
18-500 DESIGN DOCUMENT: 12/08/2019 1

IR MAN

Final Document

for ECE Capstone Project
Max Bai, Shirley Zhang, Jiaqi Zou

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—IR MAN, a universal IR Controller on a raspberry
pi connected to remote web server, and also as an interactive hu-
manoid robot with 2 degrees of freedom (DOF) motion, computer
vision (CV) based object detection and IR control capabilities,
is designed to leverage home appliance use experience. The
Internet of things (IoT) element of this project is driven by the
convergence of multiple technologies such as machine learning,
cloud services, commodity sensors, and real time embedded
systems, hence achieving the goal of remotely controlling your
household appliances via the internet. The following sections of
this paper elicit the motivation, architecture design, technical
requirements and testing metrics of this particularly innovative
approach to deploying this IoT Smart Home System (IoTSHS).
Using computer vision based approach, the system (IR MAN) can
effectively identify the exact location of the specified household
appliances and plan motion accordingly to point the IR emitter
directly at it before emitting its corresponding IR commands. The
proposed IoTSHS will be designed, programmed, manufactured,
integrated and tested in the format of specifications in this paper.

I. INTRODUCTION

The ”Internet of things” (IoT) is becoming an increasingly

growing topic of conversation in the entire tech industry. With

Broadband Internet becoming more and more accessible, the

cost of connectivity is dramatically decreasing and mobile

devices like smartphones has sky-rocketed its penetration to

the market. All of these things are creating a ”perfect storm”

for the IoT. However, many of our current household Infrared

(IR) controlled appliances are ”traditionally dumb” devices

that are not internet capable. Thus, the problem arises when

we aspire to come up with a scalable approach to empower

these devices with IoT capabilities under affordable cost and

extensive add-on values.

Have you ever ran into the problem of not being able to

find that remote control lying somewhere under the couch

to turn on your TV? Or too many remote controls and you

don’t know which one correspond to which device? Have

you imagined being able to turn on your AC just before you

got home on a hot summer day? With so many domestic

appliances controlled by IR remote control, we decided to

create IR MAN to make our life easier by designing a smart

IoT IR Control Hub that allows your smartphone to remotely

control all the traditionally dumb or non-internet-enabled IR

domestic appliances. The solution proposed in this paper, IR

MAN, aims to solve the aforementioned problems such that

the remote control is truly remote and all home appliances are

automatically upgraded to IoT devices with minimal cost. And

more importantly, IR MAN is an interactive humanoid robot

that actively locates the household appliances in your house

using computer vision (CV) and plans motions accordingly

to reorient the IR emitter in order to accurately shoot the IR

command signals at it like a real Iron Man.

Fig. 1: Concept Design for IR Man

The out-of-the-box experience is like the following. When

first logged into the webapp, the user is faced with option to

either add more devices in the device list, or to calibrate the

IR Man with existing (previously registered) devices. If the

device has not been added before, the user can register a new

device. Upon calibration, the IR Man is going to rotate 360

around the room while using computer vision to recognize

and compute the location of each registered devices. Upon

completion, IR Man uses that location data to command the

motors to spin to the device and point the IR emitter at the

IR device when a WebApp command is received. And the IR

emitter will shoot out the IR signal received from WebApp

to control the IR device in your home and listen for the next

WebApp command. The flow chart in Fig 2 depicts an intuitive

understanding of how the IR Man device work in a workflow

manner.



18-500 DESIGN DOCUMENT: 12/08/2019 2

Fig. 2: Flow Chart IR Man

II. DESIGN REQUIREMENTS

A. Software Requirements

The main requirement of our product is latency and user

experience: users need to be able to control IR devices

successfully and quickly. With regard to this principle, we

specify requirements for each components separately, and

summarize them in a table attached below.

Component Requirement

WebApp Latency <500 (ms)

Device Locator Latency <750 (ms)

Calibration Latency <3 (mins)

Device Locator Accuray >75%

Device Locator Output Position ± 10 degree error

One of the most crucial factor of user experience is the

latency of IR MAN operation, which consists of the latency

of inter-server communication and object detection pipeline.

Therefore, the webapp to IR MAN messaging latency should

be less than 500 (ms), which ensures that there is little to

no delay between the time when user pressing a button on

the webapp and the time when IR signal reaches the device.

In addition,The latency between device locater server to IR

MAN should be less than 750 (ms), considering the size of

the images being transferred between these two platforms are

of size (432, 768).

For the overall device locating pipeline, which includes the

time for image transfer as well as object detection algorithm,

we are aiming for less than 3 minutes, knowing that we

plan to take 10 images for one round and the processing

throughput of project detection model on CPU is around 1

image per second after heated to appropriate temperature, and

that the first few images is going to take way longer.

Another feature that would affect user experience is the

success rate of user operation, which depends on the device

locator output. The accuracy of the resulting estimated device

location needs to be within 10 degrees of the actual device

location in order for the IR circuit to work. Moreover, for the

object detection algorithm, we intend to achieve a validation

accuracy of more than 75%.

B. Hardware Requirements

Component Requirement

IR Circuit Success Rate >90%

Motor Position Accuracy ± 10 degree error

Motor Rotation Time <2 (s)

There are mainly two hardware components in our project:

the IR circuit and the motors. For the IR circuit, we are aiming

for greater than 90% success rate of controlling IR devices

using our IR circuit under different circumstance, such as

lighting and relative location of the IR device to the IR circuit.

For the motors, given a specific pose, the motors needs to

be within 5 degrees of the correct pose for the success rate of

the whole system. And for the sake of latency, time it takes

from a random pose to reach the desired location should be

under 2 seconds.

