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Abstract—This project creates an open source laser show 
system capable of transforming live video feed into a visual laser 

output. Our creation of a Raspberry Pi HAT improves 
accessibility of laser show systems for hobbyists, and our 

software stack permits laser show enthusiasts to convert live 
video feed into a format they can use on their existing hardware.  

 
Index Terms-  HAT, ILDA, Laser show, Raspberry Pi 4 

I. INTRODUCTION 
THIS PROJECT IMPROVES UPON EXISTING LASER-SHOW      

TECHNOLOGY BY PROVIDING A HARDWARE AND SOFTWARE SYSTEM        
THAT ALLOWS A USER TO CONVERT LIVE VIDEO FEED INTO A LASER            
SHOW OUTPUT. THIS IS DESIGNED TO APPEAL TO HOBBYISTS WHO WISH           
TO DEVELOP THEIR OWN LASER SHOW SYSTEMS. WHILE OTHER         
RASPBERRY PI KITS EXIST, THEY CAN REQUIRE THE HOBBYIST TO DESIGN           
THEIR OWN DAC CIRCUITRY AND MAY LACK HARDWARE SAFETY         
SYSTEMS TO PREVENT THE HOBBYIST FROM EYE DAMAGE WHILE         
WORKING WITH DANGEROUS LASER LIGHT LEVELS [1]. OTHER        
NON-RASPBERRY PI LASER SHOW KITS LACK THE PROGRAMMABILITY OF         
A RASPBERRY PI, AND MAY NOT ALLOW A HOBBYIST TO MODIFY THE            
SYSTEM’S FUNCTIONALITY. THE SOFTWARE WE DESIGN ALSO PROVIDES        
A FUNCTIONALITY REQUESTED BY THE LASERSHOW COMMUNITY THAT        
DOES NOT CURRENTLY EXIST FOR FREE ON THE MARKET. BY          
CONVERTING LIVE VIDEO FEED TO ILDA FORMAT, THE VIDEO FEED          
FRAMES CAN BE RUN ON MOST LASERSHOW HARDWARE SYSTEMS. IN          
ORDER FOR OUR SYSTEM TO BE OF USE, WE MUST BE ABLE TO MEET THE               
STANDARDS OF OTHER LASER SYSTEMS. 

IN ORDER FOR THIS PROJECT TO BE SUCCESSFUL, WE MUST BE           
ABLE TO PROVIDE A HARDWARE SYSTEM THAT CAN PERFORM TO SIMILAR           
STANDARDS AS OTHER HARDWARE SYSTEMS FOR THE SAME PRICE. OUR          
SYSTEM SHOULD BE EASILY INTEGRATABLE ONTO OTHER RASPBERRY PI         
4 BOARDS, AND OUR SOFTWARE STACK SHOULD PRODUCE        
STANDARDIZED ILDA FRAMES FOR USE ON OTHER LASER HARDWARE         
SYSTEMS. 

II. DESIGN REQUIREMENTS 
WE MUST ENSURE THAT THE SYSTEM IS ABLE TO OUTPUT 

VIDEO FRAMES AT A RATE OF 10/FPS. THIS IS THE MINIMUM RATE FOR 
HUMAN MOTION RECOGNITION. WE WILL MEASURE THIS THROUGH 
MEASURING THE DIFFERENCE IN THE TIME A FRAME IS CAPTURED BY THE 
CAMERA TO THE TIME A FRAME IS OUTPUT AS DAC POINTS TO THE 
LASER’S GLAVOS, AND BY RECORDING THE VISUAL LASER FRAMES WITH 
A SLOW MOTION CAMERA FOR ONE SECOND AND ENSURING TEN DISTINCT 
FRAMES WERE DRAWN. 

