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Abstract—This project aims to create a door 
locking and unlocking mechanism that allows 
users to get in and out of their home using their 
face as their key. DoorID builds on currently 
existing ideas of using facial recognition for 
more secure access to important aspects of users 
lives, aiming to thwart thieves and unwanted 
intruders from gaining access to user’s homes. It 
is robust to many different scenarios, including 
low lighting and power outages, and boasts a 
95% accuracy rate to ensure safe and secure 
homes. Inductive charging also allows users to 
easily install DoorID without having to make 
any permanent changes to their home. 
 
Index Terms—Bluetooth, Battery, Depth 
Sensing, Facial Recognition, Inductive Charging 
 

I. INTRODUCTION 
We live in a society where technology 

surrounds us, both at work and at home. There 
are smartphones, smart TV’s, smart ovens, and 
so much more. However, there is one part of our 
homes that hasn’t made the transition to tech 
quite as fast: our doors. Our front doors are the 
entrance to our safe spaces, where we can relax 
after a long day at school or work. However, that 
expectation and trust can be violated when 
unwanted individuals gain access to our homes 
without notice. DoorID aims to solve that 
problem by using facial recognition to control 
who has access to your home. It is akin to a 
security guard, who checks the face of every 
individual who wishes to enter your home, 
allowing access to only known subjects. To 
ensure safety, DoorID must have at least a 97% 
accuracy rate with false positives, and a 93% 
accuracy rate with false negatives. The accuracy 
is slightly lower for false negatives because 

while it is important to allow authorized people 
in, it is always safer to err on the side of caution, 
especially when it comes to the safety of our 
homes. It also must be able to unlock the door, 
or give a deny decision, within 6 seconds of 
starting the facial recognition process, since the 
average amount of time it takes for an individual 
to open a door with a key is around 6 seconds. 
To power the device, DoorID needs about 3 
Watts sustained, and 6 Watts peak power during 
camera usage. DoorID must also be able to 
continue normal function for up to 24 hours, for 
cases such as a blackout, or even user error such 
as accidentally unplugging DoorID.  

There are a few competitors in this 
space already, namely Nest and Ring. However, 
Nest fails to provide such long lasting backup 
power (only 12 hours), and needs its outside 
component to be plugged in to a power source, 
meaning users usually must do some extra 
wiring work to get the system up and running. 
Ring is fully battery powered, so while it does 
better on battery life, it also requires constant 
battery replacement, unlike DoorID’s use of 
inductive charging to provide power and rare 
usage of the backup battery. They are also 
Internet of Things (IoT) devices, making them 
susceptible to cyber-security vulnerabilities from 
both developers (bugs and vulnerabilities) and 
users (psychology). With DoorID, the only 
threat users really have to worry about are evil 
twins and dedicated criminals who are willing to 
break down your door. 
 

II. DESIGN REQUIREMENTS 
A. Facial Recognition 
            Using biometric information to unlock a 
door should ideally be more convenient and 
faster than unlocking with a key. Because of 
this, we took a look at how long it took each of 
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us to unlock our respective doors without keys. 
On average, it took us around 6 seconds to get 
our keys from our pocket and unlock the door. 
That time is longer if we keep our keys in our 
backpack or bag. This is why we imposed a 
design requirement that the time from when the 
user wakes the device to begin facial recognition 
to the time its unlocked should be 6 seconds or 
less, on average.  
            With a lock, the impact of a false 
positive is far greater than a false negative. The 
paper that we have chosen to use as a guide 
achieves 98% accuracy. The paper did not detail 
the breakdown of false positives vs. false 
negatives. Because of this, we chose to sacrifice 
the rate of false negatives in order to achieve 
lower false positives, as we believe it is a better 
decision for security reasons to have a fail safe 
default. That is why we have chosen 3% as the 
rate of false positives, and 7% as the rate of false 
negatives. This allows us to have lower false 
positives, and 7% false negatives means that the 
expected time it takes to unlock DoorID is still 
lower than the average key time we found 
previously. 

