
1
18-500 Final Report: - 12/8/2019

YouRap

Authors: Jiahao Zhou, Saransh Agarwal, Danielson Joseph: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract—A system capable of detecting the percentage of a
user’s rap (voice input) that is on beat. Currently, rappers train
by either recording themselves and self critiquing their
performance, or by asking another rapper to provide feedback.
This process requires a lot of time and knowledge or some form
of guidance, both not easily available to all. Our system aims to
provide a rap learning environment that is easily accessible in
terms of cost and availability.

Index Terms— Digital Signal Processing, Music Technology,
Noise Filtering, Onset Detection, Python, Rhythm, Tempo, Web
Application Development

I. Introduction

WE developed a rap music teaching web application and a

noise filtering microphone. The web application allows users
to pick out background tracks and then rap over the beat. The
user will then obtain feedback pertaining to the accuracy of
their rapping. This accuracy is based on the number of beats
that they were able to hit in their rap. This project is aimed
towards those who are not yet good at rapping but wish to
become better. Our project is important because rap is
currently the most popular music genre in America but very
few people know how to rap. There is a lack of teachers or
software for learning. From our research, we were not able to
find such a tool but the closest competitors would be Digital
Audio Workstations like Logic Studio or Fruity Loops. Our
goal is to determine whether a user rapping into a microphone
is rapping on-beat given a backing track beat. The system
must allow the user to choose a backing beat of their choice
and then rap into a microphone. The user must then be given
an accuracy score after they are done rapping. This will be
displayed in a webapp. In addition, we will have a noise filter
which allows our users to practice rapping in non-studio
settings.

The rapping will also be recorded for playback to the user.
The interface will also allow the user to choose or switch to
different tracks. Upon recording, the interface will display a
visualizer for the voice. The user will be able to pause. After
they hit stop, the user will be presented with an accuracy score
based on the number of beats they were able to hit. Hitting a
beat is when a word is spoken at the same time that the beat is
supposed to hit. Thus, the user will have an approximation of
how accurate or on-beat their rapping was.

II. DESIGN REQUIREMENTS
Rap encompasses a wide genre of music that is different

from individual artist to artist as a result of varying rap styles
and schemes. For the purposes and scope of this project, we
will consider common rapping styles based in 4/4 time
signature in which the rapper hits at least one out of the four
beats with an emphasized word. In this paper, a single beat
will refer to one out of the four beats that comprise a single
measure in 4/4 time signature. This is the predominant rap
scheme that most commercial artists today use.

As such, one of the most important requirements is that we
can identify single syllable sounds that coincide with a beat at
100% accuracy because all words are based on syllable
sounds. We will measure this with a metronome beat at
different beats per minute (BPM). A metronome is a tick at
predetermined intervals. The interval will determine the BPM.
We need to achieve 100% accuracy on these sounds. Next, we
want to achieve 95% accuracy on detecting on-beat rapping.
We define on-beat rapping as rap in which each word
coincides with a single beat. In other words, the sample will
consist of words in which the syllabus are spoken at the same
time a beat is supposed to happen. Since this is the most basic
form of rapping to a beat, we want an accuracy as close to
100% as possible. However, human speech naturally varies
and thus it makes it hard to test this accuracy. According to a
German paper on speech tempo variation, speech tempo varies
about 5% in natural German speaking[5]. Even though this is in
German, we can assume that English speakers naturally vary
too. Thus, we chose 95% to account for this fluctuation in
testing speech. Next we will test speech that is 95% accurate
but has been shifted by half a beat. This means that none of
the beats should be hit and the accuracy should be 0%. Our
program needs to be able to identify the fact that the sample
has been shifted. Thus, we want an accuracy less than 5% to
account for natural variations in speech. Lastly, we will test on
professional rapper’s acapella samples. We need to obtain an
accuracy greater than 90%. This is because we wish to account
for the 5% but in addition, due to the fact that it is not slow
speech, the program will have a harder time detecting
accuracy. Thus we aim for 90%, which is just slightly lower
than 95%.