WE MUST ENSURE OUR HARDWARE SYSTEM IS CAPABLE OF 
DRAWING ILDA FRAMES OF 12K POINTS PER SECOND, WHICH IS 
EQUIVALENT TO TEN 1.2K POINT ILDA FRAMES PER SECOND. WE 
MUST ALSO ENSURE OUR HARDWARE CAN DRAW THE STANDARD ILDA 

TEST IMAGE. TO CONFIRM THIS, WE WILL FOLLOW THE STANDARD 
ILDA TEST IMAGE CALIBRATION PROCEDURE, AND OUR HARDWARE 
MUST BE ABLE TO PROPERLY RENDER THE TEST IMAGE. WE MUST ALSO 
ENSURE TEN DISTINCT 1.2K POINT ILDA FRAMES ARE ABLE TO BE 
DRAWN IN A ONE SECOND PERIOD, WHICH WE CAN VERIFY THROUGH 
CAPTURING THE FRAMES WITH A SLOW MOTION CAMERA.  

WE MUST ENSURE THAT OUR SAFETY SUBSYSTEM SHALL 
NEVER ALLOW THE LASERS TO PERSIST IN AN UNSAFE STATE FOR MORE 
THAN 100MS. HUMAN REACTION TIME IS APPROXIMATELY 1/4 OF A 
SECOND, AND OUR SYSTEM MUST BE ABLE TO SHUT OFF THE LASERS 
FASTER THAN HUMAN REACTION TIME IN ORDER TO MINIMIZE EXPOSURE 
TO DANGEROUS AMOUNT OF LIGHT. WE WILL VERIFY THIS SYSTEM BY 
ATTEMPTING TO RUN UNSAFE ILDA IMAGES WITH BRIGHTNESS LEVELS 
AND MOVEMENT TIMES OUTSIDE OF LASER SAFETY STANDARDS. 

WE MUST ENSURE THAT THE DISPLAYED LASER FRAME IS 
VISIBLE IN A ROOM WITH LIGHT-LEVELS OF 50 LUMENS PER SQUARE 
FOOT. THIS ENSURES THE LASER OUTPUT IS ABLE TO BE USED IN A 
VARIETY OF LIGHT-LEVEL ENVIRONMENTS.  THE VISIBILITY OF 
DISPLAYED LASER FRAME IS CALCULATED FROM DATA OBTAINED FROM 
LASER MODULE DATASHEET AND CIE (INTERNATIONAL COMMISSION 
ON ILLUMINATION) COLOR WAVELENGTH TO LUMENS/WATT TABLE, THE 
DETAILS OF THIS CALCULATION CAN BE SEEN IN DESIGN TRADE 
STUDIES SECTION.  

LASTLY, WE MUST VERIFY THAT OUR COLOR PICKING CODE 
CAN PICK PROPER COLORS FROM IMAGES AND PROJECTION LASER COLOR 
MATCHES THE SAMPLED COLOR POINTS. OUR METHOD FOR VERIFYING 
THIS IS TESTING 3 DIFFERENT STATIC IMAGES WITH OUT PIPELINE AND 
OBSERVING THE COLOR PROJECTED POINTS. DETAILS AND STATIC 
IMAGES USED IN THIS VERIFICATION IS ALSO GIVEN IN DESIGN TRADE 
STUDIES SECTION. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Our system makes use of a Raspberry Pi 4, a Camera, a 2DOF 
Galvanometer system with Galvo PID drivers, a red, blue and 
green laser. We have also built a custom hardware shield with 
a built in DAC and safety monitoring microcontroller, and 
custom housing for the laser and galvos. High-level view of 
our system can be seen in Figure 1. 

The Raspberry Pi 4 runs our system’s High-level        
software responsible for converting camera feed into ILDA        
laser format. This converted image data is then piped to our           
low level software, which contains our DAC interface. Using         
SPI, the Raspberry Pi 4 communicates with the DAC to output  
image point values to our custom Raspberry Pi 4 HAT, the           
on-board DAC converts the point data into analog signals, and          

these signals are connected to their associated analog outputs -          
the X and Y galvos - and are also connected to our safety             
monitoring microcontroller. The safety monitoring     
microcontroller ensures that based on the analog outputs fed to          
the rest of the system, the system is still at a safe laser state.              
This is determined by the analog speed of the galvos          
computed with the brightness of each laser, and if those values           
are exceeded, the software on the safety subsystem will         
initiate a killswitch command, turning off the other lasers. 

