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Abstract—An app for the iPhone and Apple Watch that is          
capable of analyzing the user’s weightlifting form. It uses live          
data from the watch’s inertial measurement unit to extract         
features of good and bad lifting form, and classifies the form           
using a convolutional neural network. The app will give visual          
and instructional feedback to users, with the goal of helping          
improve their form and preventing injury while training.  
 

Index Terms—Form Detection/Correction, Apple Watch,     
Inertial Measurement Unit, Data Analysis, IOS App, Flask        
Server, Pytorch, MSNN, Time Series Classification,      
Convolutional Neural Network, Dynamic Time Warping 
 

I. INTRODUCTION 

THE NEED FOR A QUICK AND INEXPENSIVE SYSTEM FOR EVALUATING          

WEIGHT TRAINING FORM HAS GROWN FROM A RECENT EXPLOSION IN          
FITNESS POPULARITY. PROPER FORM DURING TRAINING CAN MAXIMIZE        
RESULTS WHILE MINIMIZING THE RISK OF INJURY WHILE WEIGHTLIFTING.         
THE SUPPLY OF PERSONAL TRAINERS HAS NOT KEPT UP WITH DEMAND.           
THUS, THE COST OF HIRING A PERSONAL TRAINER IN THE U.S. CAN            
RANGE FROM $60/HR TO $160/HR. THE GOAL OF KINISI IS TO MAKE            
PERSONAL TRAINING ACCESSIBLE TO ALL, AND TO REDUCE THE         
LIKELIHOOD OF INJURY WHILE WEIGHTLIFTING.  

KINISI IS AN APP FOR THE IPHONE AND APPLE WATCH THAT USES            
INERTIAL MEASUREMENT DATA FROM THE WATCH TO RECOGNIZE RISKY         
ISSUES IN THE USER’S LIFTING FORM, AND PROVIDE VISUAL AND          
INSTRUCTIONAL FEEDBACK ON THE USER’S PHONE. FEEDBACK IS        

PROVIDED PROMPTLY AFTER THE USER FINISHES EACH SET, SO HE/SHE          
MAY CORRECT THEIR LIFTING FORM ON THE NEXT SET. RISKY ERRORS IN            
THE USER’S LIFTING FORM WILL BE DETECTED WITH HIGH ACCURACY. 

II. DESIGN REQUIREMENTS 
A. Classification Accuracy 

Our app will need to be as accurate as possible in 
classifying the user’s lifting form in order to minimize the 
likelihood of injury to the user. For the purposes of validating 
our approach, we will begin by classifying only bicep curls. 
The classifier will have a bucket for good form and at least 
four buckets for known characteristics of bad form, such as 
“swinging arms” and “splayed elbows”. It will be trained and 
tested on data collected and labeled by us; at least 20% of the 
data for each bucket will be testing data, and there will also be 
testing data from a variety of users. We will then measure the 
accuracy of our classifier based on how it classifies the testing 
data. 

Quantitatively, we want to minimize the number of false 
positives and false negatives reported by our classifier. False 
positives (the case in which the user has good form but is 
labeled as one of the many types of bad form) must be kept 
below 33% on exercise sets. Bicep curls are typically done in 
three sets, so if only one of the sets (or less) are reported as 
having bad form, the user will not lose confidence in our 
system. False negatives must be kept below 80% on reps, and 
below 1% on sets. The shortest sets of any exercise are 
typically 5 reps, so if the user has bad form during such a set, 
we want to be able to classify at least one of the reps as bad 
form in order to flag it and give feedback to the user. If an 
entire set of bad form is overlooked, however, it may cause the 
user to continue with bad form and eventually cause injury. 
B. Timely Feedback 

