
18-500 Final Report: 12/8/2019

Door ID

Authors: Emily Wong, Joe Zhao, Jason Huang Electrical and Computer Engineering, Carnegie Mellon
University

Abstract—This project aims to create a door
locking and unlocking mechanism that allows
users to get in and out of their home using their
face as their key. DoorID builds on currently
existing ideas of using facial recognition for
more secure access to important aspects of users
lives, aiming to thwart thieves and unwanted
intruders from gaining access to user’s homes. It
is robust to many different scenarios, including
low lighting and power outages, and boasts a
95% accuracy rate to ensure safe and secure
homes. Inductive charging also allows users to
easily install DoorID without having to make
any permanent changes to their home.

Index Terms—Bluetooth, Battery, Depth
Sensing, Facial Recognition, Inductive Charging

I. INTRODUCTION
We live in a society where technology

surrounds us, both at work and at home. There
are smartphones, smart TV’s, smart ovens, and
so much more. However, there is one part of our
homes that hasn’t made the transition to tech
quite as fast: our doors. Our front doors are the
entrance to our safe spaces, where we can relax
after a long day at school or work. However, that
expectation and trust can be violated when
unwanted individuals gain access to our homes
without notice. DoorID aims to solve that
problem by using facial recognition to control
who has access to your home. It is akin to a
security guard, who checks the face of every
individual who wishes to enter your home,
allowing access to only known subjects. To
ensure safety, DoorID must have at least a 97%
accuracy rate with false positives, and a 93%
accuracy rate with false negatives. The accuracy
is slightly lower for false negatives because

while it is important to allow authorized people
in, it is always safer to err on the side of caution,
especially when it comes to the safety of our
homes. It also must be able to unlock the door,
or give a deny decision, within 6 seconds of
starting the facial recognition process, since the
average amount of time it takes for an individual
to open a door with a key is around 6 seconds.
To power the device, DoorID needs about 3
Watts sustained, and 6 Watts peak power during
camera usage. DoorID must also be able to
continue normal function for up to 24 hours, for
cases such as a blackout, or even user error such
as accidentally unplugging DoorID.

There are a few competitors in this
space already, namely Nest and Ring. However,
Nest fails to provide such long lasting backup
power (only 12 hours), and needs its outside
component to be plugged in to a power source,
meaning users usually must do some extra
wiring work to get the system up and running.
Ring is fully battery powered, so while it does
better on battery life, it also requires constant
battery replacement, unlike DoorID’s use of
inductive charging to provide power and rare
usage of the backup battery. They are also
Internet of Things (IoT) devices, making them
susceptible to cyber-security vulnerabilities from
both developers (bugs and vulnerabilities) and
users (psychology). With DoorID, the only
threat users really have to worry about are evil
twins and dedicated criminals who are willing to
break down your door.

II. DESIGN REQUIREMENTS
A. Facial Recognition
 Using biometric information to unlock a
door should ideally be more convenient and
faster than unlocking with a key. Because of
this, we took a look at how long it took each of

18-500 Final Report: 12/8/2019

us to unlock our respective doors without keys.
On average, it took us around 6 seconds to get
our keys from our pocket and unlock the door.
That time is longer if we keep our keys in our
backpack or bag. This is why we imposed a
design requirement that the time from when the
user wakes the device to begin facial recognition
to the time its unlocked should be 6 seconds or
less, on average.
 With a lock, the impact of a false
positive is far greater than a false negative. The
paper that we have chosen to use as a guide
achieves 98% accuracy. The paper did not detail
the breakdown of false positives vs. false
negatives. Because of this, we chose to sacrifice
the rate of false negatives in order to achieve
lower false positives, as we believe it is a better
decision for security reasons to have a fail safe
default. That is why we have chosen 3% as the
rate of false positives, and 7% as the rate of false
negatives. This allows us to have lower false
positives, and 7% false negatives means that the
expected time it takes to unlock DoorID is still
lower than the average key time we found
previously.

B. Power
 Our power requirements stem from what
we believe as essential guarantees on device
operation, and convenience. Other products
either rely on batteries that must be manually
swapped out or must be plugged in on the
outside. The first is not convenient, as it requires
user intervention, and if the user does not
replace the battery, they can be stuck outside.
The second requires an AC power cord nearby,
and any person could easily unplug it. To solve
these issues, our requirement is outside of the
case of long-term power outage, the user should
not have to replace any batteries, and the user

should not have to rely on a plug on the outside
of the door.
 Since users may be relying on the system
to unlock the door, we want to ensure that
moderate power outages should not affect the
successful operation of the lock. Since the
typical power outage in the U.S. lasts around 2-3
hours, we require our system remain operational
for 24 hours, meaning that lock will be resistant
to most outages. Even if the outage extends
beyond 24 hours, as long as the user is able to
enter their house in the first 24 hours, they have
the opportunity to get a secondary form of
access like a key.

