresholds for what we want our lines and angles

to connect the joints to be. Our software testbench will take in

predetermined joint locations to ensure the feedback will be

what we determine our model to be.

D. User Interface

 For the user interface we want an application that is easy to

navigate, gives feedback effectively and is overall user-friendly.

More specifically there should be three main capabilities of the

application: choosing and doing a workout, modifying their

weight/age as well as being able to look through past workout

session details. The user should be able to navigate these

different sections through a combination of mouse and

keyboard. During the workout the user should be able to see

themselves as well as a model performing the workout and also

receive live time feedback. Testing will be done through a

visual inspection to make sure all requirements are met.

Falcon: the Pro Gym Assistant

Author: Vishal Baskar, Albert Chen, Venkata Vivek Thallam: Electrical and Computer Engineering,

Carnegie Mellon University

T

18-500 Final Project Report: 12/18/20

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

A. FPGA/HLS

 Our workout system involves a Kintex-7 XC7K325T FPGA

that is responsible for the image processing. An explanation

regarding why this particular FPGA was chosen is elaborated

further in the Design Trade Studies section. The

implementation for the image processing is done with the

assistance of Vivado HLS.

B. OpenCV

 OpenCV is a library implemented in python that allows for

the processing of the images/videos. The library interfaces with

our Logitech C270 webcam and allows for a live feed of the

video in our application. It also captures images periodically,

dependent on the workout routine, which will be sent to the

FPGA for processing after being downscaled.

C. Pygame

 The majority of the user interface will be written with the

assistance of the Pygame library. This framework will interact

with both OpenCV as well as the Pyserial library to send and

receive data from the FPGA through the UART protocol.

D. SQLite

 SQLite will be used to store data regarding the user in a

robust relational database. There is a SQLite Python library

which will be used to store relational data such as user profiles

as well as past workout data.

E. Image Processing

 The application will capture images at a fixed interval

dependent on the workout routine. The image processing

portion will be in charge of downscaling the image and

converting it to the HSV format. The user will be wearing a dark

suit with 3M colored bandages taped around the joints. The

joint tracking algorithm would extract the joints by creating a

binary mask based on the bandage color, then do morphological

transformations to reduce noise, and finally pinpoint the largest

concentration of pixels asserted to track the joint locations.

F. UART Communication Protocol

 After the computer downscales the image that is captured

from the computer’s webcam, it is transmitted to the FPGA with

the UART protocol. This transmitted image is then stored in the

FPGA’s RAM for further processing and after the FPGA is able

to extract the joints from the image, this information is

transmitted back to the CPU at the same baud rate.

Figure 1: System Diagram

18-500 Final Project Report: 12/18/20

3

G. Posture Analysis

 The posture analysis will receive joint locations from the

FPGA and it will create lines from the joints. With these lines,

angles can be calculated at the joint locations. We will be

comparing slopes and angles to our predetermined models.

There will be thresholds for each to account for the different

human anatomy and angles of the webcam. If checks aren’t met,

feedback will be sent to the application to output to the user to

change their posture.

H. User Interface

 The user interface will be navigable through a combination

of mouse and keyboard. A user will be able to choose between

their workout focus (legs, core, upper) and have the option to

save their profile and biometric information. Workouts will

have feedback pertaining to each rep’s form and

history/statistics can be viewed at a later time.

IV. DESIGN TRADE STUDIES

A. Why FPGA?

 We decided to use an FPGA to function as a coprocessor and

process the image on the FPGA since we wanted to reduce as

much of the computation on the CPU as possible. We chose to

perform the computation on an FPGA rather than upload the

images to a cloud service where we could have alternatively

performed the computation since we wanted the images of users

to stay on their local machine and not shared to an external

platform for privacy and security.

B. Why Kintex-7?

 While doing the appropriate research for our project, we

came across the Identity Checker on FPGA project from the

Spring 2019 semester. The project had a similar implementation

to our current implementation, and we observed that they used

the Kintex-7 FPGA. Since this FPGA is available in the course

inventory and provides us with HLS capabilities and the

appropriate baud rate for our use case, we decided to use this

FPGA for our project.