We will deem accuracy to be detecting that a user is on-beat
in three out of four beats in a measure. This is because human
speech and rapping varies from word to word. In rap, certain
rapping schemes may have the rapper hit different beats.
However, a sense of flow is achieved by consistently hitting
the first and last beats or more in between. Thus, averaged
across a measure in 4/4, the rapper will still sound on-beat. In
addition, if there is no sound detected for an entire measure,

2
18-500 Final Report: - 12/8/2019

we will assume the user is pausing on purpose and that
measure will not count in the overall accuracy rating.

In order to procure such tests, we will obtain wav samples
of metronomes at BPMs ranging from 10 to 200 BPM in
intervals of 10. We will be using microphones and MATLAB
to generate the vocal samples.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The system will consist of a hardware and software

component as detailed below. The first diagram is a
microphone filter that will help us eliminate noise from the
input signal in real time.

The software component has two parts: Digital Signal

Processing and Software Systems. All of our signal processing
algorithms for beat detection were done using SciPy, a Python
library. At the time of the design review, the plan was to use
the MATLAB Engine API for Python which did not end up

working. The Software Systems aspect is a webapp that allows
the user to visualize and control the system in real time.
Originally we had planned to give real-time feedback on
whether the user is on-beat or off-beat. However, we changed
to a percent score out of 100 displayed after a user is done
rapping. We realized that detecting a successful case required
us to wait for a minimum of two cycles of 4/4 beats, followed
by repeatedly waiting for another cycle to end, making the
feedback not really suited for real time, as it is delayed by
definition. Furthermore, feedback given during a recording of
a verse was deemed to be a distraction, interfering with the
“flow” of thought to voice by our test subjects. This is
because when a user is rapping, especially when freestyling

(without written verses, straight from brain to mic”, they
cannot break focus from “musically” responding/flowing to
the beat, unable to multitask. Post recording feedback, on the
other hand, was welcome and understood.

3
18-500 Final Report: - 12/8/2019

IV. DESIGN TRADE STUDIES

A. Microphone Filter
The circuit filter was tested using the ECE oscilloscopes in

the ECE lab, we used that to see if we got our desired
frequency range for the circuit. We are going to use the circuit
as a filter, so we have a clear starting frequency range and
because filtering done in hardware is much faster than filtering
done in software. The microphone output is fed into a laptop,
so it helps to clearly know what frequency range we are
dealing with. We built a circuit that can filter between 40Hz
and 14Khz. A high pass filter was used to cut-off frequencies
below 40Hz and allowed the higher frequencies to pass. A low
pass filter was used to cut-off frequencies above 14kHz and
allowed the lower frequencies to pass. The combination of
high pass and low pass filters formed a bandpass that would
just allow frequencies between the band of 40Hz and 14kHz to
pass. We filtered between 40Hz and 14Khz because German
microphone manufacturer Nuemann, states that above 14kHz
voice gets an airy feeling and not much musical information is
contained. And below 40Hz, is the sub bass range and
contains little to no musical or voice information[3]. Nuemann
has been in the microphone manufacturing business for
decades, and their microphones are common in many
professional audio studios.

The equation used to determine the frequency cut-offs for both
the low pass filter cut-off and high pass filter cut-off is

fcut-off =
1

2 π Resistance Capacitance* * *
Fig. 1. Frequency Cut-Off Equation

The filters were implemented as passive filters instead of
active filter, which could give the bandpass filter steeper slope
cut-offs at 40Hz and 14kH, because resistor and capacitor
components for passive filters were easily available from the
18-500 lab. Also, the initial desire was to make the filter
circuit self contained in terms of not requiring additional
connections when in use. So, that the filter circuit could be
simply connected to any microphones and easily connect to
the laptop without use for external power connections like a
voltage supplier. Passive filters can be made with just resistors
and capacitors, active filters use transistors which usually
require connections to external power sources like a voltage
supplier. The desire was for the system to be easily used by a
consumer, so that if given the circuit they would just require a
microphone and laptop with the web-app on it to use the
system. The system was able to work without an external
power source at first. However, when connecting the filters on
the circuit and connecting the circuit to the laptop, the volume

of microphone recording on the laptop was very low. An
op-amp was added to increase the output signal of the filters
and the volume of the microphone recording on the laptop.
The addition of the op-amp required the use of a voltage
supplier to power the op-amp, causing additional connections.
The voltages applied to the op-amp, could probably be
replaced with batteries, however, with the demo coming just
keeping the voltage supplier seems like the safer choice.

