18-500 Final Project Report: 10/19/20

Falcon: the Pro Gym Assistant

Author: Vishal Baskar, Albert Chen, Venkata Vivek Thallam: Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—A system capable of providing real-time feedback to
users as they exercise. The system provides users with customized
workouts based on their target areas and as they work out, they
will get periodic feedback regarding their posture performing the
appropriate exercise. The system involves a display and a side
camera that takes images and periodically relays the images to an
FPGA that does the image processing to identify the joints, which
are then post-processed and analyzed to provide feedback on the
users’ screen.

Index Terms— Computer Vision, Fitness Assistant, FPGA, HLS,
OpenCV, Posture Tracking, PyGame, Real Time Analysis, SQLite

I. INTRODUCTION

THE global spread of the novel coronavirus (COVID-19), has
truly changed the way that we live. In order to mitigate the

spread of the virus, we have transitioned to a remote
environment where contact with one another is limited. This has
impacted not only the way we work but also our ability to stay
in shape. This has led to a rise in the popularity of at home
workout options ranging from free fitness applications such as
the Nike Training App to high-end workout systems such as
Tonal and Mirror. The workout system Mirror provides users
with personalized workouts, a video of a trainer performing the
corresponding exercises, and biometric information such as
heart rate and calories burned.

Our workout system strives to build upon this system by
providing the same functionality as well as the capability to
receive real-time feedback pertaining to the posture of the
current exercise being performed. Falcon will be able to detect
the users’ joints at an accuracy of 90%. It will then parse this
information and generate feedback that matches 100% to our
designed models and ability to provide feedback to the user in
less than 1.5 seconds, which corresponds to the average time it
takes to perform 1 rep of a particular exercise.

II. DESIGN REQUIREMENTS

A. Joint Tracking

The main requirements of the joint tracking algorithm is
split into pre-processing the image and pinpointing the
trackers. We will have a software testbench to ensure that the
pixel is downscaled and converted into a 160x120 pixel image
in an HSV format. There should be a 100% size and format
match because we are calling library functions. For
pinpointing the trackers, there will be a lot of noise and the
color of the lighting might affect the accuracy of the
algorithm. Our software testbench will ensure that we have a
90% accuracy rate. We chose this so that an average set of 10

reps will have 1 rep misclassified at most. The inputs to our
testbench will be a random image of a user wearing the dark
suit, and we will compare the joint location to the expected
joint location determined manually by tracing the image.

B. Transfer Protocol

The main requirements for the transfer protocol pertain to
latency and accuracy. The latency to transmit the data from the
CPU to the FPGA and back from the FPGA to the CPU has to
be under 1 second to be able to provide the feedback at an
appropriate rate. Likewise, the data that is transferred via
UART has to be 100% accurate to ensure that we are able to
extract the appropriate information after processing the image.
Both of these requirements will be analyzed with the assistance
of a hardware testbench where we analyze various packets of
data sent between the computer and the FPGA to determine the
accuracy and latency of the system.

C. Posture Analysis

For the posture analysis, we want to ensure that the algorithm
performs 100% based on our model. Our model will have
predetermined thresholds for what we want our lines and angles
to connect the joints to be. Our software testbench will take in
predetermined joint locations to ensure the feedback will be
what we determine our model to be.

D. User Interface

For the user interface we want an application that is easy to
navigate, gives feedback effectively and is overall user friendly.
More specifically there should be three main capabilities of the
application, choosing and doing a workout, modifying the
settings, as well as being able to look through past workout
session details. The user should be able to navigate these
different sections through a combination of mouse and
keyboard. During the workout the user should be able to see
themselves as well as a model performing the workout and also
receive live time feedback.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

A. FPGA/HLS

Our workout system involves a Kintex-7 XC7K325T FPGA
that is responsible for the image processing. An explanation
regarding why this particular FPGA was chosen is elaborated
further in the Design Trade Studies section. The
implementation for the image processing is done with the
assistance of Vivado HLS.

B. OpenCV

18-500 Final Project Report: 10/19/20

OpenCV is a library implemented in python that allows for
the processing of the images/videos. The library interfaces
with our Logitech C270 webcam and allows for a live feed of
the video in our application. It also captures images
periodically, dependent on the workout routine, which will be
sent to the FPGA for processing after being downscaled.

C. Pygame

The majority of the user interface will be written with the
assistance of the Pygame library. This framework will interact
with both OpenCV as well as the Pyserial library to send and
receive data from the FPGA through the UART protocol.