C. Why UART Protocol?

 After looking into various protocols, we decided to use the

UART protocol for a combination of reasons. Previous

capstone projects we looked into (such as the Identity Checker

on FPGA project mentioned in the previous section), used the

UART protocol, and it worked well for their specific use case.

Since the UART protocol worked effectively for the other

projects and it is a fairly simple protocol that is well-

documented, we decided to do some analysis as to whether or

not it would be effective for our use case. After performing

some rudimentary calculations, we estimated that the time it

would take to transmit the data from the CPU to the FPGA via

UART - our current bottleneck - would be approximately 0.63

sec (the derivation for this number is provided in Equation 1 in

the following section) which is enough for us to provide

feedback. As a result, we decided to use UART for our

communication protocol.

D. Why HLS?

 To implement the image processing in HDL, we

contemplated two options: using Vivado HLS and hand-writing

RTL. We initially contemplated hand-writing RTL since it

provides us with more capabilities to optimize the RTL for our

project and because we had not used HLS in the past. However,

after performing further research, we realized that we would

exceed the number of registers available in the FPGA unless we

used block RAM. Since interfacing with the block RAM

requires the implementation of non-trivial handshaking logic

with the block RAM and we already have an implementation of

our image processing in a high-level language, we decided that

it would be time-efficient to use HLS. Though not optimal, it

allows us to stay within our schedule and focus on the

integration and testing portions of our project.

E. Why Color Tracking and not RFID or HumanPose?

 We decided to do color tracking instead of using RFID tags

or HumanPose mainly because of its simplicity. The

HumanPose implementation consists of a lot of library

functions that will be hard to implement because we would have

to convert it to RTL. There are not many resources that we can

refer to for hardware accelerator implementation. RFID tags

may be more accurate than the color tracking mechanism we

are using, but the RFID radio frequency signal may lose its

accuracy in contact with liquids. Since the user will sweat

during the workout routine, it may not be the best option.

F. Why Pygame?

 In order to create a cohesive application for working out we

needed to choose a user interface framework. Due to the

availability of many essential libraries such as Pyserial and

OpenCV we decided that the best language to code the UI

would also be Python. There were a few different options

including tkinter, PyGame, and PyQT. Researching through

these we found that tkinter was a bit too basic and barebones

since it lacks widgets and many builtins. PyQT was a very

comparable choice but was chosen over at the end of the day

since needed features needed to be paid for. Pygame is more

optimized for games but since we want a high refresh rate for

the camera pygame will be the fastest, it will be more ideal even

though this is not actually a game.

G. Why SQLite?

 SQLite was chosen as the way to store persistent data due to

its robust and relational nature. We originally contemplated

using a simple .csv file to store data but since both user

biometrics and past workout data will be stored it will be much

more convenient to use the relational features. In addition,

lookup and parsing will be much easier now instead of

manually parsing the .csv. We can quickly look up all the

workouts for a specific user using their user ID and simply

calling a function provided by the SQLite API.

18-500 Final Project Report: 12/18/20

4

V. SYSTEM DESCRIPTION

A. Image Processing

 The pre-processing of the image will be first to downscale

the image to a 160x120 pixel image to reduce the latency of the

overall system because we will be sending it serially to the

FPGA. Then, the image will have to be converted into the HSV

color space, because this format is easier to work with and more

precise for image processing algorithms.

 The image processing algorithm will consist of multiple

existing OpenCV library functions. Since we will be using the

FPGA as our hardware accelerator, we implemented the library

functions from scratch and made modifications to the algorithm

to suit our interests. First, the user will be wearing a dark suit

taped with 3M colored bandages to provide a good contrast

despite the downscaling of the image. The algorithm will create

a binary mask of the pixels that land within the HSV bounds for

each specific color of the bandages. It is extremely hard to be

extremely precise with the HSV bounds because the trackers

will easily be affected by noise and lighting. The fine-tuning is

done by finding the upper and lower bounds of all HSV color

space around the joint across multiple images.

