
18-500 DESIGN DOCUMENT: 10/03/2019 1

IR MAN
Design Document

for ECE Capstone Project
Max Bai, Shirley Zhang, Jiaqi Zou

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—IR MAN, a universal IR Controller on a raspberry
pi connected to remote web server, and also as an interactive hu-
manoid robot with 2 degrees of freedom (DOF) motion, computer
vision (CV) based object detection and IR control capabilities.
The Internet of things (IoT) element of this project is driven by
the convergence of multiple technologies such as machine learn-
ing, cloud services, commodity sensors, and real time embedded
systems, hence achieving the goal of remotely controlling your
household appliances via the internet. The following sections of
this paper elicit the motivation, architecture design, technical
requirements and testing metrics of this particularly innovative
approach to deploying this IoT Smart Home System (IoTSHS).
Using computer vision based approach, the system (IR MAN) can
effectively identify the exact location of the specified household
appliances and plan motion accordingly to point the IR emitter
directly at it before emitting its corresponding IR commands. The
proposed IoTSHS will be designed, programmed, manufactured,
integrated and tested in the format of specifications in this paper.

Index Terms—IR Control, Computer Vision, Internet of
Things, Robot Dynamics, AWS Deployment, Home Appliances,
Smart Home

I. INTRODUCTION

THE ”Internet of things” (IoT) is becoming an increasingly
growing topic of conversation in the entire tech industry.

With Broadband Internet becoming more and more accessible,
the cost of connectivity is dramatically decreasing and mobile
devices like smartphones has a sky-rocketed its penetration to
the market. All of these things are creating a ”perfect storm”
for the IoT. However, many of our current household Infrared
(IR) controlled appliances are ”traditionally dumb” devices
that are not internet capable. Thus, the problem arises when
we aspire to come up with a scalable approach to empower
these devices with IoT capabilities under affordable cost and
extensive add-on values.

Have you ever ran into the problem of not being able to
find that remote control lying somewhere under the couch
to turn on your TV? Or too many remote controls and you
dont know which one correspond to which device? Have you
imagined being able to turn on your AC just before you
got home on a hot summer day? With so many domestic
appliances controlled by IR remote control, we decided to
create IR MAN to make our life easier by designing a smart
IoT IR Control Hub that allows your smartphone to remotely
control all the traditionally dumb or non-internet-enabled IR

domestic appliances. The solution proposed in this paper, IR
MAN, aims to solve the aforementioned problems such that
the remote control is truly remote and all home appliances are
automatically upgraded to IoT devices with minimal cost. And
more importantly, IR MAN is an interactive humanoid robot
that actively locates the household appliances in your house
using computer vision (CV) and plans motions accordingly
to reorient the IR emitter in order to accurately shoot the IR
command signals at it like a real Iron Man.

Fig. 1: Physical Design for IR MAN

II. DESIGN REQUIREMENTS

A. Software Requirements

The main requirement of our product is latency and user
experience: users need to be able to control IR devices
successfully and quickly. With regard to this principle, we
specified requirements for each components separately.

For the webapp server, the UI interface should be
responsive. Moreover, the webapp to server connection
latency should be less than 500ms, which ensures that there is
little to no delay between the time when user pressing a button
on the webapp and the time when IR signal reaches the device.

18-500 DESIGN DOCUMENT: 10/03/2019 2

Fig. 2: System Architecture for IR MAN

In terms of the device locator server, we expect the major
latency to be sending the image over websocket connection
and actually running the object detection model. For the image
transmission, we are aiming at a latency less than 500ms. For
the overall device locating pipeline, we are aiming for less
than 3 minutes, knowing that we plan to take 72 images for
one round and the processing throughput of project detection
model on CPU is around 1 image per second after heated
to appropriate temperature, and that the first few images is
going to take way longer. This computer vision process only
needs to be done when the device is being set up. Since user
only has to do this only once, we think that the 3 minute
requirement does NOT affect user experience. The accuracy
of the resulting estimated device location needs to be within
10 degrees of the actual device location. Moreover, for the
object detection algorithm, we intend to achieve a validation
accuracy of more than 75%.