Our app must provide feedback to the user quickly, so that 
they can view the feedback on their lifting form and correct it 
as soon as possible. Quantitatively, this means that the 
feedback must be available on the user’s phone app while they 
are resting between sets, with enough time before the next set 
to process the feedback. Typically, rest times between sets of 
bicep curls are no shorter than one minute. Since our feedback 
will be succinct (GIFs of form from different angles and a 
sentence or two), a generous estimate is to allow the user 
about 20 seconds to process the feedback. Thus, the 
classification of the form, along with the visual and 
instructional feedback, must be viewable on the phone app 
within 40 seconds after the completion of a set. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
The complete architecture of the product can be divided into          

three super general categories: the Apple Watch, the Iphone         
and the backend AWS server. The Apple Watch forwards data          
to the iPhone via BTLE, then the iPhone makes a RESTful           
API call to the AWS server with the collected data asking it            
for an informative response on the weight lifting form.         
Amongst these three the most important by far to zoom in on            
is the backend AWS server that will analyze the Apple Watch           
data and generate the required feedback for the user. The          
backend server will be managed by Flask and will have three           
super important analytical processing parts to it: exercise rep         
demarcation, rep data preprocessing, and rep classification.       
The Flask server will parse the RESTful json and forward the           
received imu data to this processing unit. Once the server          
knows the form class it will return pre-saved data from a SQL            
database that described the issue or lack of issue in the           
exercise form. Please see figure 3 on the last page of this            
report for a visualization of the full system architecture. 

 
Generals Systems Architecture 

 

A. Rep Demarcation 
Rep demarcation is the first sub-system that the raw IMU          

data will be passed through in the backend server. The purpose           
of this sub-system is to automatically separate the raw         
time-series data into repetitions of exercise. The raw data is          
9-dimensional time series data: acceleration, orientation, and       
rotation velocity in three dimensions each. It is collected         
starting when the user presses the “start” button on the app,           
and ends when the user presses “stop”. Thus, the signals can           
contain extraneous artifacts, such as picking up weights at the          
beginning of the set, stretches, or even a short break between           
reps. The rep demarcator will isolate just the reps by detecting           
repetition in the IMU signals, using a combination of peak          
detection and sliding dynamic time slicing. This architecture        
will be discussed in detail in section V. Please see figure 4 on             
the last page of this report; it shows the current design for the             
rep demarcator, although there will likely be significant        
additions to the design as we do more research. 

 
 
B. Form Detection 

Form detection is the second sub-system that will take the          
raw IMU data that has been parsed by the rep demarcation           
software and classify each rep’s form from a finite set of           
buckets including good and various types of bad form. It will           
be done by a two step process of filtering (for pre-processing)           
followed by a deep net for classification. Since the data          
received by the rep demarcation software will be irregular         
(varying in time samples) and have important features at both          
a global and local level, the preprocessing step will normalize          
the data then decompose it into channels that will allow the           
network to look at the data from different time and frequency           
perspectives. Compression might also be done along the way         
and explained later. Finally, a deep convolutional network will         
extract features from the individual channels. These features        
will then be concatenated together and more convolution        
layers will be executed on them with a final fully connected           
layer that will classify the new feature space. This architecture          
will be discussed in detail in section V. 

 
 

Data Processing Architecture 
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IV. DESIGN TRADE STUDIES 

A. Rep Demarcation 
The academic name for rep demarcation is “finding time         

series motifs in time series data”. Once we discovered this          
terminology, we were able to search for a huge collection of           
academic papers discussing how to best solve this problem -          
some of these papers even discussed detecting reps within a          
set of exercise. Given the time constraints of the class we had            
to make some difficult design decisions about which method         
to explore and test. We estimated that we only had time to try             
one method in any depth, given how complex a lot of the            
approaches are. After reading through the eight most popular         
papers, we started by eliminating all of the papers we did not            
understand at all after the first read through - this got us down             
to four approaches: two of which were ML/SVM based and          
two were more traditional signal processing. We ruled out the          
two ML/SVM approaches because they were relatively much        
more complex (and would require even more training data         
collection/labeling/cleaning, which we are already doing a lot        
for our form detection phase (discussed below). That left us          
with two approaches: one used a combination of blurring,         
thresholding, and simple autocorrelation in the frequency       
domain - essentially it was looking for spikes in a given           
frequency. This approach was very simple, but we knew that it           
would fall short when reps sped up and/or slowed down          
during the course of a set. Since this fatiguing (and slowing           
down) happens during almost every set, we did not want to           
rely on a constant period in our signal throughout an entire set            
to demarcate reps. This led us to the last paper, which           
suggested using an approach called dynamic time warping to         
make the last correlation step more resistant to changes, or          
warping, in the signal’s period over the course of the set           
sample. Even this relatively simple approach took two weeks         
to implement to a testing level of robustness (and thankfully          
we were able to use a pre-built python package to run the            
actual math behind the dynamic time warping), so we are          
confident that we made the right design tradeoffs in         
optimizing for simplicity and period invariance. 
B. Form Detection 

