
1
18-500 Final Project Report: 12/8/2019

LaSEEr
Authors: Enes Palaz, Eliana Cohen, Jake Zimmer: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—This project creates an open source laser show
system capable of transforming live video feed into a visual laser

output. Our creation of a Raspberry Pi HAT improves
accessibility of laser show systems for hobbyists, and our

software stack permits laser show enthusiasts to convert live
video feed into a format they can use on their existing hardware.

Index Terms- HAT, ILDA, Laser show, Raspberry Pi 4

I. INTRODUCTION
THIS PROJECT IMPROVES UPON EXISTING LASER-SHOW

TECHNOLOGY BY PROVIDING A HARDWARE AND SOFTWARE SYSTEM
THAT ALLOWS A USER TO CONVERT LIVE VIDEO FEED INTO A LASER
SHOW OUTPUT. THIS IS DESIGNED TO APPEAL TO HOBBYISTS WHO WISH
TO DEVELOP THEIR OWN LASER SHOW SYSTEMS. WHILE OTHER
RASPBERRY PI KITS EXIST, THEY CAN REQUIRE THE HOBBYIST TO DESIGN
THEIR OWN DAC CIRCUITRY AND MAY LACK HARDWARE SAFETY
SYSTEMS TO PREVENT THE HOBBYIST FROM EYE DAMAGE WHILE
WORKING WITH DANGEROUS LASER LIGHT LEVELS [1]. OTHER
NON-RASPBERRY PI LASER SHOW KITS LACK THE PROGRAMMABILITY OF
A RASPBERRY PI, AND MAY NOT ALLOW A HOBBYIST TO MODIFY THE
SYSTEM’S FUNCTIONALITY. THE SOFTWARE WE DESIGN ALSO PROVIDES
A FUNCTIONALITY REQUESTED BY THE LASERSHOW COMMUNITY THAT
DOES NOT CURRENTLY EXIST FOR FREE ON THE MARKET. BY
CONVERTING LIVE VIDEO FEED TO ILDA FORMAT, THE VIDEO FEED
FRAMES CAN BE RUN ON MOST LASERSHOW HARDWARE SYSTEMS. IN
ORDER FOR OUR SYSTEM TO BE OF USE, WE MUST BE ABLE TO MEET THE
STANDARDS OF OTHER LASER SYSTEMS.

IN ORDER FOR THIS PROJECT TO BE SUCCESSFUL, WE MUST BE
ABLE TO PROVIDE A HARDWARE SYSTEM THAT CAN PERFORM TO SIMILAR
STANDARDS AS OTHER HARDWARE SYSTEMS FOR THE SAME PRICE. OUR
SYSTEM SHOULD BE EASILY INTEGRATABLE ONTO OTHER RASPBERRY PI
4 BOARDS, AND OUR SOFTWARE STACK SHOULD PRODUCE
STANDARDIZED ILDA FRAMES FOR USE ON OTHER LASER HARDWARE
SYSTEMS.

II. DESIGN REQUIREMENTS
WE MUST ENSURE THAT THE SYSTEM IS ABLE TO OUTPUT

VIDEO FRAMES AT A RATE OF 10/FPS. THIS IS THE MINIMUM RATE FOR
HUMAN MOTION RECOGNITION. WE WILL MEASURE THIS THROUGH
MEASURING THE DIFFERENCE IN THE TIME A FRAME IS CAPTURED BY THE
CAMERA TO THE TIME A FRAME IS OUTPUT AS DAC POINTS TO THE
LASER’S GLAVOS, AND BY RECORDING THE VISUAL LASER FRAMES WITH
A SLOW MOTION CAMERA FOR ONE SECOND AND ENSURING TEN DISTINCT
FRAMES WERE DRAWN.