  
B. Power 
            Our power requirements stem from what 
we believe as essential guarantees on device 
operation, and convenience. Other products 
either rely on batteries that must be manually 
swapped out or must be plugged in on the 
outside. The first is not convenient, as it requires 
user intervention, and if the user does not 
replace the battery, they can be stuck outside. 
The second requires an AC power cord nearby, 
and any person could easily unplug it. To solve 
these issues, our requirement is outside of the 
case of long-term power outage, the user should 
not have to replace any batteries, and the user 

should not have to rely on a plug on the outside 
of the door. 
            Since users may be relying on the system 
to unlock the door, we want to ensure that 
moderate power outages should not affect the 
successful operation of the lock. Since the 
typical power outage in the U.S. lasts around 2-3 
hours, we require our system remain operational 
for 24 hours, meaning that lock will be resistant 
to most outages. Even if the outage extends 
beyond 24 hours, as long as the user is able to 
enter their house in the first 24 hours, they have 
the opportunity to get a secondary form of 
access like a key.  
  
C. Servos 
            Since we are working on actuating a 
known deadbolt, there is no reason that this 
process should fail. That is why we have a 
design requirement that given the face is 
recognized, the servos should successfully 
actuate the deadbolt 99.9% of the time. 
 
D. User Feedback 
 User feedback on what the system is 
doing is very important. Therefore, we have 
three LEDs to indicate what state the system is 
in: red to indicate a failure (deny decision due to 
an unrecognized face, a failure of the 6 second 
unlock requirement, or a failure to register a new 
face into the facial database), yellow to indicate 
that is in a processing state (running facial 
recognition algorithm, or taking/saving pictures 
for registering), green to indicate success (door 
unlocks or registers user’s face successfully). 
We require these LED signals to always indicate 
the correct state with 100% accuracy that the 
system is in, under any conditions. 
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III. ARCHITECTURE 
 

The overall system architecture of the device is shown in the figure below 

Fig. 1: System architecture diagram 
 

The device is split into two parts. There is a portion mounted to the front of the door, and another 
to the back. The front of the door contains the Intel RealSense SR305 Depth Sensor, Raspberry Pi 4 (4GB 
RAM), and status LEDs, and is powered inductively through the door. A Bluetooth transmitter is attached 
to the RPi to allow it to communicate with the back of the door. The facial recognition algorithm is 
running on the RPi on the front. A backup battery is also attached to the front to provide power in the case 
the inductive power is not enough to maintain stable operation (ex: in the event of a blackout).  

The second part of the device contains the microcontroller (Metro 328) that drives servos to 
actuate the deadbolt. In addition, there is a backup battery and appropriate circuitry (including a Class D 
switching circuit) needed to drive the inductive power coil.  
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IV. DESIGN TRADE STUDIES 
A. Facial Recognition - Choosing a way to get 
data 
 For facial recognition, we had two main 
goals: a low cost system, and fast processing. 
With some research, and previous experience, 
we figured out that we could get depth data from 
one of three ways: time-of-flight cameras, 
infrared, or using pictures from a few different 
angles and calculating homographies to get 
points in a 3D space. After a bit of fiddling 
around with homographies using 2D rgb pictures 
from two different camera angles, since that 
would be the cheapest way to get data, we 
realized that the face did not have enough 
distinct points to get accurate enough depth data 
to make good authorization decisions. It was 
also very sensitive to changes in lighting and 
pose, so that was no longer an option.  
 More research on the time-of-flight 
sensors uncovered a few things: they are very 
accurate (down to ~3mm), very fast (since they 
require only one laser pulse to scan a whole 
scene), and very expensive. There were a few 
cheap time-of-flight sensors on Adafruit, but  
they only use one pulse to find the distance to a 
single surface. Time-of-flight cameras on the 
other hand were a bit out of budget, costing over 
200 dollars.  

