
1
18-500 Design Report: 10/13/2019

Kinisi
The Apple Watch Form Correction Coach

Author: Adrian Markelov, Kyle Jannak-Huang, Matthew
Spettel. Electrical and Computer Engineering, Carnegie

Mellon University

Abstract—An app for the iPhone and Apple Watch that is
capable of analyzing the user’s weightlifting form. It uses live
data from the watch’s inertial measurement unit to extract
features of good and bad lifting form, and classifies the form
using a convolutional neural network. The app will give visual
and instructional feedback to users, with the goal of helping
improve their form and preventing injury while training.

Index Terms—Form Detection/Correction, Apple Watch,
Inertial Measurement Unit, Data Analysis, IOS App, Flask
Server, Pytorch, MSNN, Time Series Classification,
Convolutional Neural Network, Dynamic Time Warping

I. INTRODUCTION

THE NEED FOR A QUICK AND INEXPENSIVE SYSTEM FOR EVALUATING

WEIGHT TRAINING FORM HAS GROWN FROM A RECENT EXPLOSION IN
FITNESS POPULARITY. PROPER FORM DURING TRAINING CAN MAXIMIZE
RESULTS WHILE MINIMIZING THE RISK OF INJURY WHILE WEIGHTLIFTING.
THE SUPPLY OF PERSONAL TRAINERS HAS NOT KEPT UP WITH DEMAND.
THUS, THE COST OF HIRING A PERSONAL TRAINER IN THE U.S. CAN
RANGE FROM $60/HR TO $160/HR. THE GOAL OF KINISI IS TO MAKE
PERSONAL TRAINING ACCESSIBLE TO ALL, AND TO REDUCE THE
LIKELIHOOD OF INJURY WHILE WEIGHTLIFTING.

KINISI IS AN APP FOR THE IPHONE AND APPLE WATCH THAT USES
INERTIAL MEASUREMENT DATA FROM THE WATCH TO RECOGNIZE RISKY
ISSUES IN THE USER’S LIFTING FORM, AND PROVIDE VISUAL AND
INSTRUCTIONAL FEEDBACK ON THE USER’S PHONE. FEEDBACK IS

PROVIDED PROMPTLY AFTER THE USER FINISHES EACH SET, SO HE/SHE
MAY CORRECT THEIR LIFTING FORM ON THE NEXT SET. RISKY ERRORS IN
THE USER’S LIFTING FORM WILL BE DETECTED WITH HIGH ACCURACY.

II. DESIGN REQUIREMENTS
A. Classification Accuracy

Our app will need to be as accurate as possible in
classifying the user’s lifting form in order to minimize the
likelihood of injury to the user. For the purposes of validating
our approach, we will begin by classifying only bicep curls.
The classifier will have a bucket for good form and at least
four buckets for known characteristics of bad form, such as
“swinging arms” and “splayed elbows”. It will be trained and
tested on data collected and labeled by us; at least 20% of the
data for each bucket will be testing data, and there will also be
testing data from a variety of users. We will then measure the
accuracy of our classifier based on how it classifies the testing
data.

Quantitatively, we want to minimize the number of false
positives and false negatives reported by our classifier. False
positives (the case in which the user has good form but is
labeled as one of the many types of bad form) must be kept
below 33% on exercise sets. Bicep curls are typically done in
three sets, so if only one of the sets (or less) are reported as
having bad form, the user will not lose confidence in our
system. False negatives must be kept below 80% on reps, and
below 1% on sets. The shortest sets of any exercise are
typically 5 reps, so if the user has bad form during such a set,
we want to be able to classify at least one of the reps as bad
form in order to flag it and give feedback to the user. If an
entire set of bad form is overlooked, however, it may cause the
user to continue with bad form and eventually cause injury.
B. Timely Feedback

Our app must provide feedback to the user quickly, so that
they can view the feedback on their lifting form and correct it
as soon as possible. Quantitatively, this means that the
feedback must be available on the user’s phone app while they
are resting between sets, with enough time before the next set
to process the feedback. Typically, rest times between sets of
bicep curls are no shorter than one minute. Since our feedback
will be succinct (GIFs of form from different angles and a
sentence or two), a generous estimate is to allow the user
about 20 seconds to process the feedback. Thus, the
classification of the form, along with the visual and
instructional feedback, must be viewable on the phone app
within 40 seconds after the completion of a set.