There are many potential solutions to classifying the form of          
a user’s weight lifting. All solutions though must be in the           
basis of multidimensional time series classification (MDTSC).       
One of the most common solutions to MDTSC is dynamic          
type warping (DTW). As of now we will not be doing DTW            
for the following reasons: sensitivity to noise, separation of         
feature extraction from classification which limits accuracy       
(Cui and Chen) and neglects that most time series have          
different important features at different time scales.  

These problems can be addressed with deep learning        
solutions such as RNN’s and CNN’s. We have decided to go           
with CNN’s. The decision to go with CNNs over RNNs is a            
hard one. In concept it is likely that both methods will work            
very well. As a matter of fact it superficially seems like           
RNN’s will work better as they are most commonly used for           

time series data. The assumption in our case though is a little            
different from normal time series data. In our data, for a single            
data point (a single rep of a workout) the most important           
characteristic of the value of any dimensional value is the          
locational magnitude of where the watch is. This means that          
vectorized, a single vector index in one rep should correspond          
to the same euclidean location in workout space as another rep           
in the same index. This can be done trivially by scaling the            
data between the start and stop of a set to the same vector             
space where CNN’s can trivially be used. However, when we          
use RNN’s a very significant emphasis is put onto the          
difference in time between samples as adjacent data points are          
now in the bases of time difference vs location difference. The           
form of a rep is completely independent from the speed of the            
rep, good form can be both fast, slow or medium. Thus, it will             
be very difficult for a RNN to see outside of this because data             
in the same form buckets will look drastically different to each           
other when in this domain thus making it harder to classify. 

Amongst the thousands of types of CNN’s we will be using           
the framework described in Cui and Chen Multi-Scale        
Convolutional Neural Network for Time Series Classification.       
This framework addresses all of the problems listed in the          
other two models and is can still be fast with GPU           
optimization.  

On the account of potentially compressing the data set to          
help prevent overfitting during training, we have decided to go          
with PCA. There are many ways to compress data but PCA           
works very well because it has a framework for determining          
the amount of encoded information at a given compression         
rate. In our tests so far we have been able to compress the data              
by 6.25 times (84%) and retain 90% of the explained variance.           
There is a potentially huge drawback to compressing the data          
if it is not needed. The compressed data set has much more            
high frequency that may destroy the information in the shape          
of the original data that correlates with time. Thus, we fill first            
test without compression.  

 
Cumulative Explained Variance of Time Series/ Dimmension 

 
(c) 
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C. Joint Estimation of the User’s Arm 
One of the original design plans was to use accelerometer          

data from the Apple Watch’s inertial measurement unit (IMU)         
to estimate the position of the human arm. This would enable           
us to generate an animation of what the user’s motion looked           
like, and show it to the user alongside an animation of the            
correct form. The visual feedback, provided in conjunction        
with instructional feedback, would allow the user to correct         
mistakes in their form. Ultimately, for reasons described        
below, we decided to replace this functionality with example         
GIFs of a human doing the exercise correctly. 