Therefore we settled on infrared to do 
depth sensing. With the camera that we found, 
the Intel RealSense SR305, we were able to get 
two cameras in unit (infrared and RGB). With 
camera, we got 1.5 of our goals, since it was 
only $79, and it does depth calculations in 
house. 
 
B. Facial Recognition - Accuracy 
 After implementing the 3D facial 
recognition algorithm presented by the paper, we 
found the accuracy to be lower than expected, at 
around 72%. We decided to pivot our project 
slightly and implement a 2D facial recognition 
algorithm as well, and incorporate the two 

algorithms together, since the 2D facial 
recognition algorithm had a much higher 
accuracy rate of 96%. 

Our algorithm calls the 2D facial 
recognition algorithm first to see if a face is 
detected and if it is a registered face, and then 
use the 3D scan to make sure that an actual 
human being is in front of the camera. If 
someone were to try to “trick the camera” with a 
phone image or a printed-out photo of a 
registered face, the 3D recognition algorithm 
would detect a flat surface instead of a head-like 
3D object. 

Our integration of both the 2D and 3D 
recognition algorithm involves checking a 2D 
facial match first, and short circuits if the tested 
face is unregistered. The 3D algorithm is called 
if the face passes the 2D facial match to do 
another face check and make sure no one is 
trying to falsely unlock the door with a picture 
of a registered user’s face. With this integration, 
our accuracy went up to 97% false positive 
accuracy, which reaches our intended accuracy 
requirements.  

 
Table 1: Algorithm accuracies (taken over 50 

trials) 
 
C. Facial Recognition - Timing 

The average time that our algorithm 
takes to compute whether a user is registered or 
not is at around 5.9 seconds, which is less than 
the average time it takes to open the door 
manually, which is slightly greater than 6 
seconds. We were able to significantly speed up 

Algorithm Average 
Accuracy 

False 
Positive 
Accuracy 

False 
Negative 
Accuracy 

2D 96% 98% 94% 

3D 72% 77% 67% 

2D + 3D 94% 97% 90% 
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our 2D facial recognition algorithm by storing 
the encoded facial points of the eyes, eyebrows, 
lips, nose, and chin instead of the actual photo. 
Therefore, our code does not have to recompute 
the encodings of photos over and over again, and 
instead just reads a .csv file to compare facial 
points. 
 
D. Communications 

Much of the design trade-offs for this 
subsystem came from the different 
communication protocols used by the pieces of 
hardware we wanted to use. We had originally 
planned to use the data coming from the data 
lines in the USB 3.0 cable that our camera used 
using a breakout board, and send that data to the 
microcontroller on the back of the lock for facial 
recognition processing. This original plan had 
two main benefits: not having the main 
processing unit exposed to the outside world, 
where it is at risk of being broken/stolen by bad 
actors, and having only one microcontroller 
controlling the entire system. However, with 
some advice from our mentors, we decided not 
to go with that plan, because we found that raw 
camera data was also intertwined with USB 
messaging protocol data, which “corrupted” the 
pictures that we had wanted to send.  

With this change, we also had to change 
what microcontrollers we were using because 
we found that our camera was not backwards 
compatible with USB 2.0, even though in theory 
it should be. Therefore instead of being able to 
use the Metro 328 to take in camera data, we put 
a Raspberry Pi 4 on the front, which has USB 
3.0 ports. With this, we decided to also do all the 
facial recognition processing on the front, as 
there’s enough processing power in the Pi to do 
all the matrix calculations. To not waste money, 
we decided to have the Metro on the back to 
receive permit/deny instructions and power 
servos to move the door’s deadbolt instead. 

We decided to use bluetooth for our data 
transfer because it is fast and reliable. It is also 

able to send data through walls, which we 
thought was better than drilling a hole through a 
door and defeating the purpose of having 
inductive charging to avoid that same problem. 
Through testing in conjunction with the facial 
recognition tests, we found that sending data and 
actuating LEDs/servos took less than 0.1 
seconds on average. 