B. Hardware Requirements
There are mainly two hardware components in our project:

the IR circuit and the motors. For the IR circuit, we are aiming
for greater than 90% success rate of controlling IR devices
using our IR circuit under different circumstance, such as
lighting and relative location of the IR device to the IR circuit.

For the motors, given a specific pose, the motors needs to
be within 5 degrees of the correct pose. This is because we
are taking 72 images for 360 degree, which means each image
covers 5 degree. And for the sake of latency, time it takes from
a random pose to reach the desired location should be under
2s.

C. Overall Requirements
In terms of the user experience of our whole system as a

final product, we want to be able to achieve the following

requirements. Time that it takes for any IR signal command
needs to be sent in less than 3 seconds. And the average
success rate of controlling all IR device needs to over 90%.
The time to run the complete computer vision device locating
service should be under 3 minutes. And the accuracy of each
device location needs to be within 10 degrees of the true
location.

The general design of the whole system is illustrated in
the system architecture diagram in Fig 2. From the user end
to the device end, we have the following major components:
the webapp server which handles all the user interactions,
the device locator server which handles computer vision
inferences, and a Raspberry Pi that controls all the peripherals
and websocket connections. Both of the two servers are
running on the cloud. User can log into the webapp, find a
list of all IR devices, and go to the control panel of a specific
device and control the device just like a remote controller.
The device locator server receives video stream from RPi and
runs object detection algorithm as a backstage process. The
Raspberry Pi will be interfacing with the camera modules, IR
circuit and motors and motor controllers.

On the IR Man device, an RPi is used as the control
hub for motor, camera and the IR Circuit. Upon first-time
calibration, RPi sends frames from camera module to device
locator server as the robot spins. The device locator gets
back the corresponding device locations and RPi stores these
locations locally. Upon a new button press, the RPi starts the
motor to point to the specific device and then send the IR
signal through the IR Circuit. The motor controls the pose
of the robot and the IR Circuit sends any IR signal from
RPi. There are several communication pathways in the system:

18-500 DESIGN DOCUMENT: 10/03/2019 3

1) From webapp server to RPi: The webapp server to
RPi communication handles the following kinds of requests:
(1) user presses a button on Webapp to control a specific
device, (2) user orders IR Man to find device locations. The
communication protocol includes an opcode to identify the
request type and specific content of the request. For the first
kind of request where a user presses a button, the message
includes the brand and type of the device, and the button
name and the control signal hex code. For the second type of
request, the messages includes the list of devices to search
for in the room.

2) From RPi to device locator: When user instruct the
IR Man to search for device locations, RPi sends the video
stream to device locator on AWS as following bundle:
(frame, θ1, θ2). This bundle identifies the objects that the
RPi is seeing at different pose. The frame is sent using
ImageZMQ, an image serialization protocol. We adopted
ImageZMQ because it is a high-performance asynchronous
message passing library for many distributed systems. We
chose to use ImageZMQ because it has the least memory
copy, which helps with latency. With this library in place,
our RPi will be able to transfer the images and stream videos
with OpenCV over the network with a smaller latency and
higher throughput.

3) Between RPi and camera: The camera module we
adopted is Raspberry Pi’s official product, the Camera Module
v2. The connection to RPi is very straight forward, which is
to connect the 15 pin FPC directly with the dedicated CAM
socket on Raspberry Pi. It attaches to Pi by way of one of
the small sockets on the board upper surface and uses the
dedicated CSI interface, designed especially for interfacing to
cameras. With 8 megapixels of still resolution and 1080p30,
720p60 and 480p90 for videos. Its horizontal field of view of
62.2 degrees and vertical field of view of 48.8 degrees will
allow a better accuracy for our device locator algorithm since
the accuracy was previously limited by the number of frames
provided, dictated by the network bandwidth. However, with
wider field of view, the possibility of target objects appearing
in each frame is larger, thus reducing the amount of frames
to be transmitted over the network.