D. SQLite

SQLite will be used to store data regarding the user in a
robust relational database. There is a SQLite Python library
which will be used to store relational data such as user profiles
as well as past workout data.

E. Image Processing

The application will capture images at a fixed interval
dependent on the workout routine. The image processing
portion will be in charge of downscaling the image and
converting it to the HSV format. The user will be wearing a dark
suit with 3M colored bandages taped around the joints. The
joint tracking algorithm would extract the joints by creating a
binary mask based on the bandage color, then do morphological
transformations to reduce noise, and finally pinpoint the largest
concentration of pixels asserted to track the joint locations.

F. UART Communication Protocol

After the computer downscales the image that is captured
from the computer’s webcam, it is transmitted to the FPGA with
the UART protocol. This transmitted image is then stored in the
FPGA’s RAM for further processing and after the FPGA is able
to extract the joints from the image, this information is
transmitted back to the CPU at the same baud rate.

G. Posture Analysis

The posture analysis will receive joint locations from the
FPGA and it will create lines from the joints. With these lines,
angles can be calculated at the joint locations. We will be
comparing slopes and angles to our predetermined models.
There will be thresholds for each to account for the different
human anatomy and angles of the webcam. If checks aren’t met,
feedback will be sent to the application to output to the user to
change their posture.

H. User Interface

The user interface will be navigable through a combination
of mouse and keyboard. A user will be able to choose between
multiple workout options and have the option to save their
profile and biometric information. Workouts will have
feedback and statistics can be viewed at a later time.

Periodic Image Sent

Data Storage (SQlite)

Processed Images (UART) Joint Locations (UART)

FGPA

Workout Feedback

Live Video

Figure 1. System picture.

IV. DESIGN TRADE STUDIES

A. Why FPGA?

We decided to use an FPGA to function as a coprocessor and
process the image on the FPGA since we wanted to reduce as
much of the computation on the CPU as possible. We chose to
perform the computation on an FPGA rather than upload the
images to a cloud service where we could have alternatively
performed the computation since we wanted the images of users
to stay on their local machine and not shared to an external
platform for security purposes.

B. Why Kintex-7?

While doing the appropriate research for our project, we
came across the Identity Checker on FPGA project from the
Spring 2019 semester. The project had a similar implementation
to our current implementation, and we observed that they used
the Kintex-7 FPGA. Since this FPGA is available in the course
inventory and provides us with HLS capabilities and the
appropriate baud rate for our use case, we decided to use this
FPGA for our project.

C. Why UART Protocol?

After looking into various protocols, we decided to use the
UART protocol for a combination of reasons. Previous
capstone projects we looked into (such as the Identity Checker
on FPGA project mentioned in the previous section), used the
UART protocol, and it worked well for their specific use case.
Since the UART protocol worked effectively for the other
projects and it is a fairly simple protocol that is well-
documented, we decided to do some analysis as to whether or
not it would be effective for our use case. After performing
some rudimentary calculations, we estimated that the time it
would take to transmit the data from the CPU to the FPGA via
UART - our current bottleneck - would be approximately 0.63
sec (the derivation for this number is provided in Equation 1 in
the following section) which is enough for us to provide
feedback. As a result, we decided to use UART for our
communication protocol.

18-500 Final Project Report: 10/19/20

D. Why HLS?

To implement the image processing in HDL, we
contemplated two options: using Vivado HLS and hand-writing
RTL. We initially contemplated hand-writing RTL since it
provides us with more capabilities to optimize the RTL for our
project and because we had not used HLS in the past. However,
after performing further research, we realized that we would
exceed the number of registers available in the FPGA unless we
used block RAM. Since interfacing with the block RAM
requires the implementation of non-trivial handshaking logic
with the block RAM and we already have an implementation of
our image processing in a high-level language, we decided that
it would be time-efficient to use HLS. Though not optimal, it
allows us to stay within our schedule and focus on the
integration and testing portions of our project.

E. Why Color Tracking and not RFID or HumanPose?

We decided to do color tracking instead of using RFID tags
or HumanPose mainly because of its simplicity. The
HumanPose implementation consists of a lot of library
functions that will be hard to implement because we would
have to convert it to RTL. There are not many resources that
we can refer to for hardware accelerator implementation.
RFID tags may be more accurate than the color tracking
mechanism we are using, but the RFID radio frequency signal
may lose its accuracy in contact with liquids. Since the user
will sweat during the workout routine, it may not be the best
option.