C. Overall Requirements

Component Requirement

User Success Rate >90%

User Latency <3 (s)

In terms of the user experience of our whole system as a

final product, we want to be able to achieve the following

requirements. Time that it takes for any IR signal command

received needs to be less than 3 seconds. And the average

success rate of controlling all IR device needs to over 90%.

III. ARCHITECTURE

A. Overall Architecture

The general design of the whole system is illustrated in

the system architecture diagram in Fig 3. From the user end

to the device end, we have the following major components:



18-500 DESIGN DOCUMENT: 12/08/2019 3

Fig. 3: System Architecture for IR Man

the webapp server which handles all the user interactions, the

device locator server which handles computer vision infer-

ences, and a Raspberry Pi that controls all the peripherals and

websocket connections. Both of the two servers are running

on the cloud. User can log into the webapp, find a list of all

IR devices, and go to the control panel of a specific device

and control the device just like a remote controller. The device

locator server receives video stream from RPi and runs object

detection algorithm as a backstage process. The Raspberry Pi

will be interfacing with the camera modules, IR circuit and

motors and motor controllers.

On the IR Man device, an RPi is used as the control

hub for motor, camera and the IR Circuit. Upon first-time

calibration, RPi sends frames from camera module to device

locator server as the robot spins. The device locator gets

back the corresponding device locations and RPi stores these

locations locally. Upon a new button press, the RPi starts the

motor to point to the specific device and then send the IR

signal through the IR Circuit. The motor controls the pose of

the robot and the IR Circuit sends any IR signal from RPi.

B. Operating Scenarios

The three major functionalities of IR Man are: (1)

Calibration Command: let the IR Man scan the environment

to locate IR devices. (2) IR Command: send an IR command

to control a specific IR device. (3) Scenario Mode: user can

send a predefined set of commands to IR Man such as ”quiet

mode”, which mutes the TV and turns off the disco light.

To implement these three functionalities, the overall

architecture consists of three major components: the webapp

server, the device locator server and the client on the

raspberry pi. The webapp handles all user interactions. The

device locator server handles computer vision inference. The

raspberry pi handles controlling the IR circuit, the motor and

the servo. Both of the webapp server and the device locator

server are running on AWS EC2.

Users access the system through the webapp server. Users

can sign up and register an IR Man using an unique ID

for each IR Man. Besides the three major functionalities

described above, users can view all registered IR device and

register new IR devices by the brand name and the device type.

The device locator server basically handles all the computer

vision pipeline. It receives a set of images from RPi and a

list of devices to look for. It outputs a device location map,

which maps each device to its location relative to the IR

Man: (θ1, θ2). θ1 is the for degree for the base motor and θ2
is the degree for the servo.

The raspberry pi receives commands from the webapp

server and controls the IR Man to perform these commands.

For calibration, it spins around to take pictures and sends these

pictures to the device locator server to get the locations for

each devices. For IR commands, it spins to the specific device

location, the (θ1, θ2) pair, and send the IR signal. For scenario

modes, it simply runs through the set of commands in similar

manner.

C. Communication Protocol and Interfaces

There are several communication protocols between these

three major components:

1) From webapp server to RPi: The webapp server sends

three kinds of commands to RPi: calibration commands,

IR commands and scenarios modes, as stated above. These

commands are sent to RPi through websockets. Upon boot

up, RPi sends a handshake message to the webapp server,

which includes an unique ID for this IR Man. This ID is



18-500 DESIGN DOCUMENT: 12/08/2019 4

also used when the user register the IR Man. When the user

initiates a command, the webapp server finds the websockets

connection by this unique ID and send the corresponding

command content. The communication protocol includes

an opcode to identify the command type, a timestamp and

specific content of the request. For calibration, the opcode

is 0, and the content is a list of all of the user’s registered

devices. For IR Commands, the opcode is 1, and the content

is the device brand, device type and the button name. For

scenario modes, each scenario mode corresponds to an unique

opcode. These commands are sent to the RPi in JSON format.

2) Between RPi and device locator server: When user

instruct the IR Man to search for device locations(calibration),

RPi first asks the device locator server on AWS for

transmission permission to ensure that no on-going process of

the given IR MAN is running on the server. Upon permission,

RPi sends 10 frame images to device locator server as

following bundle: (device ID, frame, frame number).
This bundle identifies the specific IR MAN through device id

and initializes data structure under this identity. The frame is

sent in zip file in the format of numpy matrix for simplicity

of processing. The frame number is used to calculate the

corresponding position of this sent frame given that all frames

are taken at a fixed degree with respect to the initial position.

The calculated device positions are sent back to RPi as a

dictionary wrapped in a json file. The keys of the dictionary

are the device names, and the corresponding values are the

device position stored in the format of (θ1, θ2), where θ1 is

the horizontal position of stepper motor and theta2 is the

position for servo motor.

3) Between RPi and peripheral devices: This is the embed-

ded hardware communication pathway that connects all the

peripheral devices of IR Man. The RPi connects to a camera,

a motor controller that connects to a stepper motor, a servo,

the IR circuit and (Human Input Devices) HID devices like

monitor, keyboard and mouse. The camera is connected to

the RPi through the RPi defined 16 pin CSI interface. The

motor controller driver board is connected to RPi through the

standard GPIO pins. The servo and IR circuit are connected

to RPi through the PWM enabled GPIO pins. And finally, the

HID devices are connected through HDMI and USB ports.

D. System Interaction

To understand how the system components interact with

each other (Fig 4), we elaborate on three major functionalities

of our system: (1) Calibration Command: user calibrate the

IR Man to locate registered IR devices (2) IR Command: user

presses a button on the control panel in the webapp to control

the IR device. (3) Scenario Mode: a series of commands. We

will examine how different system components interact with

each other to achieve these three functionalities.