Our system has slightly changed from our previous        
report in that we use an off-the-shelf RGB laser board, as it            
provided a clearer laser stream. All other hardware was kept          
the same. We also added additional point-image filtering        
through interpolation as too many points to process were         
slowing down the system. 

 
Fig. 1. System picture of the broad system 
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IV. DESIGN TRADE STUDIES 
In order to satisfy our requirements, our high-level 

software must be able to convert camera video feed into an 
ILDA point data structure at a rate of no longer than 100ms.  
 

ILDA format is defined according to the ILDA 
Technical Committee’s ILDA Image Data Transfer Format 
Specification document. This is a standardized file type used 
by the lasershow industry. We decided to use this format in 
order to allow any standard laser hardware to use our software 
stack. While we could have designed a more efficient data 
structure for our specific Raspberry Pi usage, we decided to 
use a  standardized format to allow a larger audience to benefit 
from our video feed to laser input software. 
 

 
Fig. 2. High level view of ILDA format 

For our system, we’re using Format 5 ILDA data         
records. This is due to having RGB lasers, and since we’re           
only working in a 2D coordinate space. While some systems          
may permit X, Y, and Z coordinate spaces, as our system           
doesn’t read in any depth data from the Camera we’re using,           
we decided to only mirror a 2D image in laser format. Since            
most users may not have access to a depth camera, this was            
chosen as a more affordable option. 

 

Fig. 3. Format 5 ILDA data record 

An ILDA file consists of a series of data records, which           
correlate to points in an image. Using these points, it is           
possible to calculate the analog outputs that move the galvos          
so that a point is projected by the galvo-laser system that           
corresponds to the ILDA’s 2D coordinate system. 

These data points from the ILDA data records are         
used to control the galvanometers and laser brightness through         

DAC (Digital to Analog Converter). Our DAC system should         
update 5 different channels of outputs every 

  t = 0.1s
# of  points in ILDA F rame    

Equation 1 
to successfully draw the frame. Since our requirements for         
points in a frame is limited by 1200 points per frame, our            
DAC should be able to update its values minimum every 83           
microseconds. For this purpose, we had to make a decision          
between multiple DACs or using a single multi-channel DAC.         
After discussions, we decided to use a multi-channel DAC         
with trigger feature to update all of 5 data points          
simultaneously. Our designs use Texas Instruments’      
DAC60508 8-channel 12 bit digital to analog converters to         
satisfy these requirements. This DAC can update all 8         
channels with single command with update time of 1         
microseconds so it is a suitable choice for our design          
requirements. 

 
Our design makes use of the open source PiGPIO         

library. We decided not to use the more common WiringPi          
GPIO Interface library because the WiringPi library uses the         
Linux SPI handler which has a maximum new transfers per          
second of approximately 70 thousand. With six transfers per         
point, achieving 12k points per second was simply at the upper           
limit of the library. With PiGPIO, we are able to perform           
hundreds of thousands of transfers per second ensuring that         
the system is no longer bottlenecked by SPI but rather by the            
physical limitations of the galvanometers and of heat        
dissipation. We could have also created our own library but          
decided against it because it may have introduced bugs into          
later stages of the project and would have locked the project           
into using only the Raspberry Pi 4. We want to potentially           
release the source code for this project to others and so           
limiting future users to a certain Raspberry Pi seemed less          
optimal. 
 

The design requirements of our laser projector setup         
are mainly based on individually defined subsystem       
requirements that are chosen to ensure a smooth projection for          
human eye. In this part of the section, test results of           
requirements explained in Design Requirements section will       
be displayed on per specification and subsystem basis. 
  

A. 10 Frames per Second Projection 
Main performance focused design specification of      

our system was to be able to project at 10 frames per second             
with maximum points per frame is set to 1200 points. This           
specification was a factor in both hardware and software         
design aspects of the system. For all of our subsystems that           
has to satisfy this requirement we determined individual ways         
of measuring the performance. Lastly, a performance test        
including all these parts added to each other is also reported. 