F. Why Pygame?

In order to create a cohesive application for working out we
needed to choose a user interface framework. Due to the
availability of many essential libraries such as Pyserial and
OpenCV we decided that the best language to code the Ul
would also be Python. There were a few different options
including tkinter, PyGame, and PyQT. Researching through
these we found that tkinter was a bit too basic and barebones
since it lacks widgets and many builtins. PyQT was a very
comparable choice but was chosen over at the end of the day
since needed features needed to be paid for. Pygame is more
optimized for games but since we want a high refresh rate for
the camera pygame will be the fastest, it will be more ideal
even though this is not actually a game.

G. Why SQLite?

SQLite was chosen as the way to store persistent data due to
its robust and relational nature. We originally contemplated
using a simple .csv file to store data but since both user
biometrics and past workout data will be stored it will be much
more convenient to use the relational features. In addition,
lookup and parsing will be much easier now instead of
manually parsing the .csv. We can quickly look up all the
workouts for a specific user using their user ID and simply
calling a function provided by the SQLite API.

V. SYSTEM DESCRIPTION

A. Image Processing

The pre-processing of the image will be first to downscale
the image to a 160x120 pixel image to reduce the latency of the
overall system because we will be sending it serially to the
FPGA. Then, the image will have to be converted into the HSV
color space, because this format is easier to work with and more
precise for image processing algorithms.

The image processing algorithm will consist of multiple
existing OpenCV library functions. Since we will be using the
FPGA as our hardware accelerator, we implemented the library
functions from scratch and made modifications to the algorithm
to suit our interests. First, the user will be wearing a dark suit
taped with 3M colored bandages to provide a good contrast
despite the downscaling of the image. The algorithm will create
a binary mask of the pixels that land within the HSV bounds for
each specific color of the bandages. It is extremely hard to be
extremely precise with the HSV bounds because the trackers
will easily be affected by noise and lighting. The fine-tuning is
done by finding the upper and lower bounds of all HSV color
space around the joint across multiple images.

After the binary mask is created, it will be put through
morphological transforms, erosion and dilation, to reduce noise
and to preserve the max area where the pixels are asserted. Here,
we use the top, right, bottom, and left adjacent pixels as the
transform mask for erosion and dilation. Finally, we would have
to find the largest concentration of pixels asserted through the
whole image. We modified an existing algorithm that finds the
max area of a rectangle in a binary field. The algorithm loops
through the rows of the binary matrix to create histograms of
the pixels asserted. Then, every row will be put through another
function that gets the max area under a histogram. It utilizes a
stack to keep track of the previous indices that form areas under
the rectangle. After finding the max area under the histogram
and throughout the rows, the algorithm would output the center
of the rectangle which will be the reference for our joint
positions.

B. UART Communication Protocol

After the image that is captured from the webcam is
downscaled to a size of 160x120 pixels by the CPU, this image
is then transferred pixel by pixel to the FPGA at the baud rate
of 921600 bits/sec with the assistance of the PySerial Python
library that connects to the appropriate COM port. As explained
in Equation 1, it takes 0.63 s to transmit the information from
the CPU to FPGA.

bits bits

A ion: 1 t bit + 1 stop bit = 10 ————
ssumption: 8 byte+ start bi stop bt byte to send

pixels

image

bytes bits .
10 —— = 576000 bits

#of Bits = (160x120) byte

*

*
pixel

sec

—921600%=0.63secs

Time to Transmit = 576000 bits to transfer

Equation 1. Time to Transmit Image to FPGA

18-500 Final Project Report: 10/19/20

This image is then received by the FPGA with the AXI
UARTTLite IP block at the same baud rate and then stored into
the RAM, which is used for image processing. The positions of
the joints extracted are then transmitted back from the FPGA to
the CPU via the same interactions at the baud rate of 921600
bits/sec. Since the amount of information is transmitted back is
significantly less than the amount of information transmitted
from the CPU to the FPGA, it takes 0.2 ms (Equation 2) for this
step.

Assumption:

Row: 8 bit representation
Column: 7 bit representation
Identifier: 3 bit representation

bit bit bit
of Bits = 8joints*(8 —+7 —+ 3
row

_ =1 i
col identifier) 80 bits

sec

1
Ti T it=1 i ————=10.2
ime to Transmit 80 bits to transfer 921600 bits 0.2 msecs

Equation 2. Time to Transmit Joint Locations to CPU

C. Posture Analysis

The output of the FPGA will feed the joint locations to the
posture analysis component of the computer. With a list of
joint positions, the algorithm will create lines to connect
adjacent joints. As seen in the first move of the leg raise in
Figure 2, the shoulder and hip joints will form Line 1. With
these lines, angles and slope can be calculated and compared
to our predetermined models. For example, the second move
of the pushup Figure 2, Line 1, 2, 3, and 4 will have to be
parallel to each other. The angles at the hip and knee would
have to be around 180 degrees while the angle at the elbow
will be around 90 degrees. There will be thresholds for each
check to account for the different human anatomy and angles
of the webcam. We haven’t determined the precise thresholds
yet, but an example may be to classify an angle within 80 to
100 degrees to be perpendicular, Last but not least, if the
necessary checks haven’t been met, the algorithm would
output feedback in the form of a list of strings, such as “Raise
your legs higher”.