1) Calibration Command: Before user can use the IR Man

to control any IR devices, the IR Man needs to find the device

locations in the terms of (θ1, θ2) as the pose for the tow

motors. This bootstrap step also needs to be done whenever

the user moves the IR Man to a new position. When user

presses the ”calibration” button on the webapp, the webapp

server sends the list of user’s registered IR device to RPi to

search for these devices in the surroundings. The RPi starts to

spin the motor in several stops and send an image for every

stop to the device locator server. The device locator server

sends back specific location for each device to RPi. These

locations are stored in a local file so that RPi ”remembers”

the pose for these devices for future uses.

2) IR Command: The user send the button press HTTP

request to the webapp server. Upon receiving the request, the

webapp server fetch the button information from the database

server, which includes the device name, the device type, the

protocol name, the button name, the button hexcode. The

webapp server then find the user’s IR Man device websocket

connection by the IR Man device’s unique ID. The button

information is sent to the RPi over the websocket connection.

Upon receiving the button information from webapp server,

RPi extract the device name and find the predetermined

device location, then it controls the motor module to move to

correct pose for the device, so that the IR sender points to the

device. Finally, RPi sends the control signal to the IR circuit.

3) Scenario Modes: There are four different scenario

modes: quiet mode, leave home mode, party mode, and

go home mode. Each mode consists of a list of different

commands, that will be further explained in the system

description section. Upon receiving the opcode for these

modes, IR Man runs these IR commands in the same manner

one by one.

IV. DESIGN TRADE STUDIES

A. MCU Trade Study

Since the MCU is the heart and brain of the IR Man, not

only does it have to handle the controls of all the peripheral

devices, it also needs to do a fair amount of data processing,

as well as maintaining network connection with our Web

server so that heavy duty computation tasks can be off-loaded

to the cloud. Therefore, we did the following trade study

between a Raspberry Pi, an Arduino Mega and a Lattice

FPGA. All of the metrics are grouped into hard requirements

and soft performances, where hard requirements are features

that the MCU candidate has to meet in order to achieve our

minimum feature requirements. Soft performance metrics are

those that are good to have, such as better RAM configuration

and support special Machine learning application on board.

But those usually come at a cost of increasing budget. And

refer to Fig 5 for the trade study analysis for our MCU

selection.

B. IR Circuit Design Trade Study

A valid concerns has been raised during our design ideation

and the peer review as we are aiming to achieve a 90%



18-500 DESIGN DOCUMENT: 12/08/2019 5

Fig. 4: System Interaction for IR Man

Fig. 5: MCU Trade Studies

accuracy for the IR circuit specifically. Some peers mentioned

that having a ring of IR emitters to broadcast IR signals instead

of having having the IR Man turn to the direction of a specific

device. Although a ring of IR emitters would cut down system

complexity by a lot, it is at risk of signal cross interference and

uniqueness in design. Firstly, a lot of IR controlled devices of

the same brand might be controlled with the same IR signal.

For example, it might not be user’s intention to turn on all

of his Dell devices at the same time. Therefore, a ring of IR

emitters broadcasting IR signals in all direction would cause

unwanted behaviour of the system. Thus, we want to have

the IR Man turn to the specific location of the IR device and

pinpoint that control signal without affecting other IR devices.

Another concern is that having the IR Man drive its motors

based on computer vision is a unique solution to the problem

and we want to keep it that way since it is an interesting

engineering problem to solve with lots of added value like

line of sight, product differentiation and interactivity.

C. webapp server to RPi connection

For the connection from the webapp server to various RPi,

we chose to use websockets, because websockets enable the

server and client to send messages to each other at any time,

after a connection is established, without an explicit request

by one or the other. This is crucial to our system because we

are building a real time system: the webapp server could be

sending requests to RPi at any time. In a challenge-response

system, there is no way for clients(RPi) to know when new

request is available for them. The only similar implementation

is RPi polling the webapp server periodically, but that’s not

exactly what we want. Thus, this connection is established

through websocket.

D. Camera Selection Trade Studies

We have also performed a trade study (Fig 6) on the

camera selection since a huge portion of the feature is based

on computer vision, thus making the choice of camera very

important. When picking a camera, we first narrowed it down

to camera modules that are supported by the MCU platform

we are using, which is Raspberry Pi. Thus only cameras with

CSI interface was considered. And specific hard requirements

that we looked into for cameras are pixel density, video fps,

field of view angle, and whether it supports night vision.

After comparing all three camera modules side by side, the

result is pretty clear tha Dorhea camera wins. Mainly because

it has an embedded photo-resistor sensor and can automatically

switch between day vision and night vision. In addition, there

are photosensitive infrared lights module that can be extended

on Dorhea camera, which is huge plus especially because our

IR Man is expected to work at all time of the day to better

combat the variance in ambient lighting environment.



18-500 DESIGN DOCUMENT: 12/08/2019 6

Fig. 6: Camera Trade Studies

E. Image Transmission from RPi to device locator

In order to find the device locations, IR Man needs to look

for these devices in its surroundings. Our solution is to let IR

Man spin 10 steps, which has a gap of 36 degrees between

per step. Before each step, the IR Man stop for a moment to

take one photo and send it over to the device locator server.

We decided to send 10 images from RPi to device locator

instead of sending a complete video stream over the concern

of latency, given that user experience is what we really care

about this product. The number of 10 is carefully picked after

we measured the field of view of the camera we chose. Given

that the camera has a horizontal view of approximately 45

degrees, turning 10 times made sure that for each device, there

will at least be 1 image that completely captures it. The reason

that we are not taking more images for the sake of accuracy

is that image inference through the object detection model is

a main source of latency.