4) Between RPi and IR circuit: The IR circuit is composed
of IR LEDs and MOSFETs. The MOSFET is a voltage
controlled current sources that dictates the ID that flows
through it. The ON and OFF of the MOSFET is controlled
by one of the programmed GPIO pins on Raspberry Pi. The
specific ON/OFF PWM signal is generated using an open
source IR signal database called LIRC that collected almost
all brand’s IR signal protocols. The protocols are enclosed in
some hex codes representing bitmaps of ON/OFF levels in a
given duty cycle. This database works with LIRC [1] (Linux
Infrared Remote Control) package on RPi, which is capable of
wrapping up the above process with command line arguments.
We will be using an Open source IR remote control library:
LIRC to controls the IR circuit. The IR Signals can also be
retrieved from this library.

5) Between RPi and motor: In order to support the required
motion of IR MAN, we need our RPi to control both a stepper
motor and a servo. After the aforementioned computer vision
based device locator algorithm returns the device location in
terms of (θ1, θ2). θ1 represents the target position of the motor
in the chassis base. θ2 represents the target position of the
motor in the arm of IR MAN. Our RPi will then run a motion
planning script we wrote to drive the motor/servo to the target
position specified by (θ1, θ2). To control the stepper motor
from RPi, we acquired a separate controller board called ”Easy
Driver” from SparkFun. The driver is essentially an H-bridge
that controls the spin direction and duty cycles for the stepper
motor’s voltage level.

18-500 DESIGN DOCUMENT: 10/03/2019 4

Fig. 3: System Interaction for IR Man

D. System Interaction

To understand how the system components interact with
each other, we introduce two major system interaction in our
system: (1) user presses a button on the control panel in
the webapp to control the IR device. (2) user orders the IR
Man device to find the location of all IR devices. These two
interactions are illustrated in System Interaction Diagram in
Fig 3 using two different colors of arrow: red arrows for button
press, green arrows for locating devices.

1) Button Press: The user send the button press HTTP
request to the webapp server, upon receiving the request, the
webapp server fetch the button information from the database
server, which includes the device name, the device type, the
protocol name, the button name, the button hexcode. The
webapp server then find the user’s IR Man device websocket
connection by the IR Man device’s hashcode. The button
information is sent to the RPi over the websocket connection.
Upon receiving the button information from webapp server,
RPi extract the device name and find the predetermined device
location, then it controls the motor module to move to correct
pose for the device, so that the IR sender points to the device.
Finally, RPi sends the control signal to the IR circuit.

2) Locating device: Before user can use the IR Man to
control any IR devices, the IR Man needs to find the device
locations in the terms of (θ1, θ2) as the pose for the tow
motors. This bootstrap step also needs to be done whenever the
user moves the IR Man to a new position. When user presses
the ”look for device” button on the webapp, the webapp
server sends the list of user’s IR device to RPi to search
for these devices in the surroundings. The Rpi starts to spin
the motor and send the video stream to the device locator
server. The device locator server sends back specific location
for each device to RPi. These locations are stored in non-

volatile memory so that Rpi ”remembers” the pose for these
devices for future uses.

III. SYSTEM DESCRIPTION

A. Webapp Design

For the webapp, we need to handler user authentication,
adding new devices, choosing devices and button press. The
following is the user interaction diagram and routing table for
the webapp.

Fig. 4: Routing Table for the webapp

18-500 DESIGN DOCUMENT: 10/03/2019 5

Fig. 5: User Interaction Diagram for the webapp

For the object diagrams we have the following objects:
User, UserDevice, Device, IRman and SignalSender. All
these objects are stored in the database.The User object keeps
track of the UserDevice and the IR Man device each user
has. The Device keep tracks of the device information: what
buttons does this device have and the their specific signals.
The UserDevice has reference to its Device. For example, 5
users might be using the same Dell TV, and there is only
one dell TV Device object to keep track of all the Dell TV’s
buttons. There are 5 different UserDevice that represents
each user’s dell TV. The signal sender keeps track of all
connections to all RPi’s and handles sending signal to RPi.
Upon button press, the webapp would delegate the signal
sending procedure to this object.