 
E. Power 
            The lock should remain operable as long 
as possible, without sacrificing the overall 
performance. The first component that we 
considered was the computer that we would use. 
Looking at other facial recognition techniques 
on the market, the vast majority leverage 
machine learning to train a model of the user’s 
face. This allows them to have extremely 
accurate detection even as the users face change. 
Given that machine learning seemed to promise 
the best results, we looked for boards that could 
provide the necessary computing power. Of 
these, the Jetson Nano, Intel Joule, and a few 
others came to mind.  
            Analyzing the power consumption, a 
typical board of this capability could draw a 
maximum of 3-4 amps at 12 volts. This would 
produce a peak power requirement of almost 50 
W. A preliminary analysis allowed us to 
conclude that it would be impractical to have 
such a high-power load for 24 hours. 
Additionally, their idle power draws were also 
low enough to meet our backup battery 
requirement. Following this, we decided to trade 
performance for a lower power draw. The 
Raspberry Pi was a good middle ground, as it 
was capable of enough to interface with high 
data rate cameras and run Linux but has less 
than half the peak and idle power draw of the 
previously mentioned devices.  
            The previous distinction between peak 
power and idle power is another space that we 
looked for tradeoffs. Most people are not 
constantly locking and unlocking their doors. 
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The usage pattern is most likely once or twice in 
quick succession, with long periods of time in 
between uses. If we were to send enough power 
to sustain peak computation 100% of the time, 
most of that power would be wasted. However, 
this would also mean that in the rare occasion 
that the user does request to unlock the door 
repeatedly, there would be sufficient power to 
allow no downtime between uses. Alternatively, 
we could attempt to adjust the power sent 
depending on the current power needs, resulting 
in no wasted power. This would require a way to 
dynamically change the tuning of the inductive 
coils, which would likely be very complex. The 
last option would be to find a middle ground, 
where the inductive coil would provide slightly 
more power than the required idle power, and 
store excess power in a series of capacitors. This 
would reduce power wasted, while still being 
able to provide enough power during peak 
computation. 
            Ultimately, we believe that the third 
option would be best for this project. Although it 
doesn’t result in the most optimal power usage, 
it does significantly reduce the amount of power 
needed. There is a slight delay when recharging 
the capacitors, which can be resolved by using 
larger capacitors that can power several unlock 
attempts. This option also results in significantly 
less engineering than the second option of 
adaptive power. 
 Another tradeoff was on the location of 
the backup power batteries. It would be 
considerably less complicated to have only one 
backup battery, and it would also make 
replacement easier. However, due to having two 
separate modules, one backup battery would 
require us to send backup power through the 
coils, of which would waste a huge amount of 
power. From our results for our power transfer 
circuit, we were only able to achieve 
approximately 6% efficiency. A battery capable 
of powering both sides would be enormous, and 
likely cost too much. The other option, having a 

backup battery on both sides, would increase 
complexity, but would enable us to lower the 
costs and buy smaller batteries for both sides. In 
the end, using 2 9V batteries in parallel on the 
back side along with a 26,000 mAh cell phone 
power bank, we were able to achieve at least 24 
hours standby for both sides. 

Lastly, there is a large frequency space 
that the coils could have been operated at. In 
terms of raw theoretical efficiency, the higher 
the frequency, the better the efficiency of power 
transfer. However, there are several factors that 
prevent this from being the optimal practical 
setup. First, when sending current through 
copper wire at high frequency, there is a 
phenomenon known as the skin effect. Charge 
begins to accumulate solely in a certain depth 
from the surface of the wire. This reduces the 
amount of area that charge can flow through, 
and results in an increased resistance. High 
frequency current results in lower ampacity, 
which would limit the magnitude of the 
magnetic field the inductor can generate. With a 
larger budget, Litz wire can be used to 
circumvent these issues, but unfortunately a 
large quantity of litz wire would be prohibitively 
expensive. Second, the amount of time it takes 
to charge and discharge the gates of the 
MOSFETs is not affected by the frequency of 
the coil. With a higher frequency, the charging 
of the MOSFET gates will represent a larger 
proportion of time. This will result in more 
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power being wasted by the MOSFETs in linear 
operation. During the implementation, the 
charging speed of the MOSFETS became a 
limiting factor for increasing the frequency. 
Through better handling of the circuit topology, 
this was increased from 32khz to 150khz. 
  



