

Carrel Corral

A4: Charlotte Deiss and Alisha Mayor and NOBODY

Background

Problem

Finding study space at Hunt Library is a frustrating challenge, especially in the study carrels on the 3rd floor.

Solution

Engineer a low power system that shows live table availability, accessible via a mobile app.

Use Case

- Providing a reliable system to check space availability in Hunt Library, both remotely and in person
- Mapping study spaces to track desk use and assist library staff
 - Aggregating and providing data on traffic and volume
 - Notifying library staff to clear desks with belongings left unattended for long periods of time
- ECE Areas:
 - Mobile App Software Systems
 - Sensor System Hardware Systems

Research

- Mapped usage of the library at several different times of day
- Conducted a user study to find students' preferred format of availability mapping

of study carrels were "reserved" by a student's belongings without the student being present

- Analyzed existing systems i.e. parking garage sensor systems
- Testing the effectiveness of several sensor combinations

Requirements

Technical

- 90% accuracy of the sensor system
- Max delay of 1 minute for LED indicator to update occupancy change
- Max delay of 5 minutes for app's displayed availability

Visual

- Non-intrusive and visually straightforward mapping
- Seamless integration of physical system in the library and mobile system with Andrew ID authentication

Solution Approach – Overall

- Physical system
 - Array of sensors mounted on the ceiling, above each study carrel
 - Sensors communicate with a low power sensor hub that aggregates and delivers data to the mobile app over WiFi
 - LED indicators: red (occupied) or green (available)
- Software system
 - Mobile app -- most accessible mechanism for students on the go
 - Secured with Andrew ID authentication

Solution Approach – Sensor System

- Combination of thermal and proximity sensors
 - Passive infrared sensor
 - Ultrasonic proximity sensor
 - Capacitive proximity sensor
- Capabilities:
 - Detect the presence of a person in an single carrel
 - Detect the presence of belongings on the desktop without a person present
- Still researching and analyzing the cost effectiveness and accuracy of dozens of sensors

Testing, Verification, and Metrics

Out of 100 tests:

- False positives and negatives should be less than 10
- Average update time is 60 seconds for the LED and 5 minutes for the app map

Based on a user study:

• App's user interface must be intuitive, accurate, and accessible

Tasks and Division of Labor

Tasks

- Research sensors and conduct user studies
- Design sensor hub
- Create a budget for equipment
- Design and create the iOS app
- Build and test the hardware
- Integrate the hardware and software portions of project

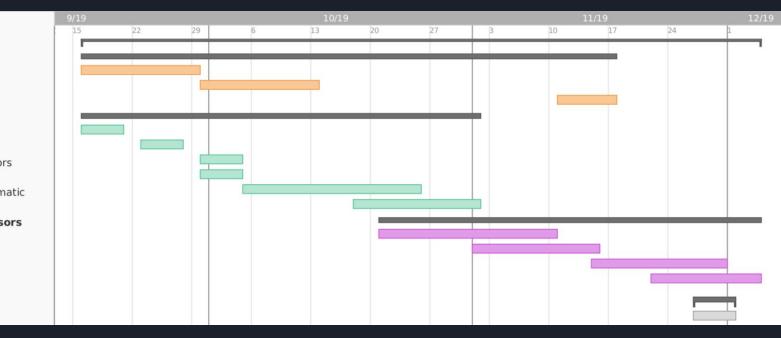
As a two person team, almost all tasks are equally shared, with Charlotte leading the hardware design and Alisha leading the software design.

Schedule

Development

UI

Experiment with app basics Create floor plan mockup Refine the UI


Sensors

Order capacitive paint Trial test the paint Purchase first round of sensors Purchase processor(s) Finalize sensor system schematic Live sensor system testing **Combine Software and Sensors**

Sync up sensor data with UI Optimize availability/delay Working demo in lab Working demo in Hunt

Slack Time

Thanksgiving Break

Challenges

- Designing a user-friendly and reliable mobile app
- Balancing real-time accuracy with maintaining a low power system
- Effectively mapping the space to maximize occupancy accuracy
- Choosing sensor products that make our in-lab MVP scaleable to all of Hunt

Stretch Goal

Install our system in Hunt, even at a small scale

- Test the effectiveness of our design in a live setting
- Understand the viability of our implementation
- Evaluate the cost of installing at scale