C. Servos
 Since we are working on actuating a
known deadbolt, there is no reason that this
process should fail. That is why we have a
design requirement that given the face is
recognized, the servos should successfully
actuate the deadbolt 99.9% of the time.

D. User Feedback
 User feedback on what the system is
doing is very important. Therefore, we have
three LEDs to indicate what state the system is
in: red to indicate a failure (deny decision due to
an unrecognized face, a failure of the 6 second
unlock requirement, or a failure to register a new
face into the facial database), yellow to indicate
that is in a processing state (running facial
recognition algorithm, or taking/saving pictures
for registering), green to indicate success (door
unlocks or registers user’s face successfully).
We require these LED signals to always indicate
the correct state with 100% accuracy that the
system is in, under any conditions.

18-500 Final Report: 12/8/2019

III. ARCHITECTURE

The overall system architecture of the device is shown in the figure below

Fig. 1: System architecture diagram

The device is split into two parts. There is a portion mounted to the front of the door, and another
to the back. The front of the door contains the Intel RealSense SR305 Depth Sensor, Raspberry Pi 4 (4GB
RAM), and status LEDs, and is powered inductively through the door. A Bluetooth transmitter is attached
to the RPi to allow it to communicate with the back of the door. The facial recognition algorithm is
running on the RPi on the front. A backup battery is also attached to the front to provide power in the case
the inductive power is not enough to maintain stable operation (ex: in the event of a blackout).

The second part of the device contains the microcontroller (Metro 328) that drives servos to
actuate the deadbolt. In addition, there is a backup battery and appropriate circuitry (including a Class D
switching circuit) needed to drive the inductive power coil.

18-500 Final Report: 12/8/2019

IV. DESIGN TRADE STUDIES
A. Facial Recognition - Choosing a way to get
data
 For facial recognition, we had two main
goals: a low cost system, and fast processing.
With some research, and previous experience,
we figured out that we could get depth data from
one of three ways: time-of-flight cameras,
infrared, or using pictures from a few different
angles and calculating homographies to get
points in a 3D space. After a bit of fiddling
around with homographies using 2D rgb pictures
from two different camera angles, since that
would be the cheapest way to get data, we
realized that the face did not have enough
distinct points to get accurate enough depth data
to make good authorization decisions. It was
also very sensitive to changes in lighting and
pose, so that was no longer an option.
 More research on the time-of-flight
sensors uncovered a few things: they are very
accurate (down to ~3mm), very fast (since they
require only one laser pulse to scan a whole
scene), and very expensive. There were a few
cheap time-of-flight sensors on Adafruit, but
they only use one pulse to find the distance to a
single surface. Time-of-flight cameras on the
other hand were a bit out of budget, costing over
200 dollars.

Therefore we settled on infrared to do
depth sensing. With the camera that we found,
the Intel RealSense SR305, we were able to get
two cameras in unit (infrared and RGB). With
camera, we got 1.5 of our goals, since it was
only $79, and it does depth calculations in
house.

B. Facial Recognition - Accuracy
 After implementing the 3D facial
recognition algorithm presented by the paper, we
found the accuracy to be lower than expected, at
around 72%. We decided to pivot our project
slightly and implement a 2D facial recognition
algorithm as well, and incorporate the two

algorithms together, since the 2D facial
recognition algorithm had a much higher
accuracy rate of 96%.

Our algorithm calls the 2D facial
recognition algorithm first to see if a face is
detected and if it is a registered face, and then
use the 3D scan to make sure that an actual
human being is in front of the camera. If
someone were to try to “trick the camera” with a
phone image or a printed-out photo of a
registered face, the 3D recognition algorithm
would detect a flat surface instead of a head-like
3D object.

Our integration of both the 2D and 3D
recognition algorithm involves checking a 2D
facial match first, and short circuits if the tested
face is unregistered. The 3D algorithm is called
if the face passes the 2D facial match to do
another face check and make sure no one is
trying to falsely unlock the door with a picture
of a registered user’s face. With this integration,
our accuracy went up to 97% false positive
accuracy, which reaches our intended accuracy
requirements.