Our front-end user interface looks like the Fig 7, which is
the displaying the all the devices for an user. The authenticated
user can also control registered devices on this portal.

B. RPi Hardware Peripherals And Schematics

Our RPi controls all the additional hardware peripherals,
namely the IR circuit, EasyDriver connected to a Nema
Stepper Motor, a servo and a camera. Refer to Fig 9 on the
next page. Details description of the schematics can be found
in Section V.B and V.D Implementation Plan and tools.

C. Computer Vision Pipeline

The computer vision(CV) pipeline mainly consists of 3
stages: pre-processing stage, image inference stage and post-

Fig. 6: Webapp Object Diagram for the webapp

Fig. 7: User Interface for the webapp

Fig. 8: Image Pre-processing Pipeline

processing stage. Pre-processing prepares the gathered raw
frames such that they may be fed into neural network in the
right form. During the inference stage, the processed frames
are fed into neural network, and produce outputs containing
information of device location and device type on frame. After
all frames are inferred, the gathered data then run through the
post-processing stage, outputting device locations in the form
of motor angles.

1) Image Pre-processing: The pre-process stage consists
of image resizing and normalization, and are to be performed
respectively on RPi and remote server. Reason for such ar-
rangement and resulting network protocols(ImageZMQ) have
been discussed above, and therefore will not be explained here.
The resized images will be in the ratio of 16:9 (in proportional
to the original 1080p frames), and after normalization, pixels
will be in the form of intensity values ranging from 0 to 1.
Therefore, each image will be in the form of a matrix of
size 3×height×width, where 3 stands for 3 colour channels,
containing floats in the range of [0, 1]. Refer to Figure 8 for
the image pre-processing pipeline.

18-500 DESIGN DOCUMENT: 10/03/2019 6

Fig. 9: Schematics for IR Man

2) Object Detection Algorithm: Just like the well known
metaphor suggests, it is best to view the neural network
framework as a bootstrapped blackbox. It is not necessary
to understand what each layer is doing in the algorithm for
the sake of our project, so we’ll skip the hideous part and
introduce the output instead. In OpenCV, The output of one
image through object detection model will consist of 3 types
of information: tag of the detected object, confidence of this
result, and the bounding boxes of the detected object (in terms
of upper left and lower right anchor coordinates). In case of
multiple devices in one image, by default the output will be a
list at the size of 100, each containing a piece of information of
a possibly detected device, or -1 if no more device is detected.
This size of output is a set value in OpenCV, and not to be
changed.

3) Data Post-processing & Location Parsing: This step is
to be performed only after all frames had been fed into the
neural network model and output data collected. Since each
frame has its corresponding motor positions(θ) transferred
together, we can find the median value of those motor positions
where a specific device (outputs with the same tag) shows up,
and can take it as the correct orientation for this device. Note
that we will only take outputs with confidence bigger than 0.5
into calculation. This threshold is often chosen as a standard
approach in industry. Refer to Figure 10 for the image post-
processing pipeline.

IV. IMPLEMENTATION PLAN AND TOOLS

A. WebApp Server

For the webapp server, we are using Express.js and Node.js
as the web framework and MongoDB as the database server.
For front-end, since we don’t have dynamic content, we are
simply using HTML/CSS and ejs. For user authentication, we
are using Passport.js to handle user registration and logging
in/out. The webapp server is going to be deployed to AWS
EC2. We are writing all the routing logic, front-end inter-
faces, back-end logic, the communication protocl to RPi by
ourselves. We plan to first implement the MVP webapp server
on localhost before deploying it to EC2, since we only 750
hours per month on EC2, and we want to save that time for
later system integration/testing and project demo.