WE MUST ENSURE OUR HARDWARE SYSTEM IS CAPABLE OF
DRAWING ILDA FRAMES OF 12K POINTS PER SECOND, WHICH IS
EQUIVALENT TO TEN 1.2K POINT ILDA FRAMES PER SECOND. WE
MUST ALSO ENSURE OUR HARDWARE CAN DRAW THE STANDARD ILDA

TEST IMAGE. TO CONFIRM THIS, WE WILL FOLLOW THE STANDARD
ILDA TEST IMAGE CALIBRATION PROCEDURE, AND OUR HARDWARE
MUST BE ABLE TO PROPERLY RENDER THE TEST IMAGE. WE MUST ALSO
ENSURE TEN DISTINCT 1.2K POINT ILDA FRAMES ARE ABLE TO BE
DRAWN IN A ONE SECOND PERIOD, WHICH WE CAN VERIFY THROUGH
CAPTURING THE FRAMES WITH A SLOW MOTION CAMERA.

WE MUST ENSURE THAT OUR SAFETY SUBSYSTEM SHALL
NEVER ALLOW THE LASERS TO PERSIST IN AN UNSAFE STATE FOR MORE
THAN 100MS. HUMAN REACTION TIME IS APPROXIMATELY 1/4 OF A
SECOND, AND OUR SYSTEM MUST BE ABLE TO SHUT OFF THE LASERS
FASTER THAN HUMAN REACTION TIME IN ORDER TO MINIMIZE EXPOSURE
TO DANGEROUS AMOUNT OF LIGHT. WE WILL VERIFY THIS SYSTEM BY
ATTEMPTING TO RUN UNSAFE ILDA IMAGES WITH BRIGHTNESS LEVELS
AND MOVEMENT TIMES OUTSIDE OF LASER SAFETY STANDARDS.

WE MUST ENSURE THAT THE DISPLAYED LASER FRAME IS
VISIBLE IN A ROOM WITH LIGHT-LEVELS OF 50 LUMENS PER SQUARE
FOOT. THIS ENSURES THE LASER OUTPUT IS ABLE TO BE USED IN A
VARIETY OF LIGHT-LEVEL ENVIRONMENTS. THE VISIBILITY OF
DISPLAYED LASER FRAME IS CALCULATED FROM DATA OBTAINED FROM
LASER MODULE DATASHEET AND CIE (INTERNATIONAL COMMISSION
ON ILLUMINATION) COLOR WAVELENGTH TO LUMENS/WATT TABLE, THE
DETAILS OF THIS CALCULATION CAN BE SEEN IN DESIGN TRADE
STUDIES SECTION.

LASTLY, WE MUST VERIFY THAT OUR COLOR PICKING CODE
CAN PICK PROPER COLORS FROM IMAGES AND PROJECTION LASER COLOR
MATCHES THE SAMPLED COLOR POINTS. OUR METHOD FOR VERIFYING
THIS IS TESTING 3 DIFFERENT STATIC IMAGES WITH OUT PIPELINE AND
OBSERVING THE COLOR PROJECTED POINTS. DETAILS AND STATIC
IMAGES USED IN THIS VERIFICATION IS ALSO GIVEN IN DESIGN TRADE
STUDIES SECTION.

2
18-500 Final Project Report: 12/8/2019

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system makes use of a Raspberry Pi 4, a Camera, a 2DOF
Galvanometer system with Galvo PID drivers, a red, blue and
green laser. We have also built a custom hardware shield with
a built in DAC and safety monitoring microcontroller, and
custom housing for the laser and galvos. High-level view of
our system can be seen in Figure 1.

The Raspberry Pi 4 runs our system’s High-level
software responsible for converting camera feed into ILDA
laser format. This converted image data is then piped to our
low level software, which contains our DAC interface. Using
SPI, the Raspberry Pi 4 communicates with the DAC to output
image point values to our custom Raspberry Pi 4 HAT, the
on-board DAC converts the point data into analog signals, and

these signals are connected to their associated analog outputs -
the X and Y galvos - and are also connected to our safety
monitoring microcontroller. The safety monitoring
microcontroller ensures that based on the analog outputs fed to
the rest of the system, the system is still at a safe laser state.
This is determined by the analog speed of the galvos
computed with the brightness of each laser, and if those values
are exceeded, the software on the safety subsystem will
initiate a killswitch command, turning off the other lasers.