The joint estimation problem requires specifying joint       
angles in the shoulder, elbow, and wrist. Typically, this would          
require solving a 7 degree-of-freedom inverse kinematics       
problem, using positional data from the IMU (6 degrees of          
freedom in 3-dimensional space). The IMU does not directly         
provide positional data; it must be obtained by        
double-integrating the accelerometer data. Unfortunately,     
accelerometer data typically drifts significantly. Accurately      
estimating the position would require removing this drift, as it          
has an exponential factor on the estimated position after         
double integration. The industry standard way of doing this         
typically involves using Kalman filtering with carefully tuned        
constants and covariances. In order to avoid the time-sink of          
implementing this, we tried using regression to find the drift as           
a function over time, and subtracting it out from the          
acceleration data. Figure 1 below shows the result of         
attempting to remove drift this way and integrating once.         
Figure 2 shows the result after the second integration. The          
velocity graphs look reasonable, however the positional       
graphs are dominated by a lower frequency signal that stems          
from the residual between the actual signal and the regression          
line. 

After experimenting with this and looking at different        
options for Kalman filtering, we decided that the results we          
would get from joint estimation would not be accurate or          
consistent enough to be useful to the user. Even if the drift            
were successfully removed, the positional data could still be         
jittery. Furthermore, the inverse kinematics problem using a        
wristwatch is grossly underdetermined, and massive      
simplifications needed to be made to even approximate a         
solution. Ultimately, the user would rather just watch their         
own form in a mirror than look at an animation of our joint             
estimates, therefore we removed this sub-system from the        
overall design. 

 
Fig 1. Velocity in x, y, and z directions after linear regression fit removed. 

 
Fig 2. Position in x, y, and z directions after linear regression fit removed. 

V. SYSTEM DESCRIPTION 

A. iOS/Watch + BTLE Communication 
The iOS system will rely heavily on Apple-provided        

communication functions. Specifically, the sendMessage and      
sendUserInfo functions will be used to transmit data back and          
forth between the watch and phone. When the watch screen is           
off, the default state of a watch app is background suspended,           
meaning that none of the application level code is run, except           
for background network requests. This means that to run our          
IMU-polling code constantly when the user is obviously not         
going to be looking at their wrist (because they will be           
working out) we need to put the watch into a special mode.            
Fortunately for us, one of these special modes in a “workout           
mode” that enables background sensor reading, including IMU        
and heart rate monitor - this special mode allows our          
application-level code to run in the background roughly 50         
times per second. The tricky part becomes, how do we get the            
watch into this mode reliably when it does not allow our code            
to run in the background by default - in other words, how do             
we reliably send a message to the watch when it is not running             
our code? Fortunately Apple provides a      
summonExtensionApplication function that allows us to      
summon our watch app out of a background mode to the           
foreground for a split second. In this split second, we can           
begin a workout session and then have reliable        
communication. Once a workout session is started, we will         
send packages consisting of 9 dimensions of IMU data and a           
timestamp (10 dimensions x N samples, where N is 150-300,          
and all values are saved as 64-bit doubles) directly to our           
backend server using an open source iOS HTTP request         
library called Alamofire. By default, Alamofire uses the        
iPhone’s network (WiFi or 3g/4g) as a proxy to complete the           
request; that is, the watch will send the data to the phone via             
BTLE automatically and then the phone will make the request          
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with its more powerful antennae and processor (as well as          
battery life). If the phone is currently not paired or available,           
the watch will then attempt to make the request over its own            
networks (WiFi or LTE if a newer watch). The watch will           
receive regular HTTP responses to these HTTP requests and         
use the encoded JSON information to decide whether or not to           
end the workout mode and what information to display to the           
user. The server can send URL’s to GIFs that we have found            
and saved ahead of time to display certain examples of          
good/bad form to the user, as well as any text tips/notifications           
for the user. 

B. Cloud Server 
The cloud server subsystem is relatively simple. The server         

is hosted on an AWS EC2 instance which provides a          
completely isolated linux machine for us to SSH into and run           
whatever we want on. In this case, we have chosen to use            
Flask as our serving logic (to keep all of the server-side code            
in Python), and Gunicorn as our production WSGI server to be           
able to configure how many worker threads we will have and           
what their behavior will be. We have also set up NGINX as a             
reverse proxy in the event that we will want to run multiple            
servers or want to quickly switch between different server         
configurations during testing. Using a reverse proxy allows us         
to switch between different ports/servers on the EC2        
internally, while the iOS code (and what port it is talking to)            
remains completely unchanged. This web server ultimately       
hosts and runs the code discussed in sections C and D, where            
the actual work of the project is done. 
 