2
18-500 Design Report: 10/13/2019

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The complete architecture of the product can be divided into

three super general categories: the Apple Watch, the Iphone
and the backend AWS server. The Apple Watch forwards data
to the iPhone via BTLE, then the iPhone makes a RESTful
API call to the AWS server with the collected data asking it
for an informative response on the weight lifting form.
Amongst these three the most important by far to zoom in on
is the backend AWS server that will analyze the Apple Watch
data and generate the required feedback for the user. The
backend server will be managed by Flask and will have three
super important analytical processing parts to it: exercise rep
demarcation, rep data preprocessing, and rep classification.
The Flask server will parse the RESTful json and forward the
received imu data to this processing unit. Once the server
knows the form class it will return pre-saved data from a SQL
database that described the issue or lack of issue in the
exercise form. Please see figure 3 on the last page of this
report for a visualization of the full system architecture.

Generals Systems Architecture

A. Rep Demarcation
Rep demarcation is the first sub-system that the raw IMU

data will be passed through in the backend server. The purpose
of this sub-system is to automatically separate the raw
time-series data into repetitions of exercise. The raw data is
9-dimensional time series data: acceleration, orientation, and
rotation velocity in three dimensions each. It is collected
starting when the user presses the “start” button on the app,
and ends when the user presses “stop”. Thus, the signals can
contain extraneous artifacts, such as picking up weights at the
beginning of the set, stretches, or even a short break between
reps. The rep demarcator will isolate just the reps by detecting
repetition in the IMU signals, using a combination of peak
detection and sliding dynamic time slicing. This architecture
will be discussed in detail in section V. Please see figure 4 on
the last page of this report; it shows the current design for the
rep demarcator, although there will likely be significant
additions to the design as we do more research.

B. Form Detection

Form detection is the second sub-system that will take the
raw IMU data that has been parsed by the rep demarcation
software and classify each rep’s form from a finite set of
buckets including good and various types of bad form. It will
be done by a two step process of filtering (for pre-processing)
followed by a deep net for classification. Since the data
received by the rep demarcation software will be irregular
(varying in time samples) and have important features at both
a global and local level, the preprocessing step will normalize
the data then decompose it into channels that will allow the
network to look at the data from different time and frequency
perspectives. Compression might also be done along the way
and explained later. Finally, a deep convolutional network will
extract features from the individual channels. These features
will then be concatenated together and more convolution
layers will be executed on them with a final fully connected
layer that will classify the new feature space. This architecture
will be discussed in detail in section V.

Data Processing Architecture

3
18-500 Design Report: 10/13/2019

IV. DESIGN TRADE STUDIES

A. Rep Demarcation
The academic name for rep demarcation is “finding time

series motifs in time series data”. Once we discovered this
terminology, we were able to search for a huge collection of
academic papers discussing how to best solve this problem -
some of these papers even discussed detecting reps within a
set of exercise. Given the time constraints of the class we had
to make some difficult design decisions about which method
to explore and test. We estimated that we only had time to try
one method in any depth, given how complex a lot of the
approaches are. After reading through the eight most popular
papers, we started by eliminating all of the papers we did not
understand at all after the first read through - this got us down
to four approaches: two of which were ML/SVM based and
two were more traditional signal processing. We ruled out the
two ML/SVM approaches because they were relatively much
more complex (and would require even more training data
collection/labeling/cleaning, which we are already doing a lot
for our form detection phase (discussed below). That left us
with two approaches: one used a combination of blurring,
thresholding, and simple autocorrelation in the frequency
domain - essentially it was looking for spikes in a given
frequency. This approach was very simple, but we knew that it
would fall short when reps sped up and/or slowed down
during the course of a set. Since this fatiguing (and slowing
down) happens during almost every set, we did not want to
rely on a constant period in our signal throughout an entire set
to demarcate reps. This led us to the last paper, which
suggested using an approach called dynamic time warping to
make the last correlation step more resistant to changes, or
warping, in the signal’s period over the course of the set
sample. Even this relatively simple approach took two weeks
to implement to a testing level of robustness (and thankfully
we were able to use a pre-built python package to run the
actual math behind the dynamic time warping), so we are
confident that we made the right design tradeoffs in
optimizing for simplicity and period invariance.
B. Form Detection