B. IR circuit

The IR circuit is composed of an IR LED and a MOSFET
that dictates the ID that flows through it. The ON and OFF of
the MOSFET is controlled by one of the programmed GPIO
pins on Raspberry Pi. When that GPIO pin outputs a 3.3V ,
that voltage level will be immediately fed into VGS , which
turns on the MOSFET, hence allowing current to flow through
the IR LED, vice versa. The specific ON/OFF PWM signal
is generated using an open source IR signal database called
LIRC that collected almost all brand’s IR signal protocols.

18-500 DESIGN DOCUMENT: 10/03/2019 7

Fig. 10: Image Post-processing Pipeline

The protocols are enclosed in some hex codes representing
bitmaps of ON/OFF levels in a given duty cycle. This
database works with LIRC (Linux Infrared Remote Control)
package on RPi, which is capable of wrapping up the above
process with command line arguments.The IR circuit is going
to be designed, built, soldered and tested by ourselves. We
will acquire the IR LED Diodes, MOSFETs, resistors and
other basic electronic components from CMU ECE’s circuit
labs.We will be using an Open source IR remote control
library: LIRC to controls the IR circuit. The IR Signals can
also be retrieved from this library.

C. Computer Vision

To make sure that IRMAN recognizes the specific devices
we provide, we will need to train our own object detection
network with customized dataset and tags. In this case,
we will not be constructing the neural network framework
from scratch, but use Darknet, a pretrained neural network
framework, and YOLOv3 configurations to further train it.
The training process has been wrapped up cleanly and could
be done through simple command line arguments under
python openCV environment. What we need to provide is the
dataset of images containing devices, with their location and
category annotated in required format. This dataset will be
collected through taking photos and acquiring existing photos
from Google’s OpenImagesV4 dataset.

D. RPi motor control

The motion of the IR Man is controlled by a stepper motor
and a servo. The stepper motor is controlled by a motor
controller board called EasyDriver acquired from SparkFun.
The EasyDriver is compatible with anything that can output
a digital 0 to 5V pulse. The EasyDriver requires a 9V to
30V supply to power the motor and can power any voltage
of stepper motor. The EasyDriver has an on board voltage
regulator for the digital interface that can be set to 5V or 3.3V,
which would work perfectly on our Raspberry Pi. Since Nema
Stepper Motor 17 is a bi-polar motor, it has 4 wires coming
out that goes into the EasyDriver. Each pair corresponds to
controlling the inductor coil. On the other hand, EasyDriver
has 5 pins that connects to the RPi, which are STEP, DIR,
MS1, MS2 and ENABLE. In particular, MS1 and MS2 pins

broken out to change micro-stepping resolution to full, half,
quarter and eighth steps (defaults to eighth), which can provide
us precision turning. For the servo connection is a lot more
straightforward. It connects a 5V, ENABLE and GND to the
RPi.

E. Mechanical Design

For the mechanical design, we have thought of the
following ways around the problem with wiring around a
rotatable base. The IR circuit and camera are mounted on the
body of the IR Man through wires. The camera, in particular,
is connected through FPC cable, which is not twistable at
all. The first step into solving this is to have our RPi sit on
the same platform as IR Man figurine so that the IR Circuit
and the Camera should stay in place with respect to relative
position. Now the problem is how to go about the wiring
interface between our RPi and the Nema stepper Motor that
is not rotating with the RPi. We came up with the following
approaches.

1. Have the Nema Motor sit upside down. In this way,
the base of the motor is attached to the rotatable chassis
and wires between RPi and Motor would no longer be a
problem. (This would require Software changes and extra
control algorithms to ensure accuracy)

2. Using a gear train to make the shaft spin off-centered
from the round chasis and use a slip ring in the center of the
chassis to solve cable entanglement issues.

3.Use an extra nRF24L01+ 2.4GHz transceiver module
to enable wireless communication between an RPi and
Arduino. While the RPi is spinning on the chassis with
IR Man, it sends the command to an Arduino that drives
the Nema Stepper Motor and not spinning. Since cables
are eliminated, the problem is solved. (Extra Hardware
Components. Complicated Wireless Communication with
added latency. A separated software stack to be added that
adds significant complexity to the system.)