C. Rep Demarcation 

The rep demarcator will reside in our backend server. It will           
take as input the raw IMU data as a .csv file, and output the              
same data but marked for where reps occur. The raw data has            
nine dimensions that vary over time. Linear acceleration,        
orientation, and rotational velocity of the Apple Watch are         
each given in three dimensions. The orientation is described         
by the “gravity vector”, a normalized vector that points in the           
direction that gravity is pulling. These nine signals will be          
heavily Gaussian blurred to remove high frequency noise.        
Using simple peak detection from SciPy, we can split the          
signal where there is likely to be reps. However, these peaks           
could be a variety of other motions, such as the user bending            
over to pick up their weights.  

In order to reject these signals, we will use an algorithm           
called sliding dynamic time warping. This algorithm takes as         
input a kernel signal, such as a sample rep, and a longer signal,             
such as the entire data stream for the set. It outputs a            
continuous correspondence function that is high-valued where       
the kernel signal is similar to the longer signal, and low-valued           
where it is not. The “sliding” is similar to convolution, and the            
“dynamic time warping” refers to the algorithm’s method of         
generating correspondence values for a range of time-warped        
kernel signals over the original signal. This will allow us to           

detect repetition in the IMU data without the correspondence         
function being entirely dependent on the duration of each rep.  

Our current design will use the middle rep, extracted from          
the initial peak detection, as the kernel signal. This is due to            
the tendency of weightlifters to slow down as their set goes           
on. We choose the middle rep because it is most likely to be             
the average duration. This also reduces the likelihood that we          
accidentally choose a kernel that is not a rep of the exercise.            
As we make progress on the project, we may choose to           
generate correlation functions for multiple sample reps,       
choosing to use the one that generates the highest correlation          
function. 

Once we generate a continuous correlation function for each         
of the nine dimensions of IMU data, we can sum them to one             
overall correlation function. Using all nine correlation       
functions will make the rep demarcator as robust as possible.          
For example, bicep curls typically have very clear repetition of          
signal in two directions of linear acceleration and orientation,         
but will be very sensitive to noise along the axis perpendicular           
to the elbow. If we have the chance to extend the project to             
multiple exercises, the dimensions that are most important in         
generating correlation functions may change. With this in        
mind, we may change the design to weight different         
dimensions more than others, depending on the results of our          
experimentation. 

Using the total correlation function, we can finally perform         
peak detection once more to separate where the reps are most           
likely to be in the original signal. We can then output this            
information to a .csv file, for use with the form classifier. For            
a graphic of how the rep demarcator works, see figure 4 on the             
last page of this report. 
 
D. Form Classification 

Form detection will be done by a joint process of          
preprocessing and deep learning, for justification on why these         
methods over other common methods please see Design Trade         
Studies. The form detection process will start out with the          
assumption that the received data has been correctly        
demarcated by the start and stop of each rep by time markings            
of each of the 9 dimensional data points.  

These markings though do not guarantee a fixed sample size          
between the reps because reps can be done at different          
velocities. To address this as well as many other subtle time           
based features on the data we will pre-process the reps before           
we use any classification methods.  

Pre-processing will include interpolating the data,      
decomposing the data into multi-scale and multi-frequency       
channels, and potentially compressing the data. The first most         
important step is interpolating so all of the data is in the same             
basis. Since the average rep of a bicep curl is 2 sec and the              
imu sensor samples at 50Hz, we will normalize the data by           
super/sub sampling to 100 samples/rep.  
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Aligning Reps with Interpolation 

  
Here the original blue data has less than 100  

samples and is super-sampled to 100 in orange 
 

In the 100 sample basis we will generate three mapping of           
the data: an identity mapping, a multi-frequency channel        
mapping and a multi-scale channel mapping. The first map has          
only one channel and it’s an exact copy of the original 9D            
signal. The Second will create a finite number of frequency          
channels via different sized smoothing kernels, and third map         
will create a finite number of scaling channels via         
subsampling. Finally, we may implement a process of        
compressing the data if we cannot provide the deep net with           
enough data to prevent overfitting. This compression would be         
done with PCA. PCA will not officially be part of the design            
unless it’s needed. For reasonings on why we should/n’t use          
PCA please see Design Trade Studies. However if we do use           
it, it would be used to take the first 100x9DOF time-series and            
compress them into 16x9DOF time-series or it could be used          
post signal map channeling right before the deep net (please          
note these are our design options not justifications). 