There are many potential solutions to classifying the form of
a user’s weight lifting. All solutions though must be in the
basis of multidimensional time series classification (MDTSC).
One of the most common solutions to MDTSC is dynamic
type warping (DTW). As of now we will not be doing DTW
for the following reasons: sensitivity to noise, separation of
feature extraction from classification which limits accuracy
(Cui and Chen) and neglects that most time series have
different important features at different time scales.

These problems can be addressed with deep learning
solutions such as RNN’s and CNN’s. We have decided to go
with CNN’s. The decision to go with CNNs over RNNs is a
hard one. In concept it is likely that both methods will work
very well. As a matter of fact it superficially seems like
RNN’s will work better as they are most commonly used for

time series data. The assumption in our case though is a little
different from normal time series data. In our data, for a single
data point (a single rep of a workout) the most important
characteristic of the value of any dimensional value is the
locational magnitude of where the watch is. This means that
vectorized, a single vector index in one rep should correspond
to the same euclidean location in workout space as another rep
in the same index. This can be done trivially by scaling the
data between the start and stop of a set to the same vector
space where CNN’s can trivially be used. However, when we
use RNN’s a very significant emphasis is put onto the
difference in time between samples as adjacent data points are
now in the bases of time difference vs location difference. The
form of a rep is completely independent from the speed of the
rep, good form can be both fast, slow or medium. Thus, it will
be very difficult for a RNN to see outside of this because data
in the same form buckets will look drastically different to each
other when in this domain thus making it harder to classify.

Amongst the thousands of types of CNN’s we will be using
the framework described in Cui and Chen Multi-Scale
Convolutional Neural Network for Time Series Classification.
This framework addresses all of the problems listed in the
other two models and is can still be fast with GPU
optimization.

On the account of potentially compressing the data set to
help prevent overfitting during training, we have decided to go
with PCA. There are many ways to compress data but PCA
works very well because it has a framework for determining
the amount of encoded information at a given compression
rate. In our tests so far we have been able to compress the data
by 6.25 times (84%) and retain 90% of the explained variance.
There is a potentially huge drawback to compressing the data
if it is not needed. The compressed data set has much more
high frequency that may destroy the information in the shape
of the original data that correlates with time. Thus, we fill first
test without compression.

Cumulative Explained Variance of Time Series/ Dimmension

(c)

4
18-500 Design Report: 10/13/2019

C. Joint Estimation of the User’s Arm
One of the original design plans was to use accelerometer

data from the Apple Watch’s inertial measurement unit (IMU)
to estimate the position of the human arm. This would enable
us to generate an animation of what the user’s motion looked
like, and show it to the user alongside an animation of the
correct form. The visual feedback, provided in conjunction
with instructional feedback, would allow the user to correct
mistakes in their form. Ultimately, for reasons described
below, we decided to replace this functionality with example
GIFs of a human doing the exercise correctly.

The joint estimation problem requires specifying joint
angles in the shoulder, elbow, and wrist. Typically, this would
require solving a 7 degree-of-freedom inverse kinematics
problem, using positional data from the IMU (6 degrees of
freedom in 3-dimensional space). The IMU does not directly
provide positional data; it must be obtained by
double-integrating the accelerometer data. Unfortunately,
accelerometer data typically drifts significantly. Accurately
estimating the position would require removing this drift, as it
has an exponential factor on the estimated position after
double integration. The industry standard way of doing this
typically involves using Kalman filtering with carefully tuned
constants and covariances. In order to avoid the time-sink of
implementing this, we tried using regression to find the drift as
a function over time, and subtracting it out from the
acceleration data. Figure 1 below shows the result of
attempting to remove drift this way and integrating once.
Figure 2 shows the result after the second integration. The
velocity graphs look reasonable, however the positional
graphs are dominated by a lower frequency signal that stems
from the residual between the actual signal and the regression
line.