F. Webapp Server and Device Locator Server

Instead of using one server to handle everything, we

decided to have two servers: the webapp server and the

device locator server. We choose to separate these two servers

because they have fundamentally different functions and there

is no communication between these two servers according

to our system design. It is also more elegant in that the two

servers are running in different environments. This is also a

more scalable design: once the system grows larger, we can

just scale these two kinds of servers separately.

Amazon EC2 provides a wide selection of instance

types optimized to fit different use cases. Instance types

comprise varying combinations of CPU, memory, storage,

and networking capacity and give us the flexibility in choosing

the appropriate computation resources for our IR Man. Each

instance type includes one or more instance sizes, allowing

us to scale your resources to the requirements of your target

workload. And please refer to Fig 7 for our analysis for

server selections.

We adopted a t2.micro since Amazon has a free first 750

hours of usage and the performance of t2.micro is great for

hosting a web application. We have tested the network latency

of t2.micro server and the latency stabilizes at around 20ms,

which is also acceptable for our application. We have also

identified g4dn.xlarge, which is a GPU server that will allow

us to do computer vision, image training. Consider that we

are only going to train our model for so many times, the GPU

server is not going to be up for the entire time and we use it

on-demand when training is required. So the value of a GPU

instance is worth its price.

G. Front End User Interface

We choose to develop our front end user interface on a

webapp instead of an iOS or Android app because we want

to have a platform independent solution. Although a webapp

possesses a lot of limitation in terms of performance and

feature access through user’s native device, and might not

provide the best possible user experience, we still choose this

to be our approach for the final front end user interface because

it is relatively easy and fast to deploy. Given the limited time

and resources we have for this project, the best way, under

our careful consideration, to support all the user features for

the largest audience is through a webapp.

H. Robotics Motion & Dynamics

We decided to incorporate the robotics motion and

dynamics feature in this project early on in ideation phase

mainly for two reasons. There has been found lot of universal

IR devices on the consumer market, and when we were

asked the question, ”what makes your project different from

that of the others”, we immediately delved into a brainstorm

process for product differentiation. Since our project has

to do with IR signals, and all of the team members are

Marvel’s fan, we thought of using Iron Man’s figurine as

our chassis and re-engineer Iron Man’s gauntlet glove into

a IR emitter device, and call it the ”IR MAN” instead. The

clever pun led us into an elaboration of robotics motion and

dynamics. Some peers have questioned the purpose and given

us feedback about the robotics part. There are indeed many

ways to place the IR diodes, namely put a ring of IR diodes

on the chassis to send out the same IR signal in all directions,

but we decided to put it in the center of IR MAN’s gauntlet

and plan motions accordingly to aim the IR emitter directly

at the target device. This would solve the line of sight issue,

as well as reducing power consumption of the system. This

robotics approach adds another layer of computer vision and

dynamics control complexity to the project. However, not

only does it make IR MAN unique, but also makes it more

fun to interact with. In addition, the decision to use a servo

as opposed to a second stepper motor is because of weight

concerns. The servo is relatively light and can be easily

mounted on the body of IR Man. This approach we used

proved to be realistic in the end as we happened to deal with

IR devices which shares the same IR communication codes.

By implementing this seemingly over-complicated design, we

were able to solve this issue by deliberately pointing to the

exact device which can not be achieved by normal IR hub

design.



18-500 DESIGN DOCUMENT: 12/08/2019 7

Fig. 7: AWS EC2 Instance Trade Studies

Regarding this design, we performed a trade study (Fig

8) of different kinds of motors to achieve our goal of robot

kinematics and dynamics system.

Fig. 8: Motor Trade Studies

I. Image Pre-processing

Knowing that the input of camera feed is fixed at 1080p

(1920×1080 pixels), and that the input for image inference

does not require resolution at this level, we decide to divide the

image pre-processing phase into 2 sections, and perform them

on different platform. Pre-process of a frame before inference

typically consists of resizing the image and padding the rims

of the image into a square. The previous phase shrinks the

size of an image while the latter part expands the size by

deliberately changing the image into a square to fit the fixed

input size of the model. Therefore, knowing that all frames are

to be transferred from RPi to a remote server, we decide to

run image resizing on RPi before image transfer, and image

padding on device locator server, such that the image to be

transferred is in its smallest size, and that the transferred speed

is maximized under limited network bandwidth. The size of

transferred image is fixed at (432, 768) in the end given the

limit of websocket’s buffer size.

J. Computer Vision & Neural Network Framework

Due to the limited computing power on the RPi, we

decided to run our computer vision module on a remote

server. The object detector model we chose is YOLOv3.

Reason that we pick this model out of many others is that

it balances accuracy and inference fps better than the other

popular models.

Fig. 9: Accuracy of popular models compared upon PASCAL

VOC 2007 and 2012

Fig. 10: Inference FPS of popular models compared upon

PASCAL VOC 2007 and 2012

It is shown in the graph that validation accuracy doesn’t

deviate much between models, but YOLOv3 has a large space

between its upper and lower limit of inference speed, which

means we would be able to tune our image size and control

the trade off between speed and accuracy. To enhance the

accuracy of the model, we tried different approaches for

dataset collection and labeling, and the method we used in the

end was to only take photos that record the IR receiver side

of the device, and only label the recognizable part that carries

the IR receiver rather than the full device. This approach

significantly improved the converging speed and accuracy of

our model, and made sure that the calculated center of device

is always subject to the position of IR receiver.