18-500 DESIGN DOCUMENT: 10/03/2019 8

Fig. 11: IR Man SolidWorks CAD

V. METRIC AND VALIDATION

For testing our components and the final product against
the our requirements, we designed the following test and
validation methods referring to the metrics in the following
table.

Fig. 12: IR Man Metrics and Testing

A. Component Testing

1) Webapp server: We plan to test the webapp server by
unit testing by seeding the database with simulated users and

devices. To test the responsiveness of the user interface, we
plan to manually test the webapp. Another approach is to use
UI testing framework, however, since our webapp is simple
enough to be manually tested, automated UI testing framework
seems like an overkill. For the latency between the webapp
server and RPi, we are planning using timestamp to measure
the latency and stress testing the system using 10 simulated
users and 3 RPi.

2) Device Locator: For the validation accuracy, we intend
to manually set up training dataset of labeled IR devices.
After we trained our CV model, we need to test it against
our validation set. For the latency of video streaming, we are
planning to have 5 simulated video stream transmission to the
server and use timestamp to keep track of the total time for
all the images to reach the server. For the overall CV pipeline
testing, we would set up three different IR devices: TV, fan
and AC in the room and measure the total time it takes to find
these device locations and the accuracy of the device locations.
We would run this test for 5 times, each time moving these
devices to a different location and use different background
environment.

3) IR circuit: For the IR circuit, we plant to test the success
rate of IR signal transmission by taking the average success
rate of 5 tests. Each time, we would find 5 different IR devices
of different device brands and device types, preferably using
different protocols, to make sure that our product supports
most of the IR devices currently in the market.

4) Motor Control: We plan to test the accuracy and speed
of motor control by generating a sequence of 20 random pose.
For each run, the motor needs to be within 5 degrees of the
final destination, and the total time that it takes to reach a
specific location should be less than 500ms.

B. System Testing

We plan to test our final product against the following user
story sequentially:
1. User register new account and IR Man device.
2. User add new IR devices to IR Man.
3. IR man scans the environment, locate all devices location.
4. User gets a list of devices to choose from.
5. User chooses a single device and goes into the device
control panel.
6. User press a button on the control panel.
7. IR man point to the device and shoot out the IR signal to
device.

Similar to testing the device locator, we would conduct this
test 5 times under different backgrounds. Each time we would
use three IR devices at different locations.

VI. DESIGN TRADE STUDIES

A. IR Circuit Design

A valid concerns has been raised during our design ideation
and the peer review. Some peers mentioned that having a ring
of IR emitters to broadcast IR signals instead of having having
the IR Man turn to the direction of a specific device. Although
a ring of IR emitters would cut down system complexity by a

18-500 DESIGN DOCUMENT: 10/03/2019 9

lot, it is at risk of signal cross interference and uniqueness in
design. Firstly, a lot of IR controlled devices of the same brand
might be controlled with the same IR signal. For example, it
might not be user’s intention to turn on all of his Dell devices
at the same time. Therefore, a ring of IR emitters broadcasting
IR signals in all direction would cause unwanted behaviour of
the system. Thus, we want to have the IR Man turn to the
specific location of the IR device and pinpoint that control
signal without affecting other IR devices. Another concern is
that having the IR Man drive its motors based on computer
vision is a unique solution to the problem and we want to
keep it that way since it is an interesting engineering problem
to solve with lots of added value like line of sight, product
differentiation and interactivity.

B. webapp server to RPi connection

For the connection from the webapp server to various RPi,
we chose to use websockets, because websockets enable the
server and client to send messages to each other at any time,
after a connection is established, without an explicit request
by one or the other. This is crucial to our system because we
are building a real time system: the webapp server could be
sending requests to RPi at any time. In a challenge-response
system, there is no way for clients(RPi) to know when new
request is available for them. The only similar implementation
is RPi polling the webapp server periodically, but that’s not
exactly what we want. Thus, this connection is established
through websocket.