After experimenting with this and looking at different
options for Kalman filtering, we decided that the results we
would get from joint estimation would not be accurate or
consistent enough to be useful to the user. Even if the drift
were successfully removed, the positional data could still be
jittery. Furthermore, the inverse kinematics problem using a
wristwatch is grossly underdetermined, and massive
simplifications needed to be made to even approximate a
solution. Ultimately, the user would rather just watch their
own form in a mirror than look at an animation of our joint
estimates, therefore we removed this sub-system from the
overall design.

Fig 1. Velocity in x, y, and z directions after linear regression fit removed.

Fig 2. Position in x, y, and z directions after linear regression fit removed.

V. SYSTEM DESCRIPTION

A. iOS/Watch + BTLE Communication
The iOS system will rely heavily on Apple-provided

communication functions. Specifically, the sendMessage and
sendUserInfo functions will be used to transmit data back and
forth between the watch and phone. When the watch screen is
off, the default state of a watch app is background suspended,
meaning that none of the application level code is run, except
for background network requests. This means that to run our
IMU-polling code constantly when the user is obviously not
going to be looking at their wrist (because they will be
working out) we need to put the watch into a special mode.
Fortunately for us, one of these special modes in a “workout
mode” that enables background sensor reading, including IMU
and heart rate monitor - this special mode allows our
application-level code to run in the background roughly 50
times per second. The tricky part becomes, how do we get the
watch into this mode reliably when it does not allow our code
to run in the background by default - in other words, how do
we reliably send a message to the watch when it is not running
our code? Fortunately Apple provides a
summonExtensionApplication function that allows us to
summon our watch app out of a background mode to the
foreground for a split second. In this split second, we can
begin a workout session and then have reliable
communication. Once a workout session is started, we will
send packages consisting of 9 dimensions of IMU data and a
timestamp (10 dimensions x N samples, where N is 150-300,
and all values are saved as 64-bit doubles) directly to our
backend server using an open source iOS HTTP request
library called Alamofire. By default, Alamofire uses the
iPhone’s network (WiFi or 3g/4g) as a proxy to complete the
request; that is, the watch will send the data to the phone via
BTLE automatically and then the phone will make the request

5
18-500 Design Report: 10/13/2019

with its more powerful antennae and processor (as well as
battery life). If the phone is currently not paired or available,
the watch will then attempt to make the request over its own
networks (WiFi or LTE if a newer watch). The watch will
receive regular HTTP responses to these HTTP requests and
use the encoded JSON information to decide whether or not to
end the workout mode and what information to display to the
user. The server can send URL’s to GIFs that we have found
and saved ahead of time to display certain examples of
good/bad form to the user, as well as any text tips/notifications
for the user.

B. Cloud Server
The cloud server subsystem is relatively simple. The server

is hosted on an AWS EC2 instance which provides a
completely isolated linux machine for us to SSH into and run
whatever we want on. In this case, we have chosen to use
Flask as our serving logic (to keep all of the server-side code
in Python), and Gunicorn as our production WSGI server to be
able to configure how many worker threads we will have and
what their behavior will be. We have also set up NGINX as a
reverse proxy in the event that we will want to run multiple
servers or want to quickly switch between different server
configurations during testing. Using a reverse proxy allows us
to switch between different ports/servers on the EC2
internally, while the iOS code (and what port it is talking to)
remains completely unchanged. This web server ultimately
hosts and runs the code discussed in sections C and D, where
the actual work of the project is done.

C. Rep Demarcation

The rep demarcator will reside in our backend server. It will
take as input the raw IMU data as a .csv file, and output the
same data but marked for where reps occur. The raw data has
nine dimensions that vary over time. Linear acceleration,
orientation, and rotational velocity of the Apple Watch are
each given in three dimensions. The orientation is described
by the “gravity vector”, a normalized vector that points in the
direction that gravity is pulling. These nine signals will be
heavily Gaussian blurred to remove high frequency noise.
Using simple peak detection from SciPy, we can split the
signal where there is likely to be reps. However, these peaks
could be a variety of other motions, such as the user bending
over to pick up their weights.