18-500 Final Report: 12/8/2019 

 

V. SYSTEM DESCRIPTION 
A. Facial Recognition 

For the facial recognition feature, two 
algorithms were implemented, a 2D and a 3D 
version. The 2D version uses dlib to detect 128 
facial points that summarize all the main facial 
features, which are the eyebrows, chin, nose, 
lips, and eyes. To compare faces, the algorithm 
computes the “distance” of the facial encodings, 
which is just the sum of squares of the difference 
between each of the 128 points. 

The 3D version consists of four overall 
steps. The picture below is a visualization of the 
algorithm. 
 

Fig. 3: Flowchart for 3D facial recognition 
algorithm 

 
The first step is the 3D cloud point 

preprocessing, where we extract the 3D facial 
data points via our RGB camera. Here’s an 
example of the results from this step: 

 
Fig. 4: 3D facial data pointcloud 

 
The second step is to create facial 

curvature maps. We do this by evaluating the 
covariance matrix from point cloud data, and we 
can compute normal curvature indexes by the 
eigenvalues of the covariance matrix. Here are a 
few pictures showing the extracted normal 
indexes and curvature color map: 
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Fig. 5: Facial curvature maps 

 
The next step involves us defining 

features using a curvature indexes from the 
previous step, and is used for similarity 
matching, which is the next step. 
 

The last step is the similarity matching 
schema. To determine whether the detected face 
is registered, given input vector of curvature 
index features (CV) extracted from previous step 
and alleged identity vector (CI), a vector 
representing the biometric features of registered 
face, we determine a similarity score of CV and 
CI is greater than or equal to a predefined 
threshold t. If it is greater than or equal to t, then 
the detected face is a registered face, and the 
door unlocks. Otherwise, our algorithm rejects 
the detected face, and the door stays locked. 

 
B. Communications 
 There are two main components to 
communications so that all the parts from the 
facial recognition to the power are tied together. 
On the front (see Fig. 83838), there is the Intel 
Realsense SR305 camera (used for taking both 
2D and 3D pictures of users), a Raspberry Pi 4 
(4GB RAM, 16GB SD card), 3 LED’s (red, 
yellow, green), and a pushbutton. The camera is 
connected to the Pi using a USB 3.0 to micro b 
cable, and the status LEDs and push button are 
connected to the Pi’s GPIO pins with female to 
male jumper wires.  
 
 

Fig. 6: Wiring for front 
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Fig. 7: Raspberry Pi GPIO pinout 

       