Our system has slightly changed from our previous
report in that we use an off-the-shelf RGB laser board, as it
provided a clearer laser stream. All other hardware was kept
the same. We also added additional point-image filtering
through interpolation as too many points to process were
slowing down the system.

Fig. 1. System picture of the broad system

3
18-500 Final Project Report: 12/8/2019

IV. DESIGN TRADE STUDIES
In order to satisfy our requirements, our high-level

software must be able to convert camera video feed into an
ILDA point data structure at a rate of no longer than 100ms.

ILDA format is defined according to the ILDA
Technical Committee’s ILDA Image Data Transfer Format
Specification document. This is a standardized file type used
by the lasershow industry. We decided to use this format in
order to allow any standard laser hardware to use our software
stack. While we could have designed a more efficient data
structure for our specific Raspberry Pi usage, we decided to
use a standardized format to allow a larger audience to benefit
from our video feed to laser input software.

Fig. 2. High level view of ILDA format

For our system, we’re using Format 5 ILDA data
records. This is due to having RGB lasers, and since we’re
only working in a 2D coordinate space. While some systems
may permit X, Y, and Z coordinate spaces, as our system
doesn’t read in any depth data from the Camera we’re using,
we decided to only mirror a 2D image in laser format. Since
most users may not have access to a depth camera, this was
chosen as a more affordable option.

Fig. 3. Format 5 ILDA data record

An ILDA file consists of a series of data records, which
correlate to points in an image. Using these points, it is
possible to calculate the analog outputs that move the galvos
so that a point is projected by the galvo-laser system that
corresponds to the ILDA’s 2D coordinate system.

These data points from the ILDA data records are
used to control the galvanometers and laser brightness through

DAC (Digital to Analog Converter). Our DAC system should
update 5 different channels of outputs every

 t = 0.1s
of points in ILDA F rame

Equation 1
to successfully draw the frame. Since our requirements for
points in a frame is limited by 1200 points per frame, our
DAC should be able to update its values minimum every 83
microseconds. For this purpose, we had to make a decision
between multiple DACs or using a single multi-channel DAC.
After discussions, we decided to use a multi-channel DAC
with trigger feature to update all of 5 data points
simultaneously. Our designs use Texas Instruments’
DAC60508 8-channel 12 bit digital to analog converters to
satisfy these requirements. This DAC can update all 8
channels with single command with update time of 1
microseconds so it is a suitable choice for our design
requirements.

Our design makes use of the open source PiGPIO

library. We decided not to use the more common WiringPi
GPIO Interface library because the WiringPi library uses the
Linux SPI handler which has a maximum new transfers per
second of approximately 70 thousand. With six transfers per
point, achieving 12k points per second was simply at the upper
limit of the library. With PiGPIO, we are able to perform
hundreds of thousands of transfers per second ensuring that
the system is no longer bottlenecked by SPI but rather by the
physical limitations of the galvanometers and of heat
dissipation. We could have also created our own library but
decided against it because it may have introduced bugs into
later stages of the project and would have locked the project
into using only the Raspberry Pi 4. We want to potentially
release the source code for this project to others and so
limiting future users to a certain Raspberry Pi seemed less
optimal.

The design requirements of our laser projector setup
are mainly based on individually defined subsystem
requirements that are chosen to ensure a smooth projection for
human eye. In this part of the section, test results of
requirements explained in Design Requirements section will
be displayed on per specification and subsystem basis.

A. 10 Frames per Second Projection
Main performance focused design specification of

our system was to be able to project at 10 frames per second
with maximum points per frame is set to 1200 points. This
specification was a factor in both hardware and software
design aspects of the system. For all of our subsystems that
has to satisfy this requirement we determined individual ways
of measuring the performance. Lastly, a performance test
including all these parts added to each other is also reported.