In order to reject these signals, we will use an algorithm
called sliding dynamic time warping. This algorithm takes as
input a kernel signal, such as a sample rep, and a longer signal,
such as the entire data stream for the set. It outputs a
continuous correspondence function that is high-valued where
the kernel signal is similar to the longer signal, and low-valued
where it is not. The “sliding” is similar to convolution, and the
“dynamic time warping” refers to the algorithm’s method of
generating correspondence values for a range of time-warped
kernel signals over the original signal. This will allow us to

detect repetition in the IMU data without the correspondence
function being entirely dependent on the duration of each rep.

Our current design will use the middle rep, extracted from
the initial peak detection, as the kernel signal. This is due to
the tendency of weightlifters to slow down as their set goes
on. We choose the middle rep because it is most likely to be
the average duration. This also reduces the likelihood that we
accidentally choose a kernel that is not a rep of the exercise.
As we make progress on the project, we may choose to
generate correlation functions for multiple sample reps,
choosing to use the one that generates the highest correlation
function.

Once we generate a continuous correlation function for each
of the nine dimensions of IMU data, we can sum them to one
overall correlation function. Using all nine correlation
functions will make the rep demarcator as robust as possible.
For example, bicep curls typically have very clear repetition of
signal in two directions of linear acceleration and orientation,
but will be very sensitive to noise along the axis perpendicular
to the elbow. If we have the chance to extend the project to
multiple exercises, the dimensions that are most important in
generating correlation functions may change. With this in
mind, we may change the design to weight different
dimensions more than others, depending on the results of our
experimentation.

Using the total correlation function, we can finally perform
peak detection once more to separate where the reps are most
likely to be in the original signal. We can then output this
information to a .csv file, for use with the form classifier. For
a graphic of how the rep demarcator works, see figure 4 on the
last page of this report.

D. Form Classification

Form detection will be done by a joint process of
preprocessing and deep learning, for justification on why these
methods over other common methods please see Design Trade
Studies. The form detection process will start out with the
assumption that the received data has been correctly
demarcated by the start and stop of each rep by time markings
of each of the 9 dimensional data points.

These markings though do not guarantee a fixed sample size
between the reps because reps can be done at different
velocities. To address this as well as many other subtle time
based features on the data we will pre-process the reps before
we use any classification methods.

Pre-processing will include interpolating the data,
decomposing the data into multi-scale and multi-frequency
channels, and potentially compressing the data. The first most
important step is interpolating so all of the data is in the same
basis. Since the average rep of a bicep curl is 2 sec and the
imu sensor samples at 50Hz, we will normalize the data by
super/sub sampling to 100 samples/rep.

6
18-500 Design Report: 10/13/2019

Aligning Reps with Interpolation

Here the original blue data has less than 100

samples and is super-sampled to 100 in orange

In the 100 sample basis we will generate three mapping of
the data: an identity mapping, a multi-frequency channel
mapping and a multi-scale channel mapping. The first map has
only one channel and it’s an exact copy of the original 9D
signal. The Second will create a finite number of frequency
channels via different sized smoothing kernels, and third map
will create a finite number of scaling channels via
subsampling. Finally, we may implement a process of
compressing the data if we cannot provide the deep net with
enough data to prevent overfitting. This compression would be
done with PCA. PCA will not officially be part of the design
unless it’s needed. For reasonings on why we should/n’t use
PCA please see Design Trade Studies. However if we do use
it, it would be used to take the first 100x9DOF time-series and
compress them into 16x9DOF time-series or it could be used
post signal map channeling right before the deep net (please
note these are our design options not justifications).

Frequency Channel Transform

By using a running average at different length l we can
analyze the data with varying ranges of its frequencies

when starting from 0Hz.
Scale Channel Transform

By subsampling the time series at different scales we can
use small convolution kernels to extract both global and

local features from the time series reducing kernel parameters.