 
First subsystem in our projection pipeline that has to         

comply with frame rate requirement is the High-Level        
Software subsystem that is responsible with grabbing frames        
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from the camera, running edge detection and converting found         
edges in to ILDA format to be placed in a double buffer. It             
was key for this subsystem to work at fast as possible to not             
create a bottleneck in provision of frames to our low-level          
software subsystem. In our initial designs this system had been          
planned to be coded in Python but after getting stuck around           
6-7 frames per second at 1200 points per frame we decided to            
code the whole pipeline in C++. The testing method that is           
used to measure FPS is using timers that keep time from the            
start of our subsystem receiving frame from the camera to          
placement of created ILDA structure into the double buffer.         
The results of our measurements are shown in Figure 4. As           
seen from the table our High-level subsystem design surpasses         
our initial requirement of 10 FPS at 1200 points per frame           
since all the samples are way below 100ms conversion time          
for 10FPS and doesn’t create a bottleneck for following         
subsystems in the pipeline. Our average conversion time is         
32.64 ms per frame, which makes our frame rate         
approximately 30 frames per second, which is three times         
above our spec requirements. 

Fig. 4. Effects of Point Number of Conversion Time 

 
Secondly, as the next part of our pipeline, low-level         

software subsystem receives produced ILDA frames from       
double buffer and process these frames to send them to DAC           
(Digital to Analog Converter) via SPI (Serial Peripheral        
Interface). This part of pipeline has potential of being a          
bottleneck since we know our high-level system is up-to spec          
and our hardware can support 20K points per second which is           
higher than 12K points per second requirement. For SPI, our          
system communicates with the DAC at 50MHz SPI clock         
frequency which is the maximum our DAC can support.         
Calculations for timing requirements were explained      
previously in the same section and calculations for delta         
between points is given in Equation 1. As explained         
previously, we know our DAC can support our timing         
requirements. In order to test this, we selected a static image           
(Figure X) to be projected through our pipeline with ~1200          
points and recorded a slow-motion video footage of the         
projection. By watching and analyzing this footage, we are         
able to verify that projection is refreshed 10 times in a second            
which satisfies out specification. 

Lastly, for hardware subsystem, we didn’t need to do any          
physical testing since we had datasheet values that showed our          
galvanometers were able to support 20K points per second and          
DAC was able to update its values every 1 microseconds. In           
addition to these our test of whole pipeline showed us our           
hardware components are able to support 12K per second         
specification. 
 

B. Safety System Specification 
For the safety subsystem, ensuring that system causes 

minimal harm to nearby users. Prolonged exposure to laser 
light can cause blindness but temporary exposure can cause 
flash blindness. Flash blindness is a temporary loss of vision 
caused by exposure to bright objects. It is often experienced 
when glancing into the sun. The length and severity of flash 
blindness is determined by exposure time and so minimizing 
this is important. The safety subsystem reacts to a lack of 
changing inputs to the lasers and disables them after a certain 
amount of time which we initially specified to be around 
100ms due to it being approximately human reaction time and 
it only being able to cause a few minutes of flash blindness at 
our lasers powers and wavelengths. 

While the adc can determine if there has not been a 
change to the system at over 1MHz, it does not make sense to 
check this fast because the DAC is only ever sending new 
coordinates at approximately 10kHz. As such, the maximum 
reasonable time is far shorter than 1Mhz. In the below, you 
can see that the system has a 200Hz response time: a time 
found to be optimal in testing. 
 

 
Fig. 5. Response time between DAC stall and laser shutdown. 

 

C. Laser Brightness of 50 Lumens 
For laser projection, the brightness of the laser is key 

for visibility. To project with proper visibility in a brightly lit 
room, our specification require our laser to have 50 lumen 
brightness. In order to calculate the brightness of our laser 
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module in lumens, we are using the laser power levels from 
our laser modules datasheet. Color, wavelength and power of 
the laser is shown in Table 1. 
 

Color Wavelength 
(nm) 

Power (mW) Lumen/Watt 
(lm/W) 

Red 638 100 130 

Green 515 100 320 

Blue 450 100 32 

Table. 1 - Laser color, power and wavelength table 
 

The total lumen value can be calculated with equation: 
   ϕtotal = Kred * P red + Kblue * P blue + Kgreen * P green  

Equation 2 
 

As a result of this calculation we can see total Lumen value of 
our alser setup is 48.2 lumens. Even though this number is 
below our initial specification, with visual verification of the 
laser brightness from our tests, we can conclude that it is 
bright enough to be visible in a brightly lit room. 