First subsystem in our projection pipeline that has to

comply with frame rate requirement is the High-Level
Software subsystem that is responsible with grabbing frames

4
18-500 Final Project Report: 12/8/2019

from the camera, running edge detection and converting found
edges in to ILDA format to be placed in a double buffer. It
was key for this subsystem to work at fast as possible to not
create a bottleneck in provision of frames to our low-level
software subsystem. In our initial designs this system had been
planned to be coded in Python but after getting stuck around
6-7 frames per second at 1200 points per frame we decided to
code the whole pipeline in C++. The testing method that is
used to measure FPS is using timers that keep time from the
start of our subsystem receiving frame from the camera to
placement of created ILDA structure into the double buffer.
The results of our measurements are shown in Figure 4. As
seen from the table our High-level subsystem design surpasses
our initial requirement of 10 FPS at 1200 points per frame
since all the samples are way below 100ms conversion time
for 10FPS and doesn’t create a bottleneck for following
subsystems in the pipeline. Our average conversion time is
32.64 ms per frame, which makes our frame rate
approximately 30 frames per second, which is three times
above our spec requirements.

Fig. 4. Effects of Point Number of Conversion Time

Secondly, as the next part of our pipeline, low-level

software subsystem receives produced ILDA frames from
double buffer and process these frames to send them to DAC
(Digital to Analog Converter) via SPI (Serial Peripheral
Interface). This part of pipeline has potential of being a
bottleneck since we know our high-level system is up-to spec
and our hardware can support 20K points per second which is
higher than 12K points per second requirement. For SPI, our
system communicates with the DAC at 50MHz SPI clock
frequency which is the maximum our DAC can support.
Calculations for timing requirements were explained
previously in the same section and calculations for delta
between points is given in Equation 1. As explained
previously, we know our DAC can support our timing
requirements. In order to test this, we selected a static image
(Figure X) to be projected through our pipeline with ~1200
points and recorded a slow-motion video footage of the
projection. By watching and analyzing this footage, we are
able to verify that projection is refreshed 10 times in a second
which satisfies out specification.

Lastly, for hardware subsystem, we didn’t need to do any
physical testing since we had datasheet values that showed our
galvanometers were able to support 20K points per second and
DAC was able to update its values every 1 microseconds. In
addition to these our test of whole pipeline showed us our
hardware components are able to support 12K per second
specification.

B. Safety System Specification
For the safety subsystem, ensuring that system causes

minimal harm to nearby users. Prolonged exposure to laser
light can cause blindness but temporary exposure can cause
flash blindness. Flash blindness is a temporary loss of vision
caused by exposure to bright objects. It is often experienced
when glancing into the sun. The length and severity of flash
blindness is determined by exposure time and so minimizing
this is important. The safety subsystem reacts to a lack of
changing inputs to the lasers and disables them after a certain
amount of time which we initially specified to be around
100ms due to it being approximately human reaction time and
it only being able to cause a few minutes of flash blindness at
our lasers powers and wavelengths.

While the adc can determine if there has not been a
change to the system at over 1MHz, it does not make sense to
check this fast because the DAC is only ever sending new
coordinates at approximately 10kHz. As such, the maximum
reasonable time is far shorter than 1Mhz. In the below, you
can see that the system has a 200Hz response time: a time
found to be optimal in testing.

Fig. 5. Response time between DAC stall and laser shutdown.

C. Laser Brightness of 50 Lumens
For laser projection, the brightness of the laser is key

for visibility. To project with proper visibility in a brightly lit
room, our specification require our laser to have 50 lumen
brightness. In order to calculate the brightness of our laser

5
18-500 Final Project Report: 12/8/2019

module in lumens, we are using the laser power levels from
our laser modules datasheet. Color, wavelength and power of
the laser is shown in Table 1.