18-500 DESIGN DOCUMENT: 12/08/2019 8

V. SYSTEM DESCRIPTION

A. Device Locator Implementation

1) CV Object Detection Model: The object detection model

framework, as mentioned before, was YOLOV3 trained from

the weights of Darknet. Initially we were collecting dataset

with no control of the facets of device being included in

the image. This crude approach turned out to be a failure,

especially for devices like AC which has multiple surfaces

with different attributes: the model would not converge during

training. After carefully studying the characteristics of the

image to be sent from RPi to device locator server, we found

that these images only include the front of the device where

the IR receiver locates. We therefore modified our training

dataset such that our model only cared about the region

where IR receiver resides.

2) Data Post-processing & Location Parsing: This step is

to be performed only after all frames had been fed into the

neural network model and output data collected. Since each

frame has its corresponding motor positions(θ) transferred

together, we can find the median value of those motor positions

where a specific device (outputs with the same tag) shows up,

and can take it as the correct orientation for this device. Note

that we will only take outputs with confidence bigger than 0.5

into calculation. This threshold is often chosen as a standard

approach in industry. Refer to Figure 12 for the image post-

processing pipeline.

3) CV Device Location Calculation: Since the camera is

mounted on a base rotating about Z-axis, in the calibration

phase, the camera is going to rotate a 360◦ and take finite

amount of pictures at each stop. Let the number of pictures

taken be N . Granted that the camera rotates in clockwise, each

image mi, ∀i ∈ N will cover 360◦

N
· i field of view region.

On the location locator server, each image mi has

bounding boxes around the target devices. We first find

the centroid of the bounding box using our CV pipeline.

Cx, Cy are the centroid to the polygon with vertices

(x0, y0), (x1, y1), ..., (xn1, yn1).

Cx =
1

6A

n−1
∑

i=0

(xi + xi+1) (xiyi+1 − xi+1yi)

Cy =
1

6A

n−1
∑

i=0

(yi + yi+1) (xiyi+1 − xi+1yi)

where A is

A =
1

2

n−1
∑

i=0

(xiyi+1 − xi+1yi)

Next, we calculate the relative position of the centroid

(Cx, Cy) to the image mi. Since we know that mi will

represent the range of FOV between
[

360◦

N
· i, 360◦

N
· (i+ 1)

)

.

The absolute location in θ that correspond to the target device

is then

θ =
360◦

N
· i+ Cx

If our hyper-parameter N, the number of stops (number of

photos) for calibration is granular, then multiple photos can

have the same target device in the FOV. In this case, we can

take the sum average of their centroids to produce a more

accurate result reflecting the absolute location of that device.

In the case where multiple target devices appear in the

same FOV, we simply run the aforementioned find centroid

algorithm in parallel to find the device location concurrently

as shown in Fig 11

4) Complete CV Pipeline: The complete design of the

device locator server consists of 2 threads: one handles the

connection over websocket(connection thread) and the other

handles the object detection algorithm(CV thread).

With the server being run, both threads will be initiated before

Fig. 11: Computer Vision Object Detection Result

handling any connection request. Upon a call of calibration,

the connection thread firsts asynchronously receives the

permission request from RPi. The connection thread checks

whether there is any ongoing calibration running for this

IRMan on server, and if there is not, connection thread

sends the permission back to RPi. RPi, receiving permission,

will start transmitting 10 image packets over websockets to

connection thread. Connection thread un-zip them and puts

them separately into a image processing queue for CV thread

to retrieve image from.

The CV thread, running in back ground and constantly

checking the content of image-processing queue, retrieves

image from the processing queue and inputs the image

through the object detection model. The output of each

image contains the detected device on image and it location

on image. This information then goes through the device

location calculation described above and the result location

is stored into a dictionary. CV thread actively keep track

of the number of images being inferred for each calibration

command, and if the output of all calibration frames (10 in

our design) have been collected, it then push the assembled

result in to the result queue, which is to be handled by the

connection thread.



18-500 DESIGN DOCUMENT: 12/08/2019 9

Fig. 12: Image Post-processing Pipeline

The connection thread, while asynchronously waiting for

incoming messages from RPi, also actively cheking the content

of result queue. These two coroutines are managed by the

python async library. If the result queue is not empty, the

connection thread process the content and compose them into

a result package which is to be sent back to the corresponding

RPi as the calibration result. The package consists of a

dictionary, with the keys being the device names and the values

being the device locations.

B. Webapp Implementation & Deployment

The webapp server handles all user interaction. We need

to handler user authentication, adding new devices, choosing

devices and button press on specific devices. The routes and

their functionalities are listed in the table below:

ROUTE METHOD USAGE

/devices GET list of registered

IR devices

/devices/new GET/POST register new de-

vices

/calibrate GET send calibration

command to IR

Man

/devices/:device GET show the

controller for

a specific device

/devices/:device/:button POST send IR command

to IR Man

/register POST/GET register new user

and IR Man

/login POST/GET user authentica-

tion

/logout GET user logging out

/ GET landing page

For the database we have the following schemas stored:

User, UserDevice and Device. The User object keeps track of

its own IR Man device by an unique ID. The Device object

keep tracks of the device information: a list of buttons with

their names and its specific signal encoded in hexcode. The

UserDevice object keeps track of its nickname and the base

Device object as a reference. Each User object has a list of

userDevice objects. For example, 5 users might be using the

same Dell TV, and there is only one dell TV Device instance

to keep track of all the Dell TV’s buttons. The 5 users have

5 different UserDevice instances that represents each user’s

dell TV.

The webapp also keeps track of all connections with

the IR Man devices in a hashmap, which maps each IR

Man’s ID to its websocket connection. Upon sending requests

to a certain user’s IR Man, we look for the user’s IR Man

ID in the map and send the request to the corresponding

connection.