 
Frequency Channel Transform 

  
By using a running average at different length l we can 
analyze the data with varying ranges of its frequencies 

when starting from 0Hz. 
Scale Channel Transform 

 
By subsampling the time series at different scales we can 
use small convolution kernels to extract both global and 

local features from the time series reducing kernel parameters. 
 
Deep learning for classification will be used via the         

Multi-Scale Convolutional Neural Network for Time Series       
Classification framework described by Cui and Chen. This        
method begins with the three tier mapping described in the          
previous preprocessing section. On the basis of the three maps,          
this method will first apply three separate convolutional        
networks (with max pooling) to each map. Extracting features         
from the three basis allows us to simulate a multi-dilated          
network without having to actually learning extra parameters        
of larger convolution kernels. This reduction in parameters        
will help us a lot with overfitting down the line. After these            
three seperate networks have extracted local and global        
features from the maps, these features will be concatenated         

together and put through another convolutional layer with max         
pooling. Finally, these final features will be put through a fully           
connected neural network module topped with a softmax for         
function to generate probabilities of each class. 

  
MSNN Model 

 

VI. PROJECT MANAGEMENT 

A. Schedule 
Our schedule is divided into three main phases. This first          

phase is very short and involves brainstorming a lot of          
potential solutions to the form analysis problem. Clearly, we         
are already past this phase and have settled on a wearable IMU            
/ Apple Watch strategy. The second phase’s objective is to          
construct an MVP, or minimally viable product. We have         
defined an MVP as a system where a user can do a single set              
of bicep curls (with no user interface - just a start/stop button)            
and have our backend console spit out a probability         
distribution across at least three different “buckets” of form.         
For example, these buckets could be “good”, “swinging”,        
“bent-back”. We have a rough requirement for the MVP to be           
able to have less than 33% false positives on sets and less than             
80% false negatives on reps. Phase three is focused on adding           
polish and robustness to the entire system - iOS UI for starting            
and stopping exercises with GIFs demonstrating proper form        
will be built out. By fine tuning our rep demarcation, data           
preprocessing, and form classification algorithms, we will       
increase our accuracy to meet the requirements defined in         
section II above. By the end of phase three, the project should            
be ready for a live demo where a user does a set of bicep curls,               
and within the required time window, is presented with clear          
and instructive feedback on their iPhone. The schedule is         
pictured in Figure 5 on the last page of this report. 

B. Team Member Responsibilities 
Our team is strategically made up of machine learning, iOS,          

computer systems, and signal processing experts. Spettel has        
the most experience with quickly building iOS frontend and         
phone/watch communication, and as a result is responsible for         
building both the iOS and watchOS applications.       
Jannak-Huang is skilled in signal processing and kinematics,        
making him a good fit for the rep demarcation stage of our            
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processing. And lastly, Markelov is the stand out machine         
learning expert of the team and consequently is responsible for          
building the data preprocessing and form classification       
modules. Spettel and Markelov together have a secondary        
responsibility of setting up and managing the AWS EC2         
instance and the associated Flask server, Gunicorn wsgi        
server, and Nginx reverse proxy. All three team members have          
the additional responsibility of collecting labeled training data,        
with this being a secondary responsibility for Jannak-Huang. 

C. Budget 
Given the almost entirely software nature of this product,         

we have not used any of, and do not plan to use any of the               
provided budget. Between the three of us, we had two Apple           
Watches and two iPhones from the start, and deemed that a           
third pair will not be necessary. We are using the free tiers of             
all cloud services and avoiding expensive server costs by         
training models on our own high-performance GPU machines        
- used for gaming in a different life. All of our software tools             
including XCode, Flask, PyTorch, Gunicorn, Scipy, and       
Alamofire are free to use.  