The initial plan for the XLR Splitter was to have the input
into the XLR be voice and music, the splitter would then
output the signal to the circuit so that voice filtering was done
there and then that signal would go to the laptop. And for the
other output of the splitter, it would be outputted straight to
the laptop with the use of a XLR to 3.5mm adapter and a USB
to audio adapter, the output would be sent to the laptop to
filter on the background music of the input. We decided to
focus on the voice filtering and keep the extra XLR to 3.5mm
cable and extra USB to audio adapter as spare parts. The XLR
Splitter was kept in the system and used to extend the
microphone cord so it would be easier for users to use the
microphone.
Testing was done using oscilloscopes and function generators

found in 18-220 lab.

Fig. 2. Oscilloscope image of Bandpass filter at 40Hz

4
18-500 Final Report: - 12/8/2019

Fig. 3. Oscilloscope image of Bandpass filter at 14kHz

At 40Hz and 14kHz the system of low pass filters and high
pass filters reduced the peak to peak voltage of the output
signal of the system to approximately 10 percent of the peak to
peak voltage of the input signal to the system.
So, if the input signal is 1 volt peak to peak, the output signal
at 40Hz and 14kHz is approximately 100mV.

B. WebApp
React as it is most suited for single page applications we are

building. Furthermore, the code can be converted to
React-Native, a linked framework for creating Android and
iOS apps easily, improving the extensibility of our app.

We are using Wad.js and Recorder.js libraries as they are
wrappers around the HTML 5 Web Audio API allowing a lot
of the processing to be done in the frontend. Furthermore
Wad.js allows us to use the microphone input without having
to implement it ourselves and effects.

There is a complication of using React and wad.js as it is
designed to be used with Node.js and its package manager
called NPM, however, due to the nature of using Django Rest
Framework to serialize our backend. The frontend is
completely independent from the backend, and either can be
switched in the future, as long as the API remains the same.
This makes our project modular and more future proof.

 We are sticking with Django and not moving to a purely
Node.js implementation as we have prior experience with it
and it allows for flexibility in choosing the backend due to its
robust ORM. Furthermore, the admin panel and API views
created with the django stack, allows for the feature of
uploading and managing beats and raps to be done without
addition code.

C. Signal Processing
There are many algorithms available for analyzing music

and detecting beats. However, because we are giving the user

real-time feedback, we needed one that was fast and efficient.
Machine learning (ML) algorithms are quite powerful and
offer some of the best accuracy when it comes to audio signal
processing. However, they have one major caveat and that is
the training required. The strength of any ML algorithm no
matter how good is heavily reliant upon the data it is trained
and tested upon, and this requires both resources and time. For
voice and speech recognition data is quite good. However, in
the case of rapping there is a dearth of quality rap vocal
databanks, much less data that has been preprocessed for
training. Tempo detection is also relatively well-researched,
which means we were able to find good algorithms without
needing ML.

When it came to comparing the different algorithms we
wanted ones that were fast, but still accurate. We ended up
using a form of onset detection. First, the signal is
preprocessed by filtering unwanted noise and frequencies.
Next, peak picking will find the places where a user is rapping
to the beat. The program will return