Figure 2. Hand-drawn Sketches

D. User Interface

The user interface will have a few but important distinct
components/pages. They will first be presented with a main
menu in which there will be three widgets: start workout, view

history and settings. In the settings menu the user can adjust
their biometrics and change who the logged in profile is.
These biometrics will be used to calculate an approximate
calorie and heart rate range. The second page will be the
history page in which a user can see their associated workouts
they had in the past. This will include information about when
the workout took place, how long and estimated calories
burned. In the start workout menu, a user can choose which
body area they want to focus on and how long they want to
work out. Once the workout starts, they will see a trainer show
how the workout is performed as well as feedback as they
complete reps (See Figure 3). During the workout pictures will
be taken for every rep and sent to the FPGA to calculate
feedback.

Rep:1/10 M 320cal 4P150-180 BPM

Leg Raise
Exercise 3/10 5:30
Remaining

A

e

Figure 3. Mockup of the UI during a workout

VI. PROJECT MANAGEMENT

A. Schedule

Currently, we have finished implementing the joint tracking
algorithm and have roughly tuned the HSV bounds to track the
color. The next steps will be to learn Vivado High Level
Synthesis in order to convert the currently written Python code
into RTL for the FPGA. We also have the posture analysis to
be able to take in positions and output feedback; however, it has
yet to be tested. On the hardware side, we have gotten the
licenses and framework set up and have been able to send pixels
over and configure our necessary baud rate. In terms of the User
Interface, we have a basic structure that can take in video and
has a model exercise. The schedule for this project is located at
the end of this report.

B. Team Member Responsibilities

Albert - Implement Posture Analysis to provide feedback, pre-
process image and finish Color Tracking algorithm to pinpoint
the joints and assist Venkata in converting Python code to C
then optimize it into RTL.

Venkata - Learn Vivado for High Level Synthesis and the
UART Protocol, send pixels to the FPGA, and work with Albert
in converting image processing algorithms to RTL and optimize
them.

Vishal - Design application and user interface with model
exercise, live stream, and feedback, as well as create a database
to store user and workout data. Integrate webcam with system.

18-500 Final Project Report: 10/19/20

C. Budget

The budget sheet is attached below (Figure 4).
Part Cost How we got it
Laptop (MacBook Pro 2019) | $3000 ($0) Personal
Xilinx KC705 FPGA Board | $1685 ($0) Course Inventory
Logitech C270 Webcam $45.00 Ordered from Amazon
Vivado License $3595 (80) Educational License
Dark Suit $31.76 Ordered from Amazon
3M Colored Bandages $12.61 Ordered from Amazon
3M Tape $3.48 Ordered from Amazon
Total Spent: $92.85

Figure 4. Budget Sheet

D. Risk Management

A risk that we could potentially encounter when integrating
the project is that the downscaled image would be not detailed
enough for us to track the color trackers. The most reasonable
approach would be to not downscale it to as low as 160 x 120
pixels. However, as mentioned earlier, the sending of pixels

from the computer to the FPGA would be the biggest bottleneck.

Thus, we can have a calibration system for the user to calibrate
the ceiling and floor. In the pre-processing portion, we can crop
out portions of the image to decrease the number of pixels sent
to the FPGA.

Another potential problem that might arise is that the C code
would not be able to synthesize to 300 MHz clock frequency.
We would have to reduce the baud rate as a result, which would
increase the overall latency. Thus, we will have to do our best
to optimize and the worst case would be to modify the exercises
to support a longer feedback delay, such as a plank.

The application might be at risk of being choppy because of the
multiple threads that may be running at the same time. We can
separate the model exercise, live stream, feedback, and workout
data into different applications.