 After the binary mask is created, it will be put through

morphological transforms, erosion and dilation, to reduce noise

and to preserve the max area where the pixels are asserted. Here,

we use the top, right, bottom, and left adjacent pixels as the

transform mask for erosion and dilation. Finally, we would have

to find the largest concentration of pixels asserted through the

whole image. We modified an existing algorithm that finds the

max area of a rectangle in a binary field. The algorithm loops

through the rows of the binary matrix to create histograms of

the pixels asserted. Then, every row will be put through another

function that gets the max area under a histogram. It utilizes a

stack to keep track of the previous indices that form areas under

the rectangle. After finding the max area under the histogram

and throughout the rows, the algorithm would output the center

of the rectangle which will be the reference for our joint

positions.

B. UART Communication Protocol

 After the image that is captured from the webcam is

downscaled to a size of 160x120 pixels by the CPU, this image

is then transferred pixel by pixel to the FPGA at the baud rate

of 921600 bits/sec with the assistance of the PySerial Python

library that connects to the appropriate COM port. As explained

in Equation 1, it takes 0.63 s to transmit the information from

the CPU to FPGA.

𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏: 8
𝑏𝑖𝑡𝑠

𝑏𝑦𝑡𝑒
+ 1 𝑠𝑡𝑎𝑟𝑡 𝑏𝑖𝑡 + 1 𝑠𝑡𝑜𝑝 𝑏𝑖𝑡 = 10

𝑏𝑖𝑡𝑠

𝑏𝑦𝑡𝑒 𝑡𝑜 𝑠𝑒𝑛𝑑

𝑜𝑓 𝐵𝑖𝑡𝑠 = (160 x 120)
𝑝𝑖𝑥𝑒𝑙𝑠

𝑖𝑚𝑎𝑔𝑒
∗ 3

𝑏𝑦𝑡𝑒𝑠

𝑝𝑖𝑥𝑒𝑙
∗ 10

𝑏𝑖𝑡𝑠

𝑏𝑦𝑡𝑒
= 576000 bits

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = 576000 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗
1

921600

𝑠𝑒𝑐

𝑏𝑖𝑡𝑠
= 0.63 𝑠𝑒𝑐𝑠

Equation 1. Time to Transmit Image to FPGA

 This image is then received by the FPGA with the AXI

UARTLite IP block at the same baud rate and then stored into

the BRAM, which is used for image processing. The positions

of the joints extracted are then transmitted back from the FPGA

to the CPU via the same interactions at the baud rate of 921600

bits/sec. Since the amount of information is transmitted back is

significantly less than the amount of information transmitted

from the CPU to the FPGA, it takes 0.2 ms (Equation 2) for this

step.

𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏:
𝑅𝑜𝑤: 8 𝑏𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝐶𝑜𝑙𝑢𝑚𝑛: 7 𝑏𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟: 3 𝑏𝑖𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑜𝑓 𝐵𝑖𝑡𝑠 = 8 joints ∗ (8
𝑏𝑖𝑡

𝑟𝑜𝑤
+ 7

𝑏𝑖𝑡

𝑐𝑜𝑙
+ 3

 𝑏𝑖𝑡

𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟
) = 180 bits

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = 180 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗
1

921600

𝑠𝑒𝑐

𝑏𝑖𝑡𝑠
= 0.2 𝑚𝑠𝑒𝑐𝑠

Equation 2. Time to Transmit Joint Locations to CPU

C. Joint Extraction from the FPGA

 The data transfer from the UART port to the BRAM is

handled by the MicroBlaze soft IP core provided by Xilinx. The

block diagram of the design in the FPGA can be seen in Figure

3.