As for implementation, we used Express.js and Node.js as

the web framework and MongoDB as the database server. For

front-end, since we don’t have dynamic content, we simply

used HTML/CSS and ejs. For user authentication, we used

Passport.js to handle user registration and logging in/out.

The webapp server is deployed to AWS EC2. We wrote all

the routing logic, front-end inter- faces, back-end logic, the

communication protocl to RPi by ourselves.

The interaction between the user, the webapp and the

RPi is now of a more complete picture described in Fig 13.

Our front-end user interface looks like the Fig 14, which is the

displaying the all the devices for an user. The authenticated

user can also control registered devices on this portal.

C. RPi Embedded Software & Hardware

The RPi client controls the IR Circuit, servo, motor and the

camera. Please refer to the schematics diagram in Fig 15 for

all electrical connections.

1) Camera Control: The camera module we adopted is

Dorhea Raspberry Pi Camera Module . The connection to RPi

is very straight forward, which is to connect the 15 pin FPC

directly with the dedicated CAM socket on Raspberry Pi. It

attaches to Pi by way of one of the small sockets on the board

upper surface and uses the dedicated CSI interface, designed

especially for interfacing to cameras. With 8 megapixels of

still resolution and 1080p30, 720p60 and 480p90 for videos.

Its horizontal field of view of 62.2 degrees and vertical field

of view of 48.8 degrees will allow a better accuracy for our

device locator algorithm since the accuracy was previously



18-500 DESIGN DOCUMENT: 12/08/2019 10

Fig. 13: User Interaction Diagram for the webapp

limited by the number of frames provided, dictated by the

network bandwidth. However, with wider field of view, the

possibility of target objects appearing in each frame is larger,

thus reducing the amount of frames to be transmitted over

the network.

2) IR circuit control: The IR circuit is composed of IR

LEDs and MOSFETs. The MOSFET is a voltage controlled

current sources that dictates the ID that flows through it.

The ON and OFF of the MOSFET is controlled by one of

the programmed GPIO pins on Raspberry Pi. The specific

ON/OFF PWM signal is generated using an open source

IR signal database called LIRC that collected almost all

brand’s IR signal protocols. The protocols are enclosed in

some hex codes representing bitmaps of ON/OFF levels

in a given duty cycle. This database works with LIRC [1]
(Linux Infrared Remote Control) package on RPi, which is

capable of wrapping up the above process with command

line arguments. We will be using an Open source IR remote

control library: LIRC to controls the IR circuit. The IR

Signals can also be retrieved from this library.

3) Motor and Servo Control: In order to support the

required motion of IR MAN, we need our RPi to control

both a stepper motor and a servo. After the aforementioned

Fig. 14: WebApp User Interface

computer vision based device locator algorithm returns the

device location in terms of (θ1, θ2). θ1 represents the target

position of the motor in the chassis base. θ2 represents the

target position of the motor in the arm of IR MAN. Our

RPi will then drive the motor/servo to the target position

specified by (θ1, θ2). To control the stepper motor from

RPi, we acquired a separate controller board called ”Easy

Driver” from SparkFun. The driver is essentially an H-bridge

that controls the spin direction and step size for the stepper

motor’s voltage level using the following input pins.

• MS1 – Logic Input for the stepper step size. See truth

table below.

• MS2 – Logic Input for the stepper step size. See truth

table below.



18-500 DESIGN DOCUMENT: 12/08/2019 11

Fig. 15: Schematics for IR Man

MS1 MS2 Micro-step Resolution

L L Full Step (2 Phase)

H L Half Step

L H Quarter Step

H H Eighth Step

• STEP -Logic Input. Any transition on this pin from LOW

to HIGH will trigger the motor to step forward one step.

Direction and size of step are controlled by DIR and MSx

pin settings.

• DIR -Logic Input. This pin determines the direction of

motor rotation. Changes in the state from HIGH to LOW

or LOW to HIGH only take effect on the next rising edge

of the STEP command.

• ENABLE -Logic Input. Enables the FET functionality

within the motor driver. If set to HIGH, the FETs will

be disabled, and the IC will not drive the motor. If set to

LOW, all FETs will be enabled, allowing motor control.

Eventually, we adopted using Eighth Step to ensure that the

stepper motor is outputing the maximum amount of torque.

And the trade-off is that the motor is now 1/8 of the speed

comparing to the full step mode. The servo is controlled by

RPi’s PWM GPIO pins output signals.

In order to ”remember” the device locations, RPi write

all the device location map received from the device locator

server in a local file. Upon booting up, RPi would read this

file and restore the device location map. Furthermore, for the

device location to be accurate, RPi also needs to ”remember”

its own pose, so θ1 is also written to a local file every time

the IR Man moves. Upon booting up, RPi reads this file and

retrieve its current pose.

4) Scenario Modes: There are four predefined scenario

modes: quiet mode, go home mode, leave home mode, and

party mode.

Quiet mode has the following commands: Disco Light: Off,

AC: night mode, TV: Mute. Party mode has the following

commands: Disco: Strobe, TV: Volume Up. Go home mode:

AC: Power, TV: Power, Disco Light: White. Leave home

mode: AC: Power, TV: Power, Disco Light: Power. Upon

receiving the opcode for these modes, RPi runs the list of

commands one by one.



18-500 DESIGN DOCUMENT: 12/08/2019 12

D. Mechanical System

The IR Man mechanical system consists of the upper body

of the IR Man and the rotating base. Since the camera is

connected to the RPi with the flex cable that cannot be twisted,

the RPi has to be spinning with the IR Man. Thus, we put

every electrical components on the rotating base except for

the motor that is driving the rotating base. We also decided

to use a sprocket/chain system with a slip ring to drive the

rotating base because the wires connecting the RPi and the

motor could get twisted after the IR Man rotates a few cycles.