 
Fig. 8: Wiring for back 

 
First is the communication between the 

Pi and the camera to take pictures for facial 
recognition. When the button is pressed, it sends 
a signal to the Pi to send instructions through the 
cable to the camera to take pictures using both 
the RGB and infrared depth camera using the 
Intel RealSense SDK 2.0 and send that data back 
to the Pi. From there, we turn on the yellow 
LED to signal that the Pi is currently processing, 
hand the raw camera data over to the facial 
recognition subsystem, and await for a permit or 
deny decision. In the background, there is a 6 
second countdown, where if that limit is 
reached, all processing stops, and entry is 
immediately denied, as per our project 
requirements above. If the facial recognition 
returns a decision (permit/deny), then using the 
Pi’s on-board bluetooth, the decision is sent to 
the bluetooth module (HiLetgo HC-05) on the 
back. The module is connected to a 
microprocessor (Adafruit Metro 328), which in 
turn powers the servos to move the deadbolt and 
unlock the door in the case of a permit. Once the 
door is unlocked, the Metro sends a success 
signal to the Pi, again using bluetooth, and the 
green LED lights up, signifying that the user can 
now enter. In the case the Metro receives a deny 
or servos are unable to move, the red LED lights 
up and a fail signal is sent to the Pi instead. 
 The second component is 
communications between the back and the front 
for registering an authorized face into the 
system’s memory. Again, using bluetooth to 
serially communicate, when a button is pressed 
on the back, the Metro sends a signal to the Pi to 
wake the camera and take a picture after 5 
seconds, giving the user enough time to position 
themselves. Their facial data (in the form of a 
2D .png and a 3D .ply) is then processed into 
and stored in the Pi’s SD card, and is now an 
authorized face for entry. 
 In terms of software, both the Pi and the 
Metro have scripts (in Python and Arduino 
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respectively) that keeps track of state, facilitates 
the sending of serial bluetooth communications, 
and handles button presses and lighting of status 
LEDs. The Pi also has a startup bash script to 
automatically connect the bluetooth to the HC-
05 and start running the Python script described 
above.  
 
C. Power 

The power system has two key circuits 
(See Fig. 9 and Fig. 10). The first is the circuit 
on the back hooked up to an AC wall adapter, 
that is responsible for driving an inductive 
power coil to send sufficient watts to the front as 
well as hold a backup battery in case of an 
outage. 

The switching circuit used to oscillate 
current through the inductor is a Class-D 
switching circuit. It is comprised of a 50% duty 
cycle PWM signal connected to the gates of a 
CMOS. The 50% duty cycle PWM is generated 
using a 555 timer, and by tying the threshold and 
trigger pins together. The resultant output is then 
used as input to the gate driver that is used to 
drive the power MOSFETs. Gate charge time 
was reduced by using two gate drivers in 
parallel, and tying both outputs together to 
reduce noise. 

To power the microcontroller on the 
back, the output of the AC adapter is selected 
via CMOS against a backup battery, then 
regulated with a switching voltage regulator to 
maintain a 5V supply. 
            The second circuit is on the front of the 
door. This circuit is responsible for rectifying 
the output from the receiving coil, charging the 
capacitors are used to handle peak power, and 
finally powering the RPi and camera. This is 
accomplished with a full bridge rectifier, and a 
voltage regulator between the capacitors and the 
RPi. Here again, there is a battery to provide 
backup power. 
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VI. PROJECT MANAGEMENT 
 

A. Schedule & Team Member Responsibilities 
In green, we have the different steps for 

the facial recognition algorithm we have chosen 
to implement, which will be written by Jason. In 
purple, we have Joe’s responsibilities, which 
span the inductive charging, and backup power. 
In blue, we have Emily’s responsibilities, which 
include setting up communication lines for data 
flowing between the front and the back of the 
lock, integrating the camera with the micro 
controllers, and deadbolt movement. Orange 
denotes time for all 3 members to work together 
on integration, final presentation/demo things, 
and also some extra slack. Our proposed 
schedule and the actual timeline diverged greatly 
due to many problems with getting the correct 
parts, especially with the camera, and parts 
breaking.  

 
B. Risk Management 
 The biggest risk that we faced was 
integrating the power circuits with the 
circuits/hardware used for communications, 
mainly because none of us had ever made our 
own power circuits. To mitigate this risk, we did 
extensive testing on different test loads before 
moving on to Raspberry Pi 3s and Arduino Unos 
(owned previously) to emulate the Pi 4 and 
Metro. Only after we were able to power those 
boards were we confident enough to plug in our 
actual hardware, and thankfully nothing shorted 
or blew up.  
 We also ran the risk of running out of 
our allotted budget because of having to buy 
multiple cameras due to oddities with Intel’s 
payment system, and not realizing how much 
hardware we needed for the power circuits. We 
mitigated this by trying to use as many parts as 
we could find in the ECE labs and using parts 
that we already had at home from other projects.  
 In terms of time management, we were 
able to get everything done on time because we 

were able to work on other parts of the project 
while we were stuck on others, such as being 
able to work on 2D facial recognition when we 
began having some camera interfacing issues 
with the Pi.  