 After the information is stored in the BRAM, the

MicroBlaze core then performs the various morphological

transformations mentioned in the Image Processing section. A

representation of what the BRAM looks like at any given

moment can be seen in Figure 2.

Figure 2: BRAM Layout

18-500 Final Project Report: 12/18/20

5

 In addition to sending the image from the CPU to the FPGA,

we also send a byte that encodes the particular exercise that we

are analyzing (stored at the address 0xC002_0D00). With the

assistance of this byte, we know which of the joints we need to

locate - by performing the various morphological

transformations. In the case that we do not need to locate a

particular joint, we simply return a location of (0, 0) since we

know that we will not be using this joint in our posture analysis

section. By encoding the byte for the exercise being analyzed,

we were able to reduce the computation required to allow us to

process 5 joints rather than all 8 joints, allowing us to meet our

feedback requirement.

D. Posture Analysis

 The output of the FPGA will feed the joint locations to the

posture analysis component of the computer. Once the

computer receives the joints from the FPGA, it will first

perform an error handling to check for invalid joints, or

determine if trackers are not detected properly. It will append

an “Invalid Joints Detected” to the feedback list.

 With a list of joint positions, the algorithm will create lines

to connect adjacent joints. As seen in the first move of the leg

raise in Figure 4, the shoulder and hip joints will form Line 1.

With these lines, angles and slope can be calculated and

compared to our predetermined models.

Figure 4: Hand Drawn Skeletons

 In the pictures shown, the green line represents the perfect

form. The red, blue, and orange lines represent the thresholds

or the worst case positioning before a feedback is triggered. In

the leg raise (Figure 5) the angles at the knees will have to be

around 180 degrees. There will be a lenient threshold of 15

degrees to account for the different human anatomy and angles

of the webcam. This means that if the angle is less than 165

degrees the feedback will be appended to a feedback list. There

are a total of three different checks for each workout. If the

angle at the hips are more than 105 degrees which is 15 degrees

from being perpendicular, then the feedback “Raise your Legs

Higher” would be appended to the feedback list. If the angle at

the hips is less than 87 degrees which is 3 degrees from the

perpendicular, then the over-extending feedback would be

returned.

Figure 5: Leg Raise Analysis

Figure 3: FPGA Block Diagram

18-500 Final Project Report: 12/18/20

6

 For a lunge (Figure 6) the user will be reminded to aim for

roughly a 90 degree angle on both legs. If the front knee

protrudes further than the ankles more than 10 downscaled

pixels, then the feedback “Front Leg too Forward” will be

triggered. If the angle of the back knees is greater than 105

degrees which is 15 degrees from being perpendicular, then the

users back legs are probably too far extended back. Therefore,

the feedback “Back Legs too Backward” will be triggered. If

the slope of the thighs in the front leg is less than -0.75, then the

user doesn’t have the front thighs parallel to the ground.

Therefore, the feedback “Go Lower” will be triggered.

Figure 6: Lunge Analysis

 For a pushup (Figure 7) the user will not want to hurt their

joints by positioning their hands too forward. Therefore, if the

wrist joint protrudes further than elbow joint by more than 3

pixels, the feedback “Hand Too Forward” will be triggered. If

the elbow joint is higher than the shoulder joint by more than 6

downscaled pixels, then the user will have to “Go Lower”.

Finally, if the angle at the hip is less than 170 degrees which is

a 10 degree threshold from being parallel as well as if the slope

of the ankle joint to the hip joint is less than -0.1, then the

feedback “Butt Too High” will be triggered.

Figure 7: Pushup Analysis

Once all the checks are done, the feedback list will be forwarded

to the application to output the feedback to the user.