V. SYSTEM DESCRIPTION 

A. Subsystem High Level Software 

a. Our Frame to ILDA system handles taking in a frame 
from the Raspberry Pi 4’s connected Camera and converting it 
into an ILDA-standard frame. We’re using OpenCV to 
package the incoming frame as C++ Mat data structure. We 
then perform some image filtering which currently utilizes 
Canny edge detection through OpenCV’s edge detection 
libraries, and then converting that into a contour array through 
OpenCV’s contour libraries. We also interpolate some of the 

points in the contours to reduce excess points, which allows 
images with the same clarity but greater drawing speed. 

b. Once we finish packaging the contour structure, we 
process that through a contour to ILDA function that takes in a 
vector of vectors of points, and packages that into a char array 
that follows the ILDA technical committee’s requirements for 
an ILDA file. We pass the pointer of this ILDA char array to a 
custom double buffer library that stores the passed in ILDA 
frame and waits for the DAC interface to read from the double 
buffer. 

This process will continue for each new frame read         
from the camera. The frame to ILDA process occurs in its own            
thread on the Raspberry Pi 4, so as soon as it finishes            
processing a frame and writing to the double buffer, it will           
read a new frame from the Camera and begin processing the           
new frame. This process occurs unders in under 100ms         
(average of 32.6ms) in order to meet the requirement for          
processing at 10/fps. Writes to the double buffer library will          
override ‘stale’ frames. Frames are considered stale if they         
haven’t yet been read by the DAC. This is considered a fair            
trade-off as it is deemed more important to have up-to-date          
frames than to use old video feed if the frame to ILDA thread             
has to wait for a DAC read. 
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Fig. 6. High Level Software System 

  
B. Subsystem Low Level Software 

Our low level software module handles the control of         
galvanometers and lasers according to data buffered in the         
double buffer. When system is started for the first time, the           
low level software subsystem initializes the communication       
with DAC and verifies that SPI communication between the         
Raspberry Pi4 and DAC is functional. The verification for         
successful communication is conducted by reading the       
DEVICEID register of the DAC to verify we are talking to           
the right module. After this verification is done, subsystem         
continuously checks for a ready read ILDA frame in the          
double buffer. When there is a frame ready to be drawn,           
system starts reading the ILDA frame to find the timing          
constraints by checking the number of data points in the          
ILDA frame. This provides the system with the information         
on how frequently it should update. After timing        
information is extracted, the system starts reading points in         
the given order and processes these points to map to proper           

point in 12-bit range. Since we are using a 12-bit DAC and            
brightness values for lasers are in the range of ,         0, 255][   
these should be mapped to proper number in .        0, ][ 212 − 1  
Similarly, for the X and Y coordinates of the ILDA points,           
their values should be mapped to value from range that is in            
640x480 image to values that would be transferred to         
DAC’s 12 bit registers. In our ILDA conversion X and Y           
coordinates of points from 640x480 image are mapped to         
range . For this mapping center of the image − , ][ 215 215 − 1         
corresponds to [0,0] points. Our DAC converts this range in          
values in and sets [0,0] to left top corner of the  0, ][ 212 − 1           
image. This full range mapping works since we are using          
full range of motion of our galvanometers. 
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Fig. 7. Low Level Software System 

Transfer of data points between low level software module         
and DAC is done via Serial Peripheral Interface (SPI). Both          
DAC and Raspberry Pi4 supports SPI clock speeds up to 50           
MHz but our system design uses SPI clock set to 25MHz           
because of the limitations of the library we use for SPI           
communication. Top clock speed that our DAC support is 50          
MHz. To successfully transfer an ILDA point to DAC, our          
system should send 5 different write requests and a single          
trigger request. Every request contains 3 bytes of information         
so a single update takes 144 clock cycles to transfer. In           
microseconds our single update will take 2.88 microseconds        
for transfer and an additional 1 microsecond for the update of           
galvanometer outputs. The total data write to DAC output time          
of 3.88 microseconds is much faster than our minimum delta          
between points time of 83.3 microseconds. This shows that         
our low level system design can easily keep up with points per            
second rate that we specified and will not be a bottleneck in            
application. 