The slip ring makes sure that the wires are not twisted, and

the sprocket/chain makes sure that there is no slip between the

motor and the rotating base.

The motor is secured by using a motor bracket and a

L-shaped pattern bracket. The motor drives a small sprocket.

The large sprocket is secured on a steel tube, which is

supported by two pillow block bearing. The slip ring is

secured at the bottom of the steel tube to feed wires from the

motor, through the center of the steel tube, to the RPi on the

rotating base. In Fig 16 shows our progression from concept

to design, then to manufacture.

We 3D printed the IR Man upper body and secured it on

top of the rotating base by a carved wood base. The servo is

embedded into a cutout we made on one side of the upper

body and the arm is secured to the servo with hot glue gun.

The camera is placed on the chest of the IR Man and we

have two parallel IR sensor secured on the arm in order to

increase the signal strength and area that the signal covers.

VI. SYSTEM VALIDATION & RESULTS

For testing our components and the final product against

the our requirements, we designed the following test and

validation methods for each subsystems. And the results are

reported in the following sections.

A. WebApp Metrics Validation

WebApp: We recorded the latency of server to RPi

by inputting 100 IR MAN command messages sent from

server(webapp side) to 10 concurrent simulated RPi clients.

Each command consists of gathering information from

database and sending the message over network. For respon-

sive UI, we want the latency of WebApp be smaller than

500ms to pass the test. According to our system design, this

latency is subject to the network bandwidth, message size and

database access time. The average latency we got for the final

system layout is 24.41ms, with the difference between max

and min be around 6.5 ms (very small). According to our

result, the performance definitely goes better than the initial

bar we set.

IR Circuit: The success rate of Infrared circuit is recorded

for distances from 4 to 10 feets, with each IR command

operated for 3 times at each distance. The test input is the

IR signal sent from our IR MAN. We would like the overall

success rate to be 90% within the range of 4 to 10 feet since

typically people control home devices within this distance.

This success rate is subject the the strength of IR emission

and many environmental factors. For our 2-diode structure,

we found that IR worked 100% for 4-9 feet under different

lighting conditions. However, the success rate went to 75.2%

for 10 feet specifically. It seems that 10 feet is the limit of

IR capacity. Nevertheless, the average success rate is 96.5%

which exceeds 90%.

B. Motor Metrics Validation

Motor: We tested the motor position accuracy for stepper

motor and servo motor respectively by giving each 8 positions

and checking the difference between their rotation and the

expected result manually. We are not worrying about the built

up error for consecutive rotations as both stepper motor and

servo motor are not affected by that. The input of test is just

the expected location, and a passed test is the average error

being less than 5 degrees. The stepper motor turned out to

be very accurate, with no observable error. Servo motor has a

maximum of 2 degree off and a minimum of 0. The average

error for servo motor is 0.375 degrees. Test passed.

To test the time it takes for the motor to rotate to any

location, we first record the time it takes for a full rotation,

and then test the motor with 5 different device layouts. The

devices are located without overlap and at least 10 degrees in

between. At first we expected the time it take to be less than

2 seconds to be a passed test. However, this number could

not be reached for real-world implementation. By the nature

of stepper motor, faster the motor spins, smaller the torque

it outputs. If we want to move IR Man(which is heavy, over

750 grams), we need the motor to spin slower. The number

we got in the end is less than 3 seconds for each spin given

our layout of devices.

C. Device Locator Metrics Validation

Device Locator: To test the device locator accuracy, we

collected 140 photos with 0-4 devices on them as the validation

input. The initial requirement for validation accuracy of our

object detection model is set at 75%. This is because the

accuracy of YoloV3 model trained on standard dataset is

around 72%, and since we are only training 4 classes, we

expected a higher accuracy. The result we got was around

83.5%, with no false negative but a few false positives. It is

also shown in the results that our model does not work very

well under complicated environment with many interference.

This is probably because the variety of our training images is

not enough, which should not be a problem in our scope.

To test the single image transfer latency between device

locator server and RPi, we record the time for single image

transfer of camera-sized images for 10 times. Considering the

size of image and network bandwidth of websocket, we set

the goal of passed test to be less than 750 ms. The result we

got was an average of 612 ms, with max and min being 635

ms and 607 ms.

The error of the output position of device locator is quanti-

fied by collecting 10 samples of position output and checking

that with the actual center of the device. We would like the



18-500 DESIGN DOCUMENT: 12/08/2019 13

Fig. 16: From Concept to Design to Manufacture

Fig. 17: Mechanical Base of IR Man

output of device locator to have an error of less than 10 degrees

such that IR may still work in this range. The average error

is 2.74 degrees and maximum of error is 6.5 degrees. This is

because in certain frames only part of the device is captured,

and the calculated center of device can therefore be slightly

shifted. Nevertheless, the result is within our requirement.

Latency of a complete calibration is recorded starting from

the user sending command and ending at IR MAN receiving

the device positions from device locator server. We would like

the total calibration time to be under 3 minutes given that a

full calibration included latency of both software and hardware

operations. We ran complete calibration for 10 times and the

maximum time it took was 103 seconds. This seems to be a

special case since all other results are around 30 seconds. The

extra time was due to a especially crammed CPU workload.

Fig. 18: 3D Printed IR Man & Paint

Fig. 19: WebApp Testing Results



18-500 DESIGN DOCUMENT: 12/08/2019 14

Fig. 20: Motor Testing Results

Fig. 21: Device Locator Testing Results 1

Fig. 22: Device Locator Testing Results 2

We consider this a passed test.