Deep learning for classification will be used via the

Multi-Scale Convolutional Neural Network for Time Series
Classification framework described by Cui and Chen. This
method begins with the three tier mapping described in the
previous preprocessing section. On the basis of the three maps,
this method will first apply three separate convolutional
networks (with max pooling) to each map. Extracting features
from the three basis allows us to simulate a multi-dilated
network without having to actually learning extra parameters
of larger convolution kernels. This reduction in parameters
will help us a lot with overfitting down the line. After these
three seperate networks have extracted local and global
features from the maps, these features will be concatenated

together and put through another convolutional layer with max
pooling. Finally, these final features will be put through a fully
connected neural network module topped with a softmax for
function to generate probabilities of each class.

MSNN Model

VI. PROJECT MANAGEMENT

A. Schedule
Our schedule is divided into three main phases. This first

phase is very short and involves brainstorming a lot of
potential solutions to the form analysis problem. Clearly, we
are already past this phase and have settled on a wearable IMU
/ Apple Watch strategy. The second phase’s objective is to
construct an MVP, or minimally viable product. We have
defined an MVP as a system where a user can do a single set
of bicep curls (with no user interface - just a start/stop button)
and have our backend console spit out a probability
distribution across at least three different “buckets” of form.
For example, these buckets could be “good”, “swinging”,
“bent-back”. We have a rough requirement for the MVP to be
able to have less than 33% false positives on sets and less than
80% false negatives on reps. Phase three is focused on adding
polish and robustness to the entire system - iOS UI for starting
and stopping exercises with GIFs demonstrating proper form
will be built out. By fine tuning our rep demarcation, data
preprocessing, and form classification algorithms, we will
increase our accuracy to meet the requirements defined in
section II above. By the end of phase three, the project should
be ready for a live demo where a user does a set of bicep curls,
and within the required time window, is presented with clear
and instructive feedback on their iPhone. The schedule is
pictured in Figure 5 on the last page of this report.

B. Team Member Responsibilities
Our team is strategically made up of machine learning, iOS,

computer systems, and signal processing experts. Spettel has
the most experience with quickly building iOS frontend and
phone/watch communication, and as a result is responsible for
building both the iOS and watchOS applications.
Jannak-Huang is skilled in signal processing and kinematics,
making him a good fit for the rep demarcation stage of our

7
18-500 Design Report: 10/13/2019

processing. And lastly, Markelov is the stand out machine
learning expert of the team and consequently is responsible for
building the data preprocessing and form classification
modules. Spettel and Markelov together have a secondary
responsibility of setting up and managing the AWS EC2
instance and the associated Flask server, Gunicorn wsgi
server, and Nginx reverse proxy. All three team members have
the additional responsibility of collecting labeled training data,
with this being a secondary responsibility for Jannak-Huang.

C. Budget
Given the almost entirely software nature of this product,

we have not used any of, and do not plan to use any of the
provided budget. Between the three of us, we had two Apple
Watches and two iPhones from the start, and deemed that a
third pair will not be necessary. We are using the free tiers of
all cloud services and avoiding expensive server costs by
training models on our own high-performance GPU machines
- used for gaming in a different life. All of our software tools
including XCode, Flask, PyTorch, Gunicorn, Scipy, and
Alamofire are free to use.

D. Risk Management
1) Design and Schedule: As discussed above in section
IV, we used simplicity and robustness as our main criteria in
picking between different approaches. From our previous
product development experience, we know that everything
takes roughly five times longer than you initially would
expect. Essentially, we designed as if we thought we had a
fifth of the time in the back of our heads (and using that
mindset to keep our schedule realistic), and we expect that it
will still come out pretty tight at the end of the semester.
2) Resources: As discussed in section C above, we do
not have any budget constraints for this project. However, we
have very strenuous personnel constraints. We only have one
iOS expert and one machine learning expert in a semester that
is very busy for all of us. Furthermore, Spettel works full-time
on his startup in addition to his course work. The main risk
associated with this extreme lack of (undivided) man hours in
simply not finishing the project by the end of the semester. To
mitigate this risk, we simplified the scope of the project as
much as possible. Although we knew the “product” would be
more attractive as a system that could identify dozens of
exercises, we decided to focus on only a single simple
exercise: the dumbbell bicep curl.