Table 1: Algorithm accuracies (taken over 50

trials)

C. Facial Recognition - Timing

The average time that our algorithm
takes to compute whether a user is registered or
not is at around 5.9 seconds, which is less than
the average time it takes to open the door
manually, which is slightly greater than 6
seconds. We were able to significantly speed up

Algorithm Average
Accuracy

False
Positive
Accuracy

False
Negative
Accuracy

2D 96% 98% 94%

3D 72% 77% 67%

2D + 3D 94% 97% 90%

18-500 Final Report: 12/8/2019

our 2D facial recognition algorithm by storing
the encoded facial points of the eyes, eyebrows,
lips, nose, and chin instead of the actual photo.
Therefore, our code does not have to recompute
the encodings of photos over and over again, and
instead just reads a .csv file to compare facial
points.

D. Communications

Much of the design trade-offs for this
subsystem came from the different
communication protocols used by the pieces of
hardware we wanted to use. We had originally
planned to use the data coming from the data
lines in the USB 3.0 cable that our camera used
using a breakout board, and send that data to the
microcontroller on the back of the lock for facial
recognition processing. This original plan had
two main benefits: not having the main
processing unit exposed to the outside world,
where it is at risk of being broken/stolen by bad
actors, and having only one microcontroller
controlling the entire system. However, with
some advice from our mentors, we decided not
to go with that plan, because we found that raw
camera data was also intertwined with USB
messaging protocol data, which “corrupted” the
pictures that we had wanted to send.

With this change, we also had to change
what microcontrollers we were using because
we found that our camera was not backwards
compatible with USB 2.0, even though in theory
it should be. Therefore instead of being able to
use the Metro 328 to take in camera data, we put
a Raspberry Pi 4 on the front, which has USB
3.0 ports. With this, we decided to also do all the
facial recognition processing on the front, as
there’s enough processing power in the Pi to do
all the matrix calculations. To not waste money,
we decided to have the Metro on the back to
receive permit/deny instructions and power
servos to move the door’s deadbolt instead.

We decided to use bluetooth for our data
transfer because it is fast and reliable. It is also

able to send data through walls, which we
thought was better than drilling a hole through a
door and defeating the purpose of having
inductive charging to avoid that same problem.
Through testing in conjunction with the facial
recognition tests, we found that sending data and
actuating LEDs/servos took less than 0.1
seconds on average.

E. Power
 The lock should remain operable as long
as possible, without sacrificing the overall
performance. The first component that we
considered was the computer that we would use.
Looking at other facial recognition techniques
on the market, the vast majority leverage
machine learning to train a model of the user’s
face. This allows them to have extremely
accurate detection even as the users face change.
Given that machine learning seemed to promise
the best results, we looked for boards that could
provide the necessary computing power. Of
these, the Jetson Nano, Intel Joule, and a few
others came to mind.
 Analyzing the power consumption, a
typical board of this capability could draw a
maximum of 3-4 amps at 12 volts. This would
produce a peak power requirement of almost 50
W. A preliminary analysis allowed us to
conclude that it would be impractical to have
such a high-power load for 24 hours.
Additionally, their idle power draws were also
low enough to meet our backup battery
requirement. Following this, we decided to trade
performance for a lower power draw. The
Raspberry Pi was a good middle ground, as it
was capable of enough to interface with high
data rate cameras and run Linux but has less
than half the peak and idle power draw of the
previously mentioned devices.
 The previous distinction between peak
power and idle power is another space that we
looked for tradeoffs. Most people are not
constantly locking and unlocking their doors.

18-500 Final Report: 12/8/2019

The usage pattern is most likely once or twice in
quick succession, with long periods of time in
between uses. If we were to send enough power
to sustain peak computation 100% of the time,
most of that power would be wasted. However,
this would also mean that in the rare occasion
that the user does request to unlock the door
repeatedly, there would be sufficient power to
allow no downtime between uses. Alternatively,
we could attempt to adjust the power sent
depending on the current power needs, resulting
in no wasted power. This would require a way to
dynamically change the tuning of the inductive
coils, which would likely be very complex. The
last option would be to find a middle ground,
where the inductive coil would provide slightly
more power than the required idle power, and
store excess power in a series of capacitors. This
would reduce power wasted, while still being
able to provide enough power during peak
computation.
 Ultimately, we believe that the third
option would be best for this project. Although it
doesn’t result in the most optimal power usage,
it does significantly reduce the amount of power
needed. There is a slight delay when recharging
the capacitors, which can be resolved by using
larger capacitors that can power several unlock
attempts. This option also results in significantly
less engineering than the second option of
adaptive power.
 Another tradeoff was on the location of
the backup power batteries. It would be
considerably less complicated to have only one
backup battery, and it would also make
replacement easier. However, due to having two
separate modules, one backup battery would
require us to send backup power through the
coils, of which would waste a huge amount of
power. From our results for our power transfer
circuit, we were only able to achieve
approximately 6% efficiency. A battery capable
of powering both sides would be enormous, and
likely cost too much. The other option, having a