E. User Interface

 The user interface will have a few but important distinct

components/pages. They will first be presented with a main

menu in which there will be three widgets: start workout, view

history and settings. In the settings menu the user can adjust

their biometrics and change who the logged in profile is. These

biometrics will be used to calculate an approximate calorie and

heart rate range. The second page will be the history page in

which a user can see their associated workouts they had in the

past. This will include information about when the workout

took place, how long and estimated calories burned. Calories

will be calculated by combining the MET value for each

workout with a user’s weight in kg. MET values are already

measured for each workout and easily accessible online. Heart

rate will be calculated similarly by taking a look at the user’s

age, finding their Heart Rate Reserve and then combining that

with the MET Reserve percentage.

 In the start workout menu, a user can choose which body

area they want to focus on and how long they want to work

out. Once the workout starts, they will see a trainer show how

the workout is performed as well as feedback as they complete

reps (See Figure 8). During the workout pictures will be taken

for every rep and sent to the FPGA to calculate feedback.

 The feedback is returned to the user through red written

words on top of the live feed as well as a computer voice. The

computer voice is generated with Joanne from Amazon by

using Kukarella, a text to audio converter website. Audio

feedback will improve the user experience as the user may not

be looking at the screen when doing certain workouts, for

example a leg raises. This allows the user to still change his or

her form.

Figure 8: Workout UI

VI. PROJECT MANAGEMENT

A. Schedule

 The changes made to the schedule from the previous version

in the design document to the current version located at the end

of this document (Figure 10) were primarily to add more

functionality to our final implementation. Vishal worked with

Albert to add audio feedback while also working with Venkata

to allow users to connect their Spotify account. Venkata was

able to finish the FPGA portion and worked with Vishal on

portions of the User Interface, namely the history pages. Vishal

was able to use this time to fully integrate the database with the

interface, which took a little longer than anticipated, and able to

make it robust with added functionality such as being able to

switch profiles.

18-500 Final Project Report: 12/18/20

7

B. Team Member Responsibilities

Albert - Implement Posture Analysis to provide feedback,

preprocessed image, finished and fine-tuned Color Tracking

algorithm to pinpoint the joints, and assist Venkata in

converting Python code to C then debug on hardware. Added

audio for live feedback.

Venkata - Learn Vivado/Vitis for configuring the FPGA with

the UART Protocol and the appropriate image processing

defined by Albert. Work with Vishal on the user interface for

features such as analyzing previous workout sessions and

connecting a user’s Spotify account.

Vishal - Design application and user interface with model

exercise, live stream, and feedback, as well as

design/implement database to store user and workout data.

Implement calorie and heart rate estimation per workout,

integrate Spotify and customizable profiles.

C. Budget

The budget sheet that entails our finances is attached below

(Figure 9).

Figure 9: Budget Table

D. Risk Management

 From the start we realized how important it was to manage

risk, and we appropriately took many precautions. In terms of

the overall design of our system we realized that our project

involved three distinct areas: hardware for the FPGA, signals

for processing the images and finally software for tying the

entire project together. Since these are three distinct areas, we

thought the best way to manage design risk would be for each

person to take charge of an area and really master it. This would

ensure we were not spread too thin and would be able to flush

out our respective designs. Our schedule similarly was planned

out early on with around two to three weeks of slack and we

made sure to identify what MVP looked like and identified

extra features to make sure we would have a presentable project

by around the halfway point.

 In terms of resources, we decided as a team to mostly borrow

parts from the ECE department such as the Kintex-7 FPGA as

it is very costly, but it allowed us to still have a large budget left

in case we needed any extra items to solve future problems. In

terms of time, we made sure the primary part of the project was

completed before Thanksgiving as we were still in person

together so that we would at least have MVP and most of the

filming for the demo out of the way, with time left to put

everything together.

 Another useful strategy we employed was to frontload the

schedule for each of us. We knew that other classes would not

have picked up much yet and wanted to take advantage by

getting to a basic working state for each component in the first

three weeks. In terms of the signal side, we ensured that the

color tracker algorithm worked in Python so it could eventually

be translated to HLS. For the hardware side we ensured that the

FPGA could communicate with the computer through the

UART Protocol and store basic data. For software we ensured

that Pygame was integrated with OpenCV to handle image

captures and had basic menu flow setup. All of these strategies

helped us mitigate our overall risk and create a successful

project within a short time frame.

