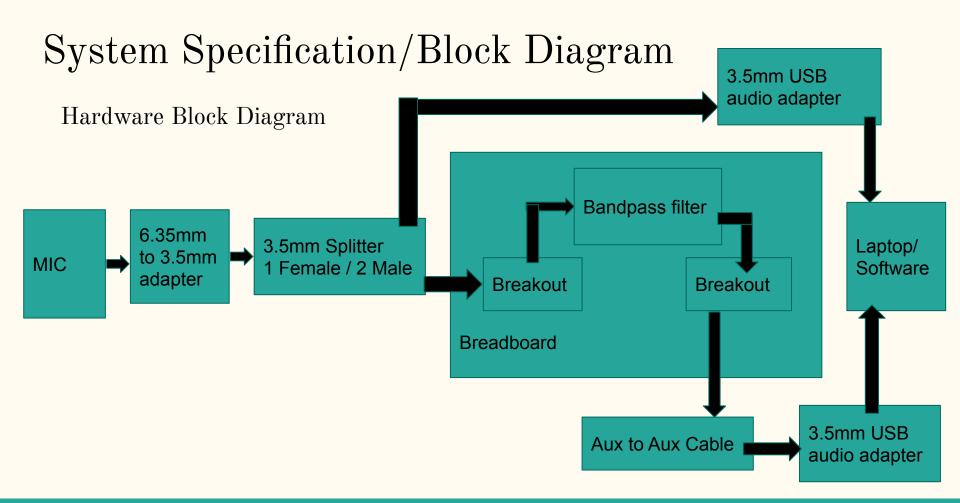
YouRap

Team B5 -Jiahao Zhou Saransh Agarwal Danielson Jospeh

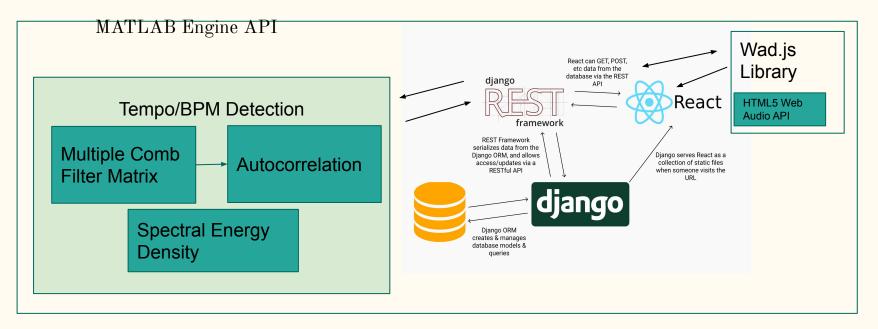
Application Area

Rap is the most popular genre of music today in the US with 24.5% Market Share


(Almost) Everyone wants to rap! But...

- Digital Signal Processing
- Software Systems
- Hardware Systems

Solution Approach


We will be building a software suite webapp to help the user rap on time. The program will provide real-time live feedback on whether the user is too fast or too slow and their consistency. It will also allow users to add effects to their voice, post recording.

We are also building a noise filtering microphone setup using cheap, readily available hardware components for accessibility for 85\$, which is less than half the cost of the industry standard XLR microphones + USB Converter (200\$).

System Specification/Block Diagram

Software Block Diagram

Implementation Plan

Rhythm and Beat Detection

- Comb filters and autocorrelation (Backing track BPM)
 - Comb filter sums signal at delayed versions whereby the lag which corresponds to the highest energy is the correct tempo
 - Autocorrelation will measure cross-correlation of a signal with itself; better at estimating tempo when a consistent, rhythmic beat is present
- Spectral Energy Density (User rapping input BPM)
 - \circ For detecting the tempo at which a user is rapping by detecting spikes in energy
- On-beat detection
 - Compare backing track BPM to live vocal BPM to determine tempo accuracy
 - Every 3 seconds, if BPM varies by more than 5%, user is alerted

Implementation Plan

Noise Filter

We are going to use a circuit as a pre-filter, so we have a clear starting frequency range to work from. Then perform a more refined filter on software

Equipment (Total 85\$)

- Singing Machine SMM-205 Microphone (\$9.99)
- Two UGREEN USB Audio Adapters (\$8.99 each)
- Two SparkFun TRRS 3.5mm Jack Breakouts (\$3.95 each)
- YCS basic Splitter Cable 1 Female / 2 Male (\$6.29)
- KabelDirekt Two Sided Aux Cord (\$7.99)
- OneOdio Headphones (\$32.99)

We plan on interacting the parts together as illustrated in the Hardware Block Diagram

Implementation Plan

WebApp

Wad.js library will allow us to interface with microphones and headphones using inbuilt browser functionality due to the HTML5 Web Audio API allowing a lot of the processing to happen in the front end, greatly reducing the stress on the backend and thus increasing throughput.

Metrics and Validation

Testing goals:

Beat and Rhythm Detection

- 100% accuracy on detecting beats in a simple 4x4-beat
- 80% accuracy on detecting rhythm in slow speech

Final/Live metrics:

Rythm and Beat Detection

- 60% accuracy on complex user-input selected beats
- 60% accuracy on live user rapping

Metrics and Validation

Noise Filtered USB Microphone

• Target Metric - 25 dB signal to noise ratio

Noise Filter Validation using Oscilloscope

Benchmark against Shure SM58 X2U with

XLR to USB Signal Adapter

Metrics and Validation

Testing goals:

GitHub Feature Branch Workflow - Validation using Code Reviews

Blackbox Testing of the components

Web Application Metrics

- 1 second total delay
- 200ms target latency

Run locally on the machine, if time permits will try to deploy on AWS

Schedule

	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15
Initial Setup	SMTWTF	SSMTWTFS	SMTWTFS	SMTWTF	SSMTWTFS	SSMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
Research beat/tempo detection	••••••											
Voice Tempo Detection												
Energy Spectral Density Analysis	••••••											
Generate samples												
Optimization												
Detect offbeat												
Slack												
Input Music Beat Detection												
Implement Comb and Autocorrelation	••••••											
Test algorithms												
Generate beats												
Optimize speed/accuracy tradeoff												
Slack												
Noise Filtering												
Purchase parts												
Study parts												
Build filtering circuit												
Test circuit												
Integrate microphone												
Matlab filtering												
Slack												
Application												
Design Freeze												
Familiarize with Library Tools												
Finalize API												
Create SCRUD System												
Slack												
Create GUI / UI												
Combine application features												
User testing												
Wrap Up												
Optimization												
Final Testing												
Project presentation preparation												
Miscellaneous												
Break												
Demo												
Final Presentation												
Jiahao Zhou												
Saransh Agarwal												
Danielson Joseph												
Everyone	\square											