backup battery on both sides, would increase
complexity, but would enable us to lower the
costs and buy smaller batteries for both sides. In
the end, using 2 9V batteries in parallel on the
back side along with a 26,000 mAh cell phone
power bank, we were able to achieve at least 24
hours standby for both sides.

Lastly, there is a large frequency space
that the coils could have been operated at. In
terms of raw theoretical efficiency, the higher
the frequency, the better the efficiency of power
transfer. However, there are several factors that
prevent this from being the optimal practical
setup. First, when sending current through
copper wire at high frequency, there is a
phenomenon known as the skin effect. Charge
begins to accumulate solely in a certain depth
from the surface of the wire. This reduces the
amount of area that charge can flow through,
and results in an increased resistance. High
frequency current results in lower ampacity,
which would limit the magnitude of the
magnetic field the inductor can generate. With a
larger budget, Litz wire can be used to
circumvent these issues, but unfortunately a
large quantity of litz wire would be prohibitively
expensive. Second, the amount of time it takes
to charge and discharge the gates of the
MOSFETs is not affected by the frequency of
the coil. With a higher frequency, the charging
of the MOSFET gates will represent a larger
proportion of time. This will result in more

18-500 Final Report: 12/8/2019

power being wasted by the MOSFETs in linear
operation. During the implementation, the
charging speed of the MOSFETS became a
limiting factor for increasing the frequency.
Through better handling of the circuit topology,
this was increased from 32khz to 150khz.

18-500 Final Report: 12/8/2019

V. SYSTEM DESCRIPTION
A. Facial Recognition

For the facial recognition feature, two
algorithms were implemented, a 2D and a 3D
version. The 2D version uses dlib to detect 128
facial points that summarize all the main facial
features, which are the eyebrows, chin, nose,
lips, and eyes. To compare faces, the algorithm
computes the “distance” of the facial encodings,
which is just the sum of squares of the difference
between each of the 128 points.

The 3D version consists of four overall
steps. The picture below is a visualization of the
algorithm.

Fig. 3: Flowchart for 3D facial recognition
algorithm

The first step is the 3D cloud point

preprocessing, where we extract the 3D facial
data points via our RGB camera. Here’s an
example of the results from this step:

Fig. 4: 3D facial data pointcloud

The second step is to create facial

curvature maps. We do this by evaluating the
covariance matrix from point cloud data, and we
can compute normal curvature indexes by the
eigenvalues of the covariance matrix. Here are a
few pictures showing the extracted normal
indexes and curvature color map:

18-500 Final Report: 12/8/2019

Fig. 5: Facial curvature maps

The next step involves us defining

features using a curvature indexes from the
previous step, and is used for similarity
matching, which is the next step.

The last step is the similarity matching
schema. To determine whether the detected face
is registered, given input vector of curvature
index features (CV) extracted from previous step
and alleged identity vector (CI), a vector
representing the biometric features of registered
face, we determine a similarity score of CV and
CI is greater than or equal to a predefined
threshold t. If it is greater than or equal to t, then
the detected face is a registered face, and the
door unlocks. Otherwise, our algorithm rejects
the detected face, and the door stays locked.

B. Communications
 There are two main components to
communications so that all the parts from the
facial recognition to the power are tied together.
On the front (see Fig. 83838), there is the Intel
Realsense SR305 camera (used for taking both
2D and 3D pictures of users), a Raspberry Pi 4
(4GB RAM, 16GB SD card), 3 LED’s (red,
yellow, green), and a pushbutton. The camera is
connected to the Pi using a USB 3.0 to micro b
cable, and the status LEDs and push button are
connected to the Pi’s GPIO pins with female to
male jumper wires.