D. Risk Management 
1) Design and Schedule: As discussed above in section 
IV, we used simplicity and robustness as our main criteria in 
picking between different approaches. From our previous 
product development experience, we know that everything 
takes roughly five times longer than you initially would 
expect. Essentially, we designed as if we thought we had a 
fifth of the time in the back of our heads (and using that 
mindset to keep our schedule realistic), and we expect that it 
will still come out pretty tight at the end of the semester. 
2) Resources: As discussed in section C above, we do 
not have any budget constraints for this project. However, we 
have very strenuous personnel constraints. We only have one 
iOS expert and one machine learning expert in a semester that 
is very busy for all of us. Furthermore, Spettel works full-time 
on his startup in addition to his course work. The main risk 
associated with this extreme lack of (undivided) man hours in 
simply not finishing the project by the end of the semester. To 
mitigate this risk, we simplified the scope of the project as 
much as possible. Although we knew the “product” would be 
more attractive as a system that could identify dozens of 
exercises, we decided to focus on only a single simple 
exercise: the dumbbell bicep curl. 

 

VII. RELATED WORK 
A. Computer Vision Based Systems: 
1) Perch: This Boston-based startup using a 
depth-enabled camera (similar to the Intel Depth-Sense) to 
track an athlete’s movement. The system is mounted in a fixed 
position at the top of a squat rack. This limits the amount of 
potentially tracked exercises to squats, deadlifts, and olympic 
lifts - this selection makes up a large portion of athlete 

workouts, but is only about 10% of the exercises that casual 
gym-goers use. Furthermore, the system is focused on 
measuring the velocity and “explosiveness” of the athlete, and 
does not offer direct coaching on form - it is assumed that 
athletes are capable of using correct form and/or they are 
under the direct supervision of very experienced coaching 
staff.  
2) GymCam: This CMU research project out of the 
HCI school using a system of wall-mounted cameras to 
identify what exercises gym goers are performing and how 
many reps they have performed. They do not perform any kind 
of form analysis. 
B. Wrist-Based Wearable Systems: 
1) Atlas Wearables: This Texas-based startup built 
their own consumer product wearable that automatically tracks 
a user’s activity in the gym. They perform some rudimentary 
form analysis by providing a percentage score for each set that 
you do. It does not, however, tell you what you did wrong, and 
in experimentation, our “good” form was scoring anywhere 
from 60% to 99% - the same range that our “bad” form was 
scoring in - the percentage metric simply doesn’t seem to 
mean anything. 
2) Gymatic: This California-based startup runs 
completely on the apple watch platform. Their software is able 
to detect exercises and count reps. Similar to Atlas Wearables 
(discussed above), the provide a percentage score for each set, 
meant to tell the user how good his/her form was. In testing, 
this percentage has little correlation to whether the user is 
actually using safe form or not. 
C. Bar-Based Systems: 
1) Beast Sensor: Likely the most simple of the 
technology listed - this IMU-in-a-box sits directly on an 
olympic bar and is held in place magnetically. Similar to Perch 
(discussed above), due to the constraint of the bar, this product 
only works with a very small subset of exercises, and only 
provides feedback based on velocity and explosiveness, not on 
form directly. 

VIII. SUMMARY 
While it is too early in our development process to tell how            

well we will meet our requirements, we have done significant          
testing of our rep demarcation. Currently, we can guess the          
exact number of reps 70% of the time and be within one rep             
90% of the time on our dedicated testing dataset. 

A. Future work 
We will definitely continue to work on this project after the           

conclusion of the semester. The startup that inspired this idea,          
DeltaTrainer, will likely transfer the rights to the IP created in           
this class to itself and integrate form analysis into the next           
generation of it’s personal training app.  
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Fig 3. Overall Kinisi system architecture. 

 
Fig 4. Rep demarcator design.  
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Fig. 5 Gantt chart 