D. MATLAB
MATLAB was our choice initially for developing

algorithms and performing most of the calculations.
MATLAB is a programming language and a computing
environment wrapped into an integrated development
environment (IDE). It also features extensive GUI and
visualization features. MATLAB is often the go-to for
mathematical models such as signal processing. Our data
consists of audio signals which meant that having a convenient
way to visualize and interpret the data was important for
decisions made regarding the algorithms. Being both a
language and an IDE meant that all these features were
integrated together and makes it easier to work with the data.
Human visualization is an important and often overlooked
aspect when it comes to many signal processes as it gives us
an intuitive understanding of the data we are working with,
allowing for easier debugging and decision making.
Languages such as C/C++ may be faster and more optimized,
but not by much when dealing with simpler algorithms. Since
our real-time output is data averaged over the last 3 seconds,
we have much more time to process and MATLAB was able
to run all of our algorithms within the time frame. In addition,
MATLAB also has a MATLAB Engine can be run on the
backend server, allowing us to directly deploy our algorithms
without complicating things.

5
18-500 Final Report: - 12/8/2019

Fig. 4. MATLAB has a powerful and convenient GUI built-in. This is an

example of the onset algorithm running on Kanye West’s song
“Stronger”.

E. Python
Our final system ended up using Python due to a problem

with the backend. The original plan was to run MATLAB on
our backend with the MATLAB Engine API for Python.
However, the MATLAB Engine did not run for Python 3
despite documentation claiming it could. Thus we switched
over to making to implementing everything in Python.
However, since most of our development occurred in
MATLAB this was not much of a problem. MATLAB still
provided many of the tools and was very convenient for
development. As for Python itself, it is slightly slower than
MATLAB, but with optimizations and just-in-time compiling,
it can still meet our standards. Python also has many libraries
that can mimic MATLAB such as NumPy arrays and
Matplotlib plotting. The switch was also facilitated by the fact
that the team members had more experience with Python.

V. SYSTEM DESCRIPTION
A. Microphone Filter

We are planning to use the TONOR Dynamic Karaoke
Microphone, and replace its cord with a XLR Splitter Cable
(we are using the XLR Splitter Cable as a cable extender so
the user can move the microphone easier without accidentally
disconnecting something). The splitter cable is a XLR Female
to Dual XLR Male cable. And then we plan to connect a
TISINO XLR to 3.5mm cables to one of XLR Male
connections of the splitter. The TISINO XLR to 3.5mm cable
goes into a TRRS 3.5mm Jack Breakout which feeds the
output of the mic into a bandpass filter in the breadboard
circuit.

The bandpass is formed by connecting a group of high pass
filters with a group of low pass filters. The number of
high-pass filters used is four and the number of low-pass
filters used is four. The high pass filters have their circuit
configuration, the same resistance value of 400000 ohms and
capacitance value of 10 nanoFarad is used in the same
configuration for each high pass filter, that is so each high
pass filter has a cutoff frequency of approximately 40Hz. The
low pass filters have their own configuration, each low pass
filter uses the same resistance value 11,330 ohms and
capacitance value of 1 nanoFarad. The resistors and capacitors
are used in the same configuration for each low pass filter, that
is so each low pass filter has a cutoff frequency of
approximately 14kHz. The output from the breakout
connected to the microphone is fed into the first high-pass
filter and the output of that high-pass filter is fed into the input
of the next high-pass filter and so on until the output of the
fourth high-pass filter is fed into the first low-pass filter. The
output of the first low pass filter is fed into the input of the

next low pass filter and so on until the output of the fourth low
pass filter. The group of high pass filters and low pass filters
connected together form the bandpass filter.

From there the output of the bandpass filter of the circuit
feeds into an LM741 op-amp to amplify the output signal by
approximately by a factor of 4.7. From there the output from
the op-amp feeds into another TRRS 3.5mm Jack Breakout,
then the output is transferred from the breakout with a
KabelDirekt - Two Sided Aux Cord. One side of the cord
connects to the breakout and the other side connects to a
UGREEN USB Audio Adapters and is then fed into another
USB port on the laptop. Filtered voice is going to be used by
the webapp to make the beat detection work

B. WebApp
The system uses Model View Controller Architecture with

Django as the main framework, and backend. React as the
frontend, configured to work with HTML5 canvas for
visualizations. Wad.js and Recorder.js are wrappers around
HTML5 Web Audio API that are used for audio processing
and storage. Communication between the front and backend
was achieved using the Django Rest Framework responsible
for serialization of data from the backend to the frontend, and
vice versa.