Fig. 6: Wiring for front

18-500 Final Report: 12/8/2019

Fig. 7: Raspberry Pi GPIO pinout

Fig. 8: Wiring for back

First is the communication between the

Pi and the camera to take pictures for facial
recognition. When the button is pressed, it sends
a signal to the Pi to send instructions through the
cable to the camera to take pictures using both
the RGB and infrared depth camera using the
Intel RealSense SDK 2.0 and send that data back
to the Pi. From there, we turn on the yellow
LED to signal that the Pi is currently processing,
hand the raw camera data over to the facial
recognition subsystem, and await for a permit or
deny decision. In the background, there is a 6
second countdown, where if that limit is
reached, all processing stops, and entry is
immediately denied, as per our project
requirements above. If the facial recognition
returns a decision (permit/deny), then using the
Pi’s on-board bluetooth, the decision is sent to
the bluetooth module (HiLetgo HC-05) on the
back. The module is connected to a
microprocessor (Adafruit Metro 328), which in
turn powers the servos to move the deadbolt and
unlock the door in the case of a permit. Once the
door is unlocked, the Metro sends a success
signal to the Pi, again using bluetooth, and the
green LED lights up, signifying that the user can
now enter. In the case the Metro receives a deny
or servos are unable to move, the red LED lights
up and a fail signal is sent to the Pi instead.
 The second component is
communications between the back and the front
for registering an authorized face into the
system’s memory. Again, using bluetooth to
serially communicate, when a button is pressed
on the back, the Metro sends a signal to the Pi to
wake the camera and take a picture after 5
seconds, giving the user enough time to position
themselves. Their facial data (in the form of a
2D .png and a 3D .ply) is then processed into
and stored in the Pi’s SD card, and is now an
authorized face for entry.
 In terms of software, both the Pi and the
Metro have scripts (in Python and Arduino

18-500 Final Report: 12/8/2019

respectively) that keeps track of state, facilitates
the sending of serial bluetooth communications,
and handles button presses and lighting of status
LEDs. The Pi also has a startup bash script to
automatically connect the bluetooth to the HC-
05 and start running the Python script described
above.

C. Power

The power system has two key circuits
(See Fig. 9 and Fig. 10). The first is the circuit
on the back hooked up to an AC wall adapter,
that is responsible for driving an inductive
power coil to send sufficient watts to the front as
well as hold a backup battery in case of an
outage.

The switching circuit used to oscillate
current through the inductor is a Class-D
switching circuit. It is comprised of a 50% duty
cycle PWM signal connected to the gates of a
CMOS. The 50% duty cycle PWM is generated
using a 555 timer, and by tying the threshold and
trigger pins together. The resultant output is then
used as input to the gate driver that is used to
drive the power MOSFETs. Gate charge time
was reduced by using two gate drivers in
parallel, and tying both outputs together to
reduce noise.

To power the microcontroller on the
back, the output of the AC adapter is selected
via CMOS against a backup battery, then
regulated with a switching voltage regulator to
maintain a 5V supply.
 The second circuit is on the front of the
door. This circuit is responsible for rectifying
the output from the receiving coil, charging the
capacitors are used to handle peak power, and
finally powering the RPi and camera. This is
accomplished with a full bridge rectifier, and a
voltage regulator between the capacitors and the
RPi. Here again, there is a battery to provide
backup power.

18-500 Final Report: 12/8/2019

VI. PROJECT MANAGEMENT

A. Schedule & Team Member Responsibilities
In green, we have the different steps for

the facial recognition algorithm we have chosen
to implement, which will be written by Jason. In
purple, we have Joe’s responsibilities, which
span the inductive charging, and backup power.
In blue, we have Emily’s responsibilities, which
include setting up communication lines for data
flowing between the front and the back of the
lock, integrating the camera with the micro
controllers, and deadbolt movement. Orange
denotes time for all 3 members to work together
on integration, final presentation/demo things,
and also some extra slack. Our proposed
schedule and the actual timeline diverged greatly
due to many problems with getting the correct
parts, especially with the camera, and parts
breaking.

B. Risk Management
 The biggest risk that we faced was
integrating the power circuits with the
circuits/hardware used for communications,
mainly because none of us had ever made our
own power circuits. To mitigate this risk, we did
extensive testing on different test loads before
moving on to Raspberry Pi 3s and Arduino Unos
(owned previously) to emulate the Pi 4 and
Metro. Only after we were able to power those
boards were we confident enough to plug in our
actual hardware, and thankfully nothing shorted
or blew up.
 We also ran the risk of running out of
our allotted budget because of having to buy
multiple cameras due to oddities with Intel’s
payment system, and not realizing how much
hardware we needed for the power circuits. We
mitigated this by trying to use as many parts as
we could find in the ECE labs and using parts
that we already had at home from other projects.
 In terms of time management, we were
able to get everything done on time because we

were able to work on other parts of the project
while we were stuck on others, such as being
able to work on 2D facial recognition when we
began having some camera interfacing issues
with the Pi.