VII. RELATED WORK

There are currently numerous home workout options available.
For instance, Mirror is a popular home workout option that
provides users with customized workouts and detailed
summaries of workout sessions. It involves a large display
which allows users to watch the trainers perform the exercises
as they progress through the workout. The display allows the
users to observe themselves as they workout and can also
function as a simple mirror when not in use. Though incredibly
useful, it has a high price point of $1495 and does not provide
the capability to provide live feedback to users. Falcon provides
the same functionality as Mirror by providing customized
workouts but also provides live feedback to users by tracking
their posture as they workout, which is an incredibly important
piece of information to determine the effectiveness of a workout
session.

While performing the appropriate research for our project we
came across two projects that provided us with a baseline and

key design decisions that helped shape our own decisions:
Identity Checker on FPGA and Virtual Yoga Coach. The
Identity Checker on FPGA is a capstone project from the Spring
2019 semester that strived to perform facial recognition by
implementing the Viola-Jones algorithm on a Kintex-7 FPGA.
Even though the use case of the project is fairly different from
Falcon, the design choices they made (such as the use of the
appropriate FPGA and communication protocol) provided
insight as to how we should design our project because both
projects involve the use of computer vision with an FPGA.
Falcon is also fairly similar to Virtual Yoga Coach, which is a
project that strives to provide real-time feedback to users as
they perform various yoga exercises. At a high level, both
Virtual Yoga Coach and Falcon: the Pro Gym Assistant
provide similar functionality in that they provide real-time
feedback regarding the users’ posture. However, the key
difference between both projects is that the Virtual Yoga
Coach has the image processing done on the host computer
with the OpenPose library, whereas Falcon: the Pro Gym
Assistant streams the image to an FPGA which does the image
processing. Furthermore, the Virtual Yoga Coach provides
feedback in less than 5 seconds. Since our project strives to
provide feedback for exercising where each rep is significantly
less than 5 seconds, our project has a tighter window for
providing feedback and cannot make the same design choices
as Virtual Yoga Coach. Nevertheless, the project provided us
with key information that shaped the information collected
and the feedback provided to the users.

10/19/20

18-500 Final Project Report

ana

ana

ana

ana

ana

ana

ana

ana

UOAIIAT

uqy

EEYUIA

[BYSTA

dutuueyg 13loag
Tt S0t 876 16 pli6 L6 1¢/8
9I¥RAL ST¥RAL PI¥RAL CIOA TI¥RAM T1¥%M 0T¥™M 6Y%M 8 M LYo 9 ¥%RM R LY 7 ¥ €M ¥ [¥23A

uopeIuasa pue poday 1aloag uoneyuawadw] udisa(

414! el 0¢/11 LUl 91l 611 un 9z01 61/01

UONEIYLII A PUE UOPEITIU]

yoday ey

uonRIuasAI [Bul]

owa(y qeT u

qeT W owa(]

uoday udisaq

uonRIUAsAIJ U1sa(

[esodoig 10al01g

Rensqy

seap] waloig
uoneyuasagaoday resodosg

uonesdayu] pue ddy Furugay

10 s ancine Suissacoad Kjua A + aweaday
Furssaooag adewy yum ()] AJuaA + aerdajug
sued [enpIAIpUI JO UONEALA A

UOBIYLII A [RUL] 4+ UOPEIZAIU]

SIYORI], AU A1)
dnjag snodueayxy

uoneuatua|du Furutay

Yorqpaa J Inding) pue ee(y jo yoea], daoy
INONIOM PAUI) 3JE3I7) PUR BEPOIE JAS[) SZIWOIST)
3S1213XT [9POIN PAPIIIY AreiTa]

adewy amyde?) 4 Keydsi eaawre) Juawajduy
(dpomaures § a1seg]) awrenig dnag

[9POIN 1) 24 udisaqy

101 4 EMYO§

a1do] j0o0j0ad uoneaUMUILIOD Juaw|duy
(1dVN) 1000102d uonEAUMUWLOD UK
oueunopsad 1anaq Joj wipniod[e azumd()
apod YN d4 01 wpuod[e siuel uaauo)
STH/OPBAIA U]

ABMpIEH

sisAJeur armysod 10§ SPIOYSAY AUTUIANA(]
sisAjeuy amysog Sunuatwaydu

suiel 1penxa 0} unpuod]e Funuawa)duy
syuof 10enxa 0} wiprod[e uma

adeun apeasumop o) adeun Fwssacoid-a1g
durssnoag reudis

SIU0JSIT

SYSE

JUBJSISSY 01 WAX) 37} :U0d[B]

18-500 Final Project Report: 10/19/20

O3PIA 3AI
wedgam

Joeqpae4 IN0}I0MN

(L¥VN) se8ew) passasoig

uoned||ddy

(@110S) a8eu03s eIEQ

Juas adew| J1poudd