VII. RELATED WORK
A. Computer Vision Based Systems:
1) Perch: This Boston-based startup using a
depth-enabled camera (similar to the Intel Depth-Sense) to
track an athlete’s movement. The system is mounted in a fixed
position at the top of a squat rack. This limits the amount of
potentially tracked exercises to squats, deadlifts, and olympic
lifts - this selection makes up a large portion of athlete

workouts, but is only about 10% of the exercises that casual
gym-goers use. Furthermore, the system is focused on
measuring the velocity and “explosiveness” of the athlete, and
does not offer direct coaching on form - it is assumed that
athletes are capable of using correct form and/or they are
under the direct supervision of very experienced coaching
staff.
2) GymCam: This CMU research project out of the
HCI school using a system of wall-mounted cameras to
identify what exercises gym goers are performing and how
many reps they have performed. They do not perform any kind
of form analysis.
B. Wrist-Based Wearable Systems:
1) Atlas Wearables: This Texas-based startup built
their own consumer product wearable that automatically tracks
a user’s activity in the gym. They perform some rudimentary
form analysis by providing a percentage score for each set that
you do. It does not, however, tell you what you did wrong, and
in experimentation, our “good” form was scoring anywhere
from 60% to 99% - the same range that our “bad” form was
scoring in - the percentage metric simply doesn’t seem to
mean anything.
2) Gymatic: This California-based startup runs
completely on the apple watch platform. Their software is able
to detect exercises and count reps. Similar to Atlas Wearables
(discussed above), the provide a percentage score for each set,
meant to tell the user how good his/her form was. In testing,
this percentage has little correlation to whether the user is
actually using safe form or not.
C. Bar-Based Systems:
1) Beast Sensor: Likely the most simple of the
technology listed - this IMU-in-a-box sits directly on an
olympic bar and is held in place magnetically. Similar to Perch
(discussed above), due to the constraint of the bar, this product
only works with a very small subset of exercises, and only
provides feedback based on velocity and explosiveness, not on
form directly.

VIII. SUMMARY
While it is too early in our development process to tell how

well we will meet our requirements, we have done significant
testing of our rep demarcation. Currently, we can guess the
exact number of reps 70% of the time and be within one rep
90% of the time on our dedicated testing dataset.

A. Future work
We will definitely continue to work on this project after the

conclusion of the semester. The startup that inspired this idea,
DeltaTrainer, will likely transfer the rights to the IP created in
this class to itself and integrate form analysis into the next
generation of it’s personal training app.

REFERENCES
[1] GymCam: http://smashlab.io/pdfs/gymcam.pdf

http://smashlab.io/pdfs/gymcam.pdf

8
18-500 Design Report: 10/13/2019

[2] RecoFit (Microsoft Research):

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/
Morris_Workout_CHI_2014.pdf

[3] Atlas Wearables: https://atlaswearables.com/
[4] Gymatic (Created by Vimo Labs): http://www.vimo.co/
[5] Probabilistic Discovery of Time Series Motifs:

https://dl.acm.org/citation.cfm?id=956808
[6] Exact Discovery of Time Series Motifs:

https://epubs.siam.org/doi/abs/10.1137/1.9781611972795.41
[7] Using Dynamic Time Warping to find patterns in Time Series:

https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.
pdf

[8] Multi-Scale Convolutional Neural Networks for Time Series
Classification: https://arxiv.org/pdf/1603.06995.pdf

[9] How to Use Convolutional Neural Networks for Time Series
Classification:
https://towardsdatascience.com/how-to-use-convolutional-neural-networ
ks-for-time-series-classification-56b1b0a07a57

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Morris_Workout_CHI_2014.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Morris_Workout_CHI_2014.pdf
https://atlaswearables.com/
http://www.vimo.co/
https://dl.acm.org/citation.cfm?id=956808
https://epubs.siam.org/doi/abs/10.1137/1.9781611972795.41
https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
https://arxiv.org/pdf/1603.06995.pdf
https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57
https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57

9
18-500 Design Report: 10/13/2019

Fig 3. Overall Kinisi system architecture.

Fig 4. Rep demarcator design.

10
18-500 Design Report: 10/13/2019

Fig. 5 Gantt chart