Fig. 11: Timeline of responsibilities & time
taken to complete

18-500 Final Report: 12/8/2019

C. Budget/Bill of Materials

Part Subsystem Quantity Total Price Used?

Door Aesthetics 1 9.00 Yes

Door handle Aesthetics 1 5.00 Yes

Intel RealSense
SR 300

Facial
Recognition

1 91.89 No - bought because Intel
didn’t let us buy the 305
until later (unknown
reason)

Intel RealSense
SR 305

Facial
Recognition

1 91.89 Yes

Adafruit Metro Communications 1 25.31 Yes

HiLetgo HC-05
Wireless
Bluetooth
Modules

Communications 2 15.98 Yes - used 1 because
decided to use bluetooth
on RPi instead

Pushbuttons Communications 2 0.00 Yes

LEDs Communications 3 0.00 Yes

Raspberry Pi 4B
(2GB RAM)

Communications,
Facial
Recognition

1 52.06 No – not enough RAM,
also got bricked

Raspberry Pi 4B
(4GB RAM)

Communications,
Facial
Recognition

1 62.06 Yes

USB 3.0 to
Micro B cable

Communications 1 5.99 Yes

Deadbolt Communications 1 13.00 Yes

NMOS Power 2 2.94 Yes

PMOS Power 2 2.94 Yes

Clock Power 1 0.73 Yes

Magnet Wire Power 1 16.94 Yes

USB C breakout
board

Power 1 0 Yes

Voltage
regulator

Power 2 0 Yes

18-500 Final Report: 12/8/2019

Diode Power 4 0 Yes

Capacitor Power 6 0 Yes

Battery Power 2 0 Yes

Table 2: Summary of costs

Total amount spent: 395.73
Total amount remaining: 204.27

D. Tools

Tool Subsystem Description

OpenCV Facial Recognition Find bounds of a face to get rid
of irrelevant background data

Numpy Facial Recognition Make matrix math much faster

dlib Facial Recognition Work with 2D facial recognition

plyfile Facial Recognition Work with .ply files for 3D
facial recognition

Intel RealSense SDK 2.0 Communications Communicate with camera to
get it to take pictures

Table 4: Tools/libraries used in software development

VII. RELATED WORK
 Our project is similar to a portion of the
Google Home in the sense that Google Home
also integrates a facial recognition algorithm
into a home setting. Not only can it open doors
for familiar faces, it can also display on screen
personal data such as calendar appointments and
messages. We focused on the facial recognition
and door opening aspects of it.

VIII. SUMMARY

 Overall, our project was able to meet
most of the design specifications. In terms of
facial recognition, we had to diverge from our
original plan to just rely on 3D data, but overall,
our new algorithm still displays accuracy
matching the original 3D algorithm. The system
is able to operate for more than 24 hours without
being plugged in.

 We learned a lot over the course of the
semester while working on this project. The
biggest lesson that we learned was that things
never go as expected, and you should try to
make as many parts of the project non-
dependent on each other. This way you are able
to work on other things while you’re mitigating
the problems from another part of the project.
We also learned the importance of taking a
break when you’ve been working on a problem
for hours and getting nowhere! Sometimes a
well deserved break was all we needed to get
things up and running again.

18-500 Final Report: 12/8/2019

IX. REFERENCES
[1] 3D Face Recognition on Point Cloud Data,
Luis Felipe de Melo Nunes, Caue Zaghetto, and
Flavio de Barros Vidal

[2] https://github.com/ageitgey/face_recognition
[3]https://medium.com/@mahesh_joshi/raspberr
y-pi-3-and-arduino-communication-via-
bluetooth-hc-05--5d7b6f162ab3
[4] IntelRealSense SDK 2.0
(https://github.com/IntelRealSense/librealsense)
[5] pyrealsense2
(https://intelrealsense.github.io/librealsense/pyth
on_docs/_generated/pyrealsense2.html#module-
pyrealsense2)

X. Figures and Charts

Fig. 9: Back power circuit

18-500 Final Report: 12/8/2019

Fig. 10: Front power circuit