D. Overall Metrics Validation

Fig. 23: System Testing Results

Device Operation: We are testing the success rate of user

device operation command by running 30 IR commands on

user webapp side with the correct device position information

manually stored. We would like the success rate to be over

90%. The actual result we got is 26 commands out of 30

working successfully, and the percentage is 86.67%. While

statistically we didn’t fulfill our requirement, we are aware

that 90% is just 27 out of 30 and that certain commands on

disco light is interfered by the lights it emits. We consider our

result as slightly off the requirement but not necessarily failed

the test.

The latency of user device operation command is tested in

the same way as we test the success rate, where we record

the time it take for an operation to be completed. Initially

we set the bar to be 3 seconds. The result we got was an

average of 3.107 seconds. This is associated with the motor

speed we discussed previously, and overall we think IRMan

is moving rather smoothly and actively in response to user

command. Therefore, although we did not pass the test, we

consider IRMan still in a good shape.

VII. RELATED WORK

We are well aware that the concept of ”smart home hub” or

”universal IR controller” is not new. In fact, the industry has

a selection of universal IR hub in the market right now. (e.g.

Fig. 24: Broadlink RM Mini3 Black Bean Universal Remote

Broadlink RM Mini3 Black Bean Universal Remote, as shown

in Figure 24) However, we consider our idea of integrating

the hub into a 2-DOF robot as rather pristine in that it solves

the problem of line of sight, as well as to avoid mistakenly

controlling unwanted devices, which lingers for the existing

designs of IR hubs. The design of ID from Iron Man also

adds a layer of fun and interactivity into this home device,

and can be meaningful to Marvel fans like us.

VIII. PROJECT MANAGEMENT

A. Job Distribution

Max mainly worked on the webapp server and the mechani-

cal structure of the IR Man. Shirley worked on the training the

machine learning model and finishing the device locator server.

Jiaqi mainly worked on the RPi client code: motor/servo

control, IR circuit and electrical integration. Please refer to

Appendix on the last page for our project management Gantt

Chart.

B. Budget & Bill of Materials

Please refer to Fig 25 for our final bill of material. And in

Fig 26 shows our AWS EC2 usage.



18-500 DESIGN DOCUMENT: 12/08/2019 15

Fig. 25: Bill of Materials

Fig. 26: AWS Usage

IX. CONCLUSION

A. Future Work

Up till now, our implementation of IR MAN only supports

manipulating 4 different types of IR devices. The servers are

only interacting with one IR MAN and the messages are not

well-encrypted for security. For future work, the first thing

we may do is to upgrade the IR code database such that

it supports a wider range of IR devices. The transmission

of IR codes is handled by the LIRC library, which already

incorporated a wide selection of existing IR devices. For those

that are not recorded, their IR codes can be easily collected

through IR receivers and LIRC library. We consider this a

very scalable feature of our database. The next step will be

enabling servers to work with multiple IR MANs. In fact,

this feature has already been implemented within our system

design, and we did not test it because we consider this feature

as not required for the scope of this course. Regarding the

encryption of messages, what we have now is including the

id of IR MAN as a basic proof of message validity. What we

may do in the future is to develop a unique hashing algorithm

which enhances the security of our messaging protocol.

To learn more about IR Man, the development process,

watch the project video, see more pictures and status updates,

please check out our project home page [4]. And stay tuned

for any future updates.

B. Lessons Learned

The first lesson we learned is that do not ever be unclear

in what we are about to do. To finish a project in time, we

should always have a clear structure in mind even if we

are changing our design in between. This does not imply

that we should always know the details of any specific

implementation, but that we should be clear about what are

the portions that are left to be filled in.

Another important lesson we learned is that the initial goal

should be set high, since reality can be fun of surprises and in

most cases, people will not be able to finish everything they

planed for in the beginning. We we do not aim high enough,

then we might not be able to complete even a reasonably

satisfying product.

Finally, we also realized that integration can take much

more time than we expected. One approach we found very

helpful is to keep a spread sheet which specifies the variables

and protocols to be shared between different modules. A

well-maintained sheet can significantly shorten the integration

difficulty.



18-500 DESIGN DOCUMENT: 12/08/2019 16

APPENDIX A

IR MAN GANTT CHART

Refer to Figure 27 for the Gantt Chart.

ACKNOWLEDGMENT

Thanks CMU ECE department for giving us the opportunity

to work on a capstone project and transform our knowl-

edge into real world applications. Thanks Prof. Bill Nace

for providing the course logistics and framework for us to

work efficiently on our project. Thanks Prof. Vyas Sekar

and Prof. Shawn Kelly for providing us lots of technical

support and advice during our development. Thanks Ranganath

(Bujji) Selagamesetty for providing us technical supports and

logistical supports and being a good TA/friend.

REFERENCES

[1] LIRC: Linux Infrared Remote Control Webpage
http://lirc.sourceforge.net/remotes/

[2] Jonathan Hui: Object detection: speed and accuracy comparison (Faster
R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3)
https://medium.com/@jonathan_hui/object-detection

-speed-and-accuracy-comparison-faster-r-cnn-r-fcn

-ssd-and-yolo-5425656ae359

[3] Google Spreadsheet: Bill of Material for IR Man)
https://docs.google.com/spreadsheets/d/1_w5oPxHe_

FYA4SagRiQoSDFtwuDNIX81X4zk4ygqV1Y/edit

[4] IR Man Home Page:
http://course.ece.cmu.edu/ẽce500/projects/f19-teamb1/



18-500 DESIGN DOCUMENT: 12/08/2019 17

Fig. 27: Gantt Chart for IR Man


