


Application Area

Lots of IR remotes? Why not some fun with robots



User Story 
Flow Chart

Start

Have Set up?
Connect 

Webapp to 
Hub

User Input 
Appliance 
Brand + 
Model

No Find 
devices

Rotate 360° to 
use CV to 

remap space

Yes

WebApp 
Commands?

Up-close 
Commands?

(Voice - Touch)

Return 
Home for 
Standby

No 

Drive Both 
Motors to point at 
House Appliance

RPi process Voice 
Commands 

Read 
Unsuccessful

Transmit IR 
Signals

Yes

Yes
Default Choice

Optional Choice

Security Camera
Yes

Drive Motors upon 
Received 

Commands

Turn on Video 
Feed

Store User Info on RPi Flash Storage 

Optional

Optional



Solution Approach

TODO: why do we take this approach, why not other alternatives?

1. Why IR? Remotely control current dumb device in a scalable manner.
2. Why robot? It’s fun and interactive and no one has done it before.
3. Why CV? It’s more technological savvy and delivers better result.
4. Why WebApp? Independently of platform with universal access.
5. Why IR MAN? Keep Calm, we are almost gone!

Webapp Server
Device Locator Server RPiUser

Command

Control Signals

Video Stream

Device Location

● Web App: 
○ We want to be able to control 

our IR device remotely
○ Accessible across all platforms

● Device Locator Server: 
○ Find IR device locations with 

Computer Vision

● RPi: 
○ 2 DOF Robot
○ Motor Control: point 

to IR device
○ Send out IR signal 

to IR Circuit



System Architecture



System Interaction



Software Design URL Path Usage

GET/POST /login /logout User login/logout

GET/POST /register Register new user

GET /devices Display user’s device list

GET/POST /devices/new Add new devices

GET /devices/:id Go to device control panel

POST /send/:id Send signal to RPi

... ... ...

Webapp Routing Table

Webapp Object Diagram

On RPi

CV Pipeline



Hardware Schematic
IR Circuit

Motor Control Camera



Implementation Plan
● Web App: 

○ Node.js Express.js MongoDB for backend, passport.js for authentication
○ deploy to AWS

● Motor Control: 
○ Sparkfun EasyDriver as stepper motor controller
○ NEMA stepper motor 17

● IR Circuit
○ AVR TCON Chip Programming for PWM signal for controlling 

MOSFET/Diode
○ LIRC for IR signal database

● Computer Vision: 
○ OpenCV for image streaming, ImageZMQ for image serialization 
○ YOLO v3 for object detection, OpenImages V4 as training data



Metric and Validation: component testing 
Component Requirement Testing Method

WebApp Responsive UI Unit testing, manual testing on laptop/phone/tablet

WebApp Server to RPi latency under 
500ms

Timestamp, stress testing with 10 simulated clients and 3 
RPi

IR Circuit success rate of 90% Avg success rate of all signals from 5 different 
devices/protocol under different environments,

Motor ± 5 degrees of correct pose
Time to specific pose < 1s

sequence of 20 random motor commands(θ1,θ2)

Device 
Locator

Image validation accuracy > 
75%

Manually set up training datasets, test against validation 
set.

Device 
Locator

RPi to server latency < 500ms 5 simulated video stream transmission to server

Device 
Locator

± 10 degree of the correct 
pose for each devices,
Total time < 3 mins

5 test video stream runs in different 
environment with TV, fan, AC…)



Manual testing of user experience: 
User register new account and IR Man device,
User add new IR devices to IR Man,
IR man scans the environment, locate all devices location, 
User gets a list of devices to choose from,
User chooses a single device and goes into the device control 
panel,
User press a button on the control panel
IR man point to the device and shoot out the IR signal to 
device.

Metric and Validation: system testing 

Requirements: 
Locating devices takes < 3 mins,

Find correct pose for all devices,

Avg success rate of IR control > 90 %,

Latency of IR commands < 2s

Risk: 
What if CV based device locator does NOT work as expected:
Display the IR Man video stream on WebApp and let user control the robot to point 
to specific device



Project Management