Fig. 11: Timeline of responsibilities & time 
taken to complete 
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C. Budget/Bill of Materials 

Part Subsystem Quantity Total Price Used? 

Door Aesthetics 1 9.00 Yes 

Door handle Aesthetics 1 5.00 Yes 

Intel RealSense 
SR 300 

Facial 
Recognition 

1 91.89 No - bought because Intel 
didn’t let us buy the 305 
until later (unknown 
reason) 

Intel RealSense 
SR 305 

Facial 
Recognition 

1 91.89 Yes 

Adafruit Metro Communications 1 25.31 Yes 

HiLetgo HC-05 
Wireless 
Bluetooth 
Modules 

Communications 2 15.98 Yes - used 1 because 
decided to use bluetooth 
on RPi instead 

Pushbuttons Communications 2 0.00 Yes 

LEDs Communications 3 0.00 Yes 

Raspberry Pi 4B 
(2GB RAM) 

Communications, 
Facial 
Recognition 

1 52.06 No – not enough RAM, 
also got bricked 

Raspberry Pi 4B  
(4GB RAM) 

Communications, 
Facial 
Recognition 

1 62.06 Yes 

USB 3.0 to 
Micro B cable 

Communications 1 5.99 Yes 

Deadbolt Communications 1 13.00 Yes 

NMOS Power 2 2.94 Yes 

PMOS Power 2 2.94 Yes 

Clock Power 1 0.73 Yes 

Magnet Wire Power 1 16.94 Yes 

USB C breakout 
board 

Power 1 0 Yes 

Voltage 
regulator 

Power 2 0 Yes 
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Diode Power 4 0 Yes 

Capacitor Power 6 0 Yes 

Battery Power 2 0 Yes 

Table 2: Summary of costs 
  
Total amount spent: 395.73 
Total amount remaining: 204.27 
 
D. Tools 

Tool Subsystem Description 

OpenCV Facial Recognition Find bounds of a face to get rid 
of irrelevant background data 

Numpy Facial Recognition Make matrix math much faster 

dlib Facial Recognition Work with 2D facial recognition 

plyfile Facial Recognition Work with .ply files for 3D 
facial recognition 

Intel RealSense SDK 2.0 Communications Communicate with camera to 
get it to take pictures 

Table 4: Tools/libraries used in software development 
 

VII. RELATED WORK 
 Our project is similar to a portion of the 
Google Home in the sense that Google Home 
also integrates a facial recognition algorithm 
into a home setting. Not only can it open doors 
for familiar faces, it can also display on screen 
personal data such as calendar appointments and 
messages. We focused on the facial recognition 
and door opening aspects of it. 

 
VIII. SUMMARY 

 Overall, our project was able to meet 
most of the design specifications. In terms of 
facial recognition, we had to diverge from our 
original plan to just rely on 3D data, but overall, 
our new algorithm still displays accuracy 
matching the original 3D algorithm. The system 
is able to operate for more than 24 hours without 
being plugged in.  

 We learned a lot over the course of the 
semester while working on this project. The 
biggest lesson that we learned was that things 
never go as expected, and you should try to 
make as many parts of the project non-
dependent on each other. This way you are able 
to work on other things while you’re mitigating 
the problems from another part of the project. 
We also learned the importance of taking a 
break when you’ve been working on a problem 
for hours and getting nowhere! Sometimes a 
well deserved break was all we needed to get 
things up and running again. 
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X. Figures and Charts 

Fig. 9: Back power circuit 
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Fig. 10: Front power circuit 