C. Image from RPi to device locator

Since we have requirements for the overall time of finding
devices, and that the computer vision inference takes most
time, we need to cut down the time it takes to transmit the
images. In order to send the video streams from RPi to the
device locator server, we need to serialize and de-serialize the
image frames. We plan to use ImageZMQ over websockets
to achieve faster image transmission.

One thing to note is that the input frame size for the neural
network model is not decided yet, in that we are not sure how
much we shall trade resolution (possibly related to validation
accuracy) for speed. This is to be decided after testing and
benchmarking CV pipeline with different input frame sizes.

D. Webapp Server and Device Locator Server

Instead of one server that handles everything, we plan to
have two servers: the webapp server and the device locator
server. We choose to separate these two servers because
they have fundamentally different functions and there is no
communication between these two servers. This is also a
scalable design, once the system grows larger, we can just
scale these two kinds of servers separately.

E. Front End User Interface

We choose to develop our front end user interface on a
webapp instead of an iOS or Android app because we want

to have a platform independent solution. Although a webapp
possesses a lot of limitation in terms of performance and
feature access through user’s native device, and might not
provide the best possible user experience, we still choose this
to be our approach for the final front end user interface because
it is relatively easy and fast to deploy. Given the limited time
and resources we have for this project, the best way, under
our careful consideration, to support all the user features for
the largest audience is through a webapp.

F. Robotics Motion & Dynamics
We decided to incorporate the robotics motion and dynamics

feature in this project early on in ideation phase mainly for two
reasons. There has been found lot of universal IR devices on
the consumer market, and when we were asked the question,
”what makes your project different from that of the others”,
we immediately delved into a brainstorm process for product
differentiation. Since our project has to do with IR signals, and
all of the team members are Marvel’s fan, we thought of using
Iron Man’s figurine as our chassis and re-engineer Iron Man’s
gauntlet glove into a IR emitter device, and call it the ”IR
MAN” instead. The clever pun led us into an elaboration of
robotics motion and dynamics. Some peers have questioned
the purpose and given us feedback about the robotics part.
There are indeed many ways to place the IR diodes, namely
put a ring of IR diodes on the chassis to send out the same IR
signal in all directions, but we decided to put it in the center of
IR MAN’s gauntlet and plan motions accordingly to aim the
IR emitter directly at the target device. This would solve the
line of sight issue, as well as reducing power consumption
of the system. This robotics approach adds another layer
of computer vision and dynamics control complexity to the
project. However, not only does it make IR MAN unique,
but also makes it more fun to interact with. In addition, the
decision to use a servo as opposed to a second stepper motor
is because of weight concerns. The servo is relatively light
and can be easily mounted on the body of IR Man.

G. Image Pre-processing
Knowing that the input of camera feed is fixed at 1080p

(1920×1080 pixels), and that the input for image inference
does not require resolution at this level, we decide to divide the
image pre-processing phase into 2 sections, and perform them
on different platform. Pre-process of a frame before inference
typically consists of resizing the image and normalizing the
channel values. The previous phase shrinks the size of an
image while the latter part expands the size by changing the
data size of color channel from int8 t (a byte) to float (8
bytes typically). Therefore, knowing that all frames are to
be transferred from RPi to a remote server, we decide to
run image resizing on RPi before image transfer, and image
normalization on remote server, such that the image to be
transferred is in its smallest size, and the transferred speed
maximized under limited network bandwidth.

H. Computer Vision & Neural Network Framework
Due to the limited computing power on the RPi, we decided

to run our computer vision module on a remote server. The

18-500 DESIGN DOCUMENT: 10/03/2019 10

object detector we chose is YOLOv3. Reason that we pick
this model out of many others is that it balances accuracy
and inference fps better than the other popular models.