Color Wavelength
(nm)

Power (mW) Lumen/Watt
(lm/W)

Red 638 100 130

Green 515 100 320

Blue 450 100 32

Table. 1 - Laser color, power and wavelength table

The total lumen value can be calculated with equation:
 ϕtotal = Kred * P red + Kblue * P blue + Kgreen * P green

Equation 2

As a result of this calculation we can see total Lumen value of
our alser setup is 48.2 lumens. Even though this number is
below our initial specification, with visual verification of the
laser brightness from our tests, we can conclude that it is
bright enough to be visible in a brightly lit room.

V. SYSTEM DESCRIPTION

A. Subsystem High Level Software

a. Our Frame to ILDA system handles taking in a frame
from the Raspberry Pi 4’s connected Camera and converting it
into an ILDA-standard frame. We’re using OpenCV to
package the incoming frame as C++ Mat data structure. We
then perform some image filtering which currently utilizes
Canny edge detection through OpenCV’s edge detection
libraries, and then converting that into a contour array through
OpenCV’s contour libraries. We also interpolate some of the

points in the contours to reduce excess points, which allows
images with the same clarity but greater drawing speed.

b. Once we finish packaging the contour structure, we
process that through a contour to ILDA function that takes in a
vector of vectors of points, and packages that into a char array
that follows the ILDA technical committee’s requirements for
an ILDA file. We pass the pointer of this ILDA char array to a
custom double buffer library that stores the passed in ILDA
frame and waits for the DAC interface to read from the double
buffer.

This process will continue for each new frame read
from the camera. The frame to ILDA process occurs in its own
thread on the Raspberry Pi 4, so as soon as it finishes
processing a frame and writing to the double buffer, it will
read a new frame from the Camera and begin processing the
new frame. This process occurs unders in under 100ms
(average of 32.6ms) in order to meet the requirement for
processing at 10/fps. Writes to the double buffer library will
override ‘stale’ frames. Frames are considered stale if they
haven’t yet been read by the DAC. This is considered a fair
trade-off as it is deemed more important to have up-to-date
frames than to use old video feed if the frame to ILDA thread
has to wait for a DAC read.

6
18-500 Final Project Report: 12/8/2019

Fig. 6. High Level Software System

B. Subsystem Low Level Software

Our low level software module handles the control of
galvanometers and lasers according to data buffered in the
double buffer. When system is started for the first time, the
low level software subsystem initializes the communication
with DAC and verifies that SPI communication between the
Raspberry Pi4 and DAC is functional. The verification for
successful communication is conducted by reading the
DEVICEID register of the DAC to verify we are talking to
the right module. After this verification is done, subsystem
continuously checks for a ready read ILDA frame in the
double buffer. When there is a frame ready to be drawn,
system starts reading the ILDA frame to find the timing
constraints by checking the number of data points in the
ILDA frame. This provides the system with the information
on how frequently it should update. After timing
information is extracted, the system starts reading points in
the given order and processes these points to map to proper

point in 12-bit range. Since we are using a 12-bit DAC and
brightness values for lasers are in the range of , 0, 255][
these should be mapped to proper number in . 0,][212 − 1
Similarly, for the X and Y coordinates of the ILDA points,
their values should be mapped to value from range that is in
640x480 image to values that would be transferred to
DAC’s 12 bit registers. In our ILDA conversion X and Y
coordinates of points from 640x480 image are mapped to
range . For this mapping center of the image − ,][215 215 − 1
corresponds to [0,0] points. Our DAC converts this range in
values in and sets [0,0] to left top corner of the 0,][212 − 1
image. This full range mapping works since we are using
full range of motion of our galvanometers.