The microphone and associated filter is plugged into the
user’s computer on any USB port and is detectable by the
webapp. Permission has to be approved, which the user is
prompted for in the web-app directly.

The Signal Processing part was originally done in
MATLAB to make use of the optimized functions available,
and was supposed to be part of the backend by using the
MATLAB Engine API for Python, allowing one to use
MATLAB as the computation engine for functions running in
the backend. However, due to a discrepancy in documentation,
it did not work with our version of Python, and the
workarounds we tried to get it to work also failed. As a result,
we refactored the code to Python using SciPy to allow for
complete integration and the cost of performance.

C. Signal Processing
The digital signal processing algorithms will obtain rap

vocal input data from the USB microphone filter and the
backing track BPM from the backend. As our stretch goal, we
will also determine the BPM of any backing track the user
selects, in which case we will also be receiving the backing
track WAV file. The core on-beat detection will be performed
with onset detection, with the final accuracy based on how
often the user hit at least three out of four beats and factoring
in pauses.

a) Onset Detection
On-beat detection will be performed by analyzing the onset

of a signal. In rap, and human speech broadly, there are
distinct lulls and dips in the signal. The opening and closing

6
18-500 Final Report: - 12/8/2019

creates large and sharp onsets in speech that makes onset
detection a good indication of speech tempo. Thus, we will be
using this to perform vocal beat analysis.

The onset of a beat is the rising edge of the signal as the
sound approaches its max amplitude where the attack happens.
When one listens to rap, the beat is intuitively placed at the
start of a word where the signal is strongest since that is the
loudest part of the word.

Fig. 5. Example of onset detection methodology [4].

In the onset detection algorithm, pre-processing is optional,
however performing pre-processing helps remove noise and
accentuate features we want. This pre-processing will occur in
the microphone filter mainly for speed.

Next, normalization and reduction will create a clean
detection function that allows the peak-picking algorithm to
find where the onset location occurs[4]. A moving average
filter was used to smooth out the signal before peak picking.
The peaks were chosen by finding sudden increases in energy
and the final amplitude reached was above a certain threshold.
This signified that an onset was occurring, which is when the
user was rapping.

b) Accuracy Score
After the peaks have been chosen, they will be compared

against the BPM received from the backing track. If there is a
peak that falls within +/- 8% of when a beat is supposed to
hit, we count that as on-beat. If at least three out of the four
beats in a measure are on-beat then that measure is determined
as on-beat. In addition, pauses will be taken into account. If no
sound above a certain threshold is detected for an entire
measure, then that measure will not be counted in the final

accuracy score. That threshold will be calibrated based on the
microphone’s ambient background noise when there is no
sound input. The accuracy given back to the user will then be
the percentage of on-beat measures. If the user ends the
recording before the last measure is over, that measure will
still be counted in the final score if at least two out of the four
beats has elapsed, and the user has missed no more than one of
those beats. In other words, in the last measure the user will
have had to hit two out of three, or three out of four beats to be
on-beat.

VI. PROJECT MANAGEMENT
A. Team Member Responsibilities

Refer to Gantt chart.

B. Budget
Budget Spreadsheet Attached at the end of the report.

One XLR to 3.5mm cable and one USB to audio adapter is

kept as spare parts. The XLR Splitter in the system was used
to extend the microphone cord so it would be easier for users
to use the microphone.

Two 150000 ohm resistors, and a 100000 ohm resistor put
in series were used to get a resistance of 400000 ohms for
each high pass resistor. There are four high pass filters.

One 10000 ohm resistor, one 1000 ohm resistor, and a 330
ohm resistor put in series were used to get a resistance of
11330 ohms for each high pass resistor. There are four low
pass filters.

One 10 nanoFarad capacitor was used for each high pass
filter. There are four high pass filter.

One 1 nanoFarad capacitor was used for each high pass
filter. There are four low pass filter.