Fig. 13: Accuracy of popular models compared upon PASCAL
VOC 2007 and 2012

Fig. 14: Inference FPS of popular models compared upon
PASCAL VOC 2007 and 2012

It is shown in the graph that validation accuracy doesn’t
deviate much between models, but YOLOv3 has a large space
between its upper and lower limit of inference speed, which
means we would be able to tune our image size and control
the trade off between speed and accuracy.

VII. PROJECT MANAGEMENT

A. Schedule

Refer to Gantt chart is in Appendix A.

B. Team Member Responsibilities

Max is responsible for doing all the web application design
and deployment. Jiaqi is responsible for doing all the hardware
design and implementation. Shirley is responsible for doing all
the Computer vision related design and development, as well
as server side of object detection. This is a crude assignment,
and during development process, teammates will help out each
other if necessary.

C. Budget & Bill of Materials

Here is our current bill of material excluding rentals fees of
AWS EC2 GPU instances.
The most updated bill of materials can be accessed through
our Google Spreadsheets [3].

Fig. 15: Bill of Materials

D. Risk Management

1) Camera stabilization: When the robot spins around
sending video stream to device locator, the camera may suffer
from jitter and turbulence. If so, we need to change our
implementation: let the robot turn for a certain degree, take a
photo after it stabilizes and then turn again...

2) Websocket connection: The current design uses a single
websocket as the connection between the webapp server and
all the RPis. This might not be an issue, as the requests sent
to the RPi are limited in size. However, The current design
also uses a single websocket to handle video streaming from
all RPis to the device locator server. Thus, if we have more
than a few RPis sending video stream to the server at the
same time, latency could become an issue. Thus, we need to
find a more scalable solution if necessary.

3) Device Locator Usability: The current design uses
computer vision to identify the IR devices in the surroundings.
It finds the location for TV, AC, fan by object detection.
However, in case where the CV methods are not ideal, then
we plan on letting the user directly control the robot to point
to the devices through the webapp. This meant that we need
to change the communication protocol between webapp server
and RPi and supporting video streaming on the webapp server.

4) Budget Constraint Risk: We think that budget is a risk
factor because $600 is allowed for the entire project and any
replacement for broken parts would cause major problems in
proceeding the project from moving forward. To mitigate this
risk, we decided to reuse any of the parts in the ECE inventory
before acquiring them externally.

5) Test Device Risk: We are planning to find 5 IR devices
to test our product. It could be difficult to find these devices
to test. We currently have an AC, two TVs and a lamp. If we
are unable to find enough IR devices to test, we might need to
borrow or buy some low cost test devices: speaker, fans, etc.

18-500 DESIGN DOCUMENT: 10/03/2019 11

APPENDIX A
IR MAN GANTT CHART

Refer to Figure 16 for the Gantt Chart.

ACKNOWLEDGMENT

Thanks CMU ECE department for giving us the opportunity
to work on a capstone project and transform our knowl-
edge into real world applications. Thanks Prof. Bill Nace
for providing the course logistics and framework for us to
work efficiently on our project. Thanks Prof. Vyas Sekar
and Prof. Shawn Kelly for providing us lots of technical
support and advice during our development. Thanks Ranganath
(Bujji) Selagamesetty for providing us technical supports and
logistical supports and being a good TA/friend.

REFERENCES

[1] LIRC: Linux Infrared Remote Control Webpage
http://lirc.sourceforge.net/remotes/

[2] Jonathan Hui: Object detection: speed and accuracy comparison (Faster
R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3)
https://medium.com/@jonathan_hui/object-detection
-speed-and-accuracy-comparison-faster-r-cnn-r-fcn
-ssd-and-yolo-5425656ae359

[3] Google Spreadsheet: Bill of Material for IR Man)
https://docs.google.com/spreadsheets/d/12K-8
_Rmk1GgIzw4O3nj8dHEQQZHdu0VqMjXnk-BmZIE/
edit?usp=sharing

18-500 DESIGN DOCUMENT: 10/03/2019 12

Fig. 16: Gantt Chart for IR Man