7
18-500 Final Project Report: 12/8/2019

Fig. 7. Low Level Software System

Transfer of data points between low level software module
and DAC is done via Serial Peripheral Interface (SPI). Both
DAC and Raspberry Pi4 supports SPI clock speeds up to 50
MHz but our system design uses SPI clock set to 25MHz
because of the limitations of the library we use for SPI
communication. Top clock speed that our DAC support is 50
MHz. To successfully transfer an ILDA point to DAC, our
system should send 5 different write requests and a single
trigger request. Every request contains 3 bytes of information
so a single update takes 144 clock cycles to transfer. In
microseconds our single update will take 2.88 microseconds
for transfer and an additional 1 microsecond for the update of
galvanometer outputs. The total data write to DAC output time
of 3.88 microseconds is much faster than our minimum delta
between points time of 83.3 microseconds. This shows that
our low level system design can easily keep up with points per
second rate that we specified and will not be a bottleneck in
application.

After the transfer of all ILDA point data is completed,
our system goes into waiting mode for the delta time between

points to pass. When the timer reaches the delta, system reads
the next point and repeats the communication and trigger cycle
and all the points in the ILDA frame is read. When all the
points are transferred successfully, system requests another
ILDA frame from Double Buffer and if it is available, it is
directly used for drawing new points. If it is not available, the
system waits until a new frame is written into the buffer.

While we set our design requirements in a way that
there is always going to be frame available in the buffer since
we will be satisfying the 10 FPS specification and low level
software system times itself according to this specification, it
is possible that Raspberry Pi4 can lose performance for a
reason that is unknown to us. We don’t our system to cease its
operation in such scenarios. Therefore it is designed to wait
for available frame until it is terminated.

8
18-500 Final Project Report: 12/8/2019

C. Subsystem Custom Hardware

Fig. 8. Hardware Schematic

Fig. 9. Custom Raspberry Pi Hat

The custom hardware on this project contains the digital to
analog converter and the safety subsystem. For ease of
interfacing, these two components have been placed on a
board which will interface with the Raspberry Pi like a “Hat.”
This is best demonstrated in (8).

D. Safety Subsystem
Due to the dangerous nature of lasers, having a safety

subsystem to ensure that the total system does not enter an
unsafe state is crucial. Problems are likely to arise if the
software on the Raspberry Pi crashes in any state of the
computation pipeline. As such, as shown in (1), we have
decided to create a safety subsystem not contained on the

Raspberry Pi.

There are two types of danger associated with lasers: eye

damage and flash blindness. While none of the lasers we are
using would be able to cause real damage to the eye, they can
still cause flash blindness. Flash blindness is a condition in
which exposure to a bright light source causes temporary
blindness due to overwhelming the retinas. This condition,
while not permanent (except in rare cases such as nuclear
explosions), still causes discomfort and blindness that can last
up to a few minutes. As such, it is important to protect against
it.

For the safety subsystem, we have determined that at

minimum, the reaction time must be less than or equal to a
single frame’s worth of time. Ultimately, having a faster time
would be better because the faster the time, the safer the
system is. As such, we are currently using a STM32L031
microcontroller due to the fact that these high speed
microcontrollers have very quick analog to digital converters.

With a maximum sample speed of 1.14Msps. this

microcontroller will allow for quick reaction time. The lower
bound on reaction time is 4.385 microseconds as shown in
equation (1). Of course, there is also some overhead time for
interpreting this data and actually shutting down the lasers but
the quick speed of the analog to digital conversion ensures that
a major time sink is eliminated.

9
18-500 Final Project Report: 12/8/2019

Fig. 10. Safety Subsystem Block Diagram

While this 100ms response time definitely supplies
sufficient safety for lasers of our size, if this system was ever
to be used with higher power lasers a faster response would be
needed. If we can manage to get the performance we expect
out of the safety subsystem, it will even be suitable to ensure
that many higher powered lasers do not cause severe flash
blindness. The speed required to eliminate mitigate the
hazards can be seen in.