VII. RELATED WORK

 There are currently numerous home workout options

available. For instance, Mirror is a popular home workout

option that provides users with customized workouts and

detailed summaries of workout sessions. It involves a large

display which allows users to watch the trainers perform the

exercises as they progress through the workout. The display

allows the users to observe themselves as they workout and can

also function as a simple mirror when not in use. Though

incredibly useful, it has a high price point of $1495 and does

not provide the capability to provide live feedback to users.

Falcon provides the same functionality as Mirror by providing

customized workouts but also provides live feedback to users

by tracking their posture as they workout, which is an incredibly

important piece of information to determine the effectiveness

of a workout session.

 While performing the appropriate research for our project

we came across two projects that provided us with a baseline

and key design decisions that helped shape our own decisions:

Identity Checker on FPGA and Virtual Yoga Coach. The

Identity Checker on FPGA is a capstone project from the Spring

2019 semester that strived to perform facial recognition by

implementing the Viola-Jones algorithm on a Kintex-7 FPGA.

Even though the use case of the project is fairly different from

Falcon, the design choices they made (such as the use of the

appropriate FPGA and communication protocol) provided

insight as to how we should design our project because both

projects involve the use of computer vision with an FPGA.

Falcon is also fairly similar to Virtual Yoga Coach, which is a

project that strives to provide real-time feedback to users as

they perform various yoga exercises. At a high level, both

Virtual Yoga Coach and Falcon: the Pro Gym Assistant

provide similar functionality in that they provide real-time

feedback regarding the users’ posture. However, the key

difference between both projects is that the Virtual Yoga

Coach has the image processing done on the host computer

with the OpenPose library, whereas Falcon: the Pro Gym

Assistant streams the image to an FPGA which does the image

processing. Furthermore, the Virtual Yoga Coach provides

feedback in less than 5 seconds. Since our project strives to

provide feedback for exercising where each rep is significantly

18-500 Final Project Report: 12/18/20

8

less than 5 seconds, our project has a tighter window for

providing feedback and cannot make the same design choices

as Virtual Yoga Coach. Nevertheless, the project provided us

with key information that shaped the information collected

and the feedback provided to the users.

VIII. SUMMARY

A. Future Work

 To make our application more user friendly, an

improvement to our product will be to add a skeleton on top of

the live feed that shows the perfect position of a workout.

Currently, the posture analysis returns feedback based on a pre-

made model with a small threshold to allow for margins. There

will be modifications we need to make on the posture analysis

code to return the pixels as well as the feedback. The application

will have to scale it back to the original image which will

require some fine-tuning. The user will be moving within a

workout, so the skeleton has to be synced after every rep as well

as the timing when it appears to provide a user-friendly

experience.

 In addition to improving the user interface, we could also

improve our analysis. Though we were able to satisfactorily

meet our end goal with the assistance of trackers, the trackers

do not make for an ideal user experience. In order to

appropriately track the trackers, we did a lot of fine tuning to

get rid of any background noise. Exploring a different way to

track the trackers such as with the assistance of RFID would

be worthwhile. Likewise, the project could also be improved

by determining a better way to determine when a user is at the

position that we wish to analyze. Our current implementation

involves analyzing the posture during a time range when we

expect the user to be at the final position. However, this could

have issues in the case that users fall behind.

B. Lessons Learned

 The most important lesson we learned is that time and

communication are key for any project that involves large

amounts of integration. Since our project had a high amount of

integration with each team member working on a separate

component, as explained in the Risk Management section, we

often ran into issues that arose due to miscommunications and

issues that we did not consider. For instance, we did not check

that all of the team members were using the same version of

Python and so when we started integrating, we ran into

dependency issues. We then had to spend time to ensure that all

of our various portions were synchronized to the same versions

and still functioned appropriately. Though we placed an

emphasis on proper planning at the beginning of the project, we

still ran into issues and would recommend future groups to

consider allocating extra time for integration to address similar

issues.