One 10000 ohm and one 47000 ohm resistor were used for
the one op-amp

So, a total of 26 resistors were used and 8 capacitors were
used on the circuit

C. Risk Management
Since we pivoted from chord detection to beat detection, our

whole timeline was delayed by four weeks. In hardware if our
noise filter does not work, we will use the Shure microphone
which we are benchmarking against.

We had originally decided to let the user input the beat and
rap over it. Sinec we do not have that much time left, we
reduced our scope to just letting the user rap on our provided
beat. Remaining risk is the software stack not working as
planned. We are using technologies with great reviews and
good documentation and a lot of successful applications, some
already used by us before.

7
18-500 Final Report: - 12/8/2019

VII. RELATED WORK
 We did not find a project that used all of our components
for this use case. There are companies like Bose and Sony that
focus on noise filtering for their audio products like
headphones. There are a lot of projects on Github which use
React for Audio Visualization similar to reference [6]. Lastly,
we did not find another rap beat detector, which was a novel
implementation of the signal processing algorithm..

VIII. SUMMARY
A. Results

We met or exceeded all of our expected accuracies except
for on-beat rapping. We aimed for 95% but only hit 90%.
However, we believe this was due to the poor quality of the
samples tested. We recorded the rapping ourselves on a bad
quality mic. In addition, our quality of rapping and the way in
which we

Fig. 6. Results of testing the algorithm on different inputs.

created the samples was perhaps not as clear as it could have
been. However, the other accuracies were exceeded. In
particular, commercial rap acapella achieved 93% accuracy,
which is in line with what one would expect from professional
rappers.

B. Future Work
We plan to include a more robust UI with more features and

better performance by deploying the algorithm to a cloud
service like AWS.

C. Lessons Learned

Integration takes time and will be ridden with bugs. Plan
ahead of time.

It’s important to verify every outside
component/dependency by writing a unit test, instead of
assuming they will work.

Each of our 3 team members focused on completely
different fields of Computer Engineering leading to a very
independent and disconnected workflow from each other.
While this is beneficial in terms of ease of dividing work,
getting help from each other was often not possible, and we
were isolated in each of our contributions. In retrospect,
reducing the breadth of our project and focusing on working

on fewer aspects together would have been a more fun and
rewarding experience.

REFERENCES
[1] A. Robertson, A. M. Stark, and M. D. Plumbley, “Real-time visual beat

tracking using a comb filter matrix,” Proceedings of the International
Computer Music Conference 2011, University of Huddersfield, UK,
2011.

[2] https://blog.usejournal.com/react-on-django-getting-started-f30de8d2350
4

[3] https://www.thebroadcastbridge.com/content/entry/7759/how-microphon
e-frequency-response-relates-to-recorded-sound

[4] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies and M. B.
Sandler, "A tutorial on onset detection in music signals," IEEE
Transactions on Speech and Audio Processing, 2005.

[5] Trouvain, Jürgen. “Tempo Variation in Speech Production.” PhD diss,
2003.

[6] Nash, Phil. “Audio Visualisation with the Web Audio API and React.”
Twilio Blog, Twilio, 21 Sept. 2018,
https://www.twilio.com/blog/audio-visualisation-web-audio-api--react.

[7] Garner, Bennett. “React on Django: Getting Started.” Medium,
Noteworthy - The Journal Blog, 20 May 2019,
https://blog.usejournal.com/react-on-django-getting-started-f30de8d2350
4.

https://blog.usejournal.com/react-on-django-getting-started-f30de8d23504
https://blog.usejournal.com/react-on-django-getting-started-f30de8d23504
https://www.thebroadcastbridge.com/content/entry/7759/how-microphone-frequency-response-relates-to-recorded-sound
https://www.thebroadcastbridge.com/content/entry/7759/how-microphone-frequency-response-relates-to-recorded-sound
https://www.twilio.com/blog/audio-visualisation-web-audio-api--react

8
18-500 Final Report: - 12/8/2019

9
18-500 Final Report: - 12/8/2019