We tested this safety subsystem by sending an illegal frame

to the DAC. An example of such a frame would be one where
there is no galvanometer velocity and full laser brightness. We
used an oscilloscope connected to the laser output to measure
the length of time it takes to shut down the laser. Most lasers
have a very quick startup and shutdown time on the order of
nanoseconds and so measuring the signal going into the laser
itself is adequate to determine if it is actually emitting or not.

10
18-500 Final Project Report: 12/8/2019

Fig. 11. Laser ExposureTime and Brightness Level [2]

VI. PROJECT MANAGEMENT

A. Schedule
We’ve worked on the different subsystems of the

project in parallel, breaking it up into the high-level software,
low-level software, and hardware components. We’ve kept
mostly on schedule from the previous report, we had finished
merging our high-level software with our low-level software
by October 17th, and were able to test a single red laser demo.
By October 29th the hardware systems were finished, and by
December 2nd we had the whole system working with RGB
lasers and demo-able. By December 7th, we tweaked more
GPIO and filtering code and improved laser-output frame rate
that exceeds our 10fps requirement.

B. Team Member Responsibilities
Eliana Cohen: Primary responsibility is to implement a

method of converting an incoming video stream to a
vectorized ILDA compliant frame. Secondary responsibility is
to assist with hardware design.

Enes Palaz: Primary responsibility is to implement

hardware drivers to convert ILDA compliant frames to
commands for the DAC. Secondary Responsibility is to help
with video vectorization.

Jake Zimmer: Primary responsibility is to implement

physical hardware for the DAC and safety subsystem and to
write software for the safety subsystem. Secondary
responsibility is to help with low level hardware drivers.

Fig. 12. Milestone Chart

11
18-500 Final Project Report: 12/8/2019

C. Bill of Materials

Table. 3 - Detailed list of materials

As seen in Table 2, for the design part of the project we
tried to manage our budget carefully by lending parts from
campus resources for testing their performance and
specifications instead of directly buying them. Because of this
most of our main microprocessors are both listed as to be
bought and lent at the same time. We also tried to make use of
requesting samples from manufacturers like Texas Instruments
to reduce our costs and get access to varieties of similar
products like various DACs.

D. Risk Management
One of the problems we encountered with our

high-level software stack was speed when trying to convert
images. We initially implemented that stack using Python, and
when we found this implementation was too slow, we were
able to switch to a lower-level language for performance
improvement when we switched to C++. Speed was one of the
riskiest components of our project, as we needed to ensure that
we met the 10/fps requirement. Later on we found we were
throttled by GPIO speed, and switching our GPIO libraries
allowed us to output more points per second from the DAC.
Our current bottleneck is now the galvo’s speed, but we are
well within framerate specs with our galvo’s ability to draw
20k points per second.

VII. SUMMARY
Our system satisfies the requirements that were set

initially at a satisfactory manner. While we were able to hit
our initial specification goals, our selected hardware
capabilities prevent our system from scaling up properly with
increasing number of points in frames. One issue that we had
throughout our project is dropping frame rates with increasing
number of points. To address this issue with the hardware that
we currently had, we decided to create a controlled setup for

our demo with a white backdrop placed a user and camera. As
a future improvement, it would be a great challenge to make
the system scalable with increasing amount of points. Main
ways of doing this would include using faster hardware
components (like ADC, a computer and galvanometers) and
coding an adaptive conversion algorithm which would actively
change filtering parameters based on number of points in
received frames.

REFERENCES
[1] https://damow.net/building-a-laser-show/
[2] Wikipedia,

https://en.wikipedia.org/wiki/Laser_safety#/media/File:IEC60825_MPE
_W_s.png

https://damow.net/building-a-laser-show/
https://en.wikipedia.org/wiki/Laser_safety#/media/File:IEC60825_MPE_W_s.png
https://en.wikipedia.org/wiki/Laser_safety#/media/File:IEC60825_MPE_W_s.png

12
18-500 Final Project Report: 12/8/2019

Fig. 13. In-depth Milestone Chart