 Another lesson we learned was that it is important to

consider future areas of growth for the project such as in the

form of reach goals. We briefly discussed reach goals at the

beginning of our project but did not spend a lot of time

considering how they would possibly integrate into our final

project. As a result, we were not sure what to do close to the

end of the project. We were able to supplement our visual

interface with audio through audio feedback and music but

these were simple add-ons and did not significantly affect the

core of our project. So, we would urge future groups to define

extra features during the initial planning phase or consider

working on a project that is buildable and so, adding

functionality is straightforward.

IX. REFERENCES

[1] B, Sam, and Andew F. Python Pillow HSV Color Selection;

Making It More Specific. 1 May 1968,

stackoverflow.com/questions/55476067/python-pillow-hsv-

color-selection-making-it-more-specific.

[2] “Calories Burned for Workouts.” SparkPeople,

www.sparkpeople.com/resource/calories_burned.asp?exerc

ise=75.

[3] “Estimate How Many Calories You Are Burning With

Exercise.” Hospital for Special Surgery,

www.hss.edu/conditions_burning-calories-with-exercise-

calculating-estimated-energy-expenditure.asp.

[4] Image Module .

pillow.readthedocs.io/en/stable/reference/Image.html.

[5] Kukarella. Audio to Text: Kukarella. www.kukarella.com/.

[6] Maximum Size Rectangle Binary Sub-Matrix with All 1s. 11

June 2020, www.geeksforgeeks.org/maximum-size-

rectangle-binary-sub-matrix-1s/.

[7] Mordvintsev , Alexander, and Abid K K. “OpenCV-Python

Tutorials Documentation.” Build Media, 17 Nov. 2017,

buildmedia.readthedocs.org/media/pdf/opencv-python-

tutroals/latest/opencv-python-tutroals.pdf.

[8] Morphological Transformations.

docs.opencv.org/master/d9/d61/tutorial_py_morphological

_ops.html.

[9] Multiple Color Detection in Real-Time Using Python-

OpenCV. 10 May 2020, www.geeksforgeeks.org/multiple-

color-detection-in-real-time-using-python-opencv/.

[10] “Pygame Front Page.” Pygame Front Page - Pygame

v2.0.1.dev1 Documentation, www.pygame.org/docs/.

[11] Radames. “OpenCV VideoCapture Running on PyGame -

Repo Ref

Https://Github.com/Radames/opencv_video_to_pygame.”

Gist, gist.github.com/radames/1e7c794842755683162b.

[12] Renzym Education. AXI BRAM Controller, Custom AXI

Slave - 1, Digital System Design 2018 Lec 8/30. 3 Oct.

2018, www.youtube.com/watch?v=Q-2IRM8HHtY.

[13] “Threading - Thread-Based Parallelism.” Threading -

Thread-Based Parallelism - Python 3.9.1 Documentation,

docs.python.org/3/library/threading.html.

[14] Welcome to Spotipy!¶. spotipy.readthedocs.io/en/2.16.1/.

[15] XilinxInc. AXI UART Lite v2.0. 15 Apr. 2017,

www.xilinx.com/support/documentation/ip_documentation/

axi_uartlite/v2_0/pg142-axi-uartlite.pdf.

[16] XilinxInc. Creating a Simple MicroBlaze Design in IP

Integrator. 7 Jan. 2016,

www.youtube.com/watch?v=VjYdNIOyRcE.

[17] XilinxInc. “Kintex-7 FPGA KC705 Evaluation Kit.”

Https://Www.xilinx.com/Support/Documentation/boards_a

nd_kits/kc705/2014_2/ug883_K7_KC705_Eval_Kit.Pdf,

22 Aug. 2014.

18-500 Final Project Report: 12/18/20

9

F
ig

u
re

 1
0

:
G

a
n

tt
 C

h
a

rt