After the transfer of all ILDA point data is completed,          
our system goes into waiting mode for the delta time between           

points to pass. When the timer reaches the delta, system reads           
the next point and repeats the communication and trigger cycle          
and all the points in the ILDA frame is read. When all the             
points are transferred successfully, system requests another       
ILDA frame from Double Buffer and if it is available, it is            
directly used for drawing new points. If it is not available, the            
system waits until a new frame is written into the buffer. 

While we set our design requirements in a way that          
there is always going to be frame available in the buffer since            
we will be satisfying the 10 FPS specification and low level           
software system times itself according to this specification, it         
is possible that Raspberry Pi4 can lose performance for a          
reason that is unknown to us. We don’t our system to cease its             
operation in such scenarios. Therefore it is designed to wait          
for available frame until it is terminated. 
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C. Subsystem Custom Hardware  

Fig. 8. Hardware Schematic 

 

 
Fig. 9. Custom Raspberry Pi Hat 

The custom hardware on this project contains the digital to          
analog converter and the safety subsystem. For ease of         
interfacing, these two components have been placed on a         
board which will interface with the Raspberry Pi like a “Hat.”           
This is best demonstrated in (8). 

D. Safety Subsystem 
Due to the dangerous nature of lasers, having a safety          

subsystem to ensure that the total system does not enter an           
unsafe state is crucial. Problems are likely to arise if the           
software on the Raspberry Pi crashes in any state of the           
computation pipeline. As such, as shown in (1), we have          
decided to create a safety subsystem not contained on the  

Raspberry Pi. 
 
There are two types of danger associated with lasers: eye          

damage and flash blindness. While none of the lasers we are           
using would be able to cause real damage to the eye, they can             
still cause flash blindness. Flash blindness is a condition in          
which exposure to a bright light source causes temporary         
blindness due to overwhelming the retinas. This condition,        
while not permanent (except in rare cases such as nuclear          
explosions), still causes discomfort and blindness that can last         
up to a few minutes. As such, it is important to protect against             
it. 

 
For the safety subsystem, we have determined that at         

minimum, the reaction time must be less than or equal to a            
single frame’s worth of time. Ultimately, having a faster time          
would be better because the faster the time, the safer the           
system is. As such, we are currently using a STM32L031          
microcontroller due to the fact that these high speed         
microcontrollers have very quick analog to digital converters.  

 
With a maximum sample speed of 1.14Msps. this        

microcontroller will allow for quick reaction time. The lower         
bound on reaction time is 4.385 microseconds as shown in          
equation (1). Of course, there is also some overhead time for           
interpreting this data and actually shutting down the lasers but          
the quick speed of the analog to digital conversion ensures that           
a major time sink is eliminated. 
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Fig. 10. Safety Subsystem Block Diagram 

While this 100ms response time definitely supplies       
sufficient safety for lasers of our size, if this system was ever            
to be used with higher power lasers a faster response would be            
needed. If we can manage to get the performance we expect           
out of the safety subsystem, it will even be suitable to ensure            
that many higher powered lasers do not cause severe flash          
blindness. The speed required to eliminate mitigate the        
hazards can be seen in. 

 
We tested this safety subsystem by sending an illegal frame          

to the DAC. An example of such a frame would be one where             
there is no galvanometer velocity and full laser brightness. We          
used an oscilloscope connected to the laser output to measure          
the length of time it takes to shut down the laser. Most lasers             
have a very quick startup and shutdown time on the order of            
nanoseconds and so measuring the signal going into the laser          
itself is adequate to determine if it is actually emitting or not. 
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Fig. 11. Laser ExposureTime and Brightness Level [2] 

VI. PROJECT MANAGEMENT 

A. Schedule 
We’ve worked on the different subsystems of the 

project in parallel, breaking it up into the high-level software, 
low-level software, and hardware components. We’ve kept 
mostly on schedule from the previous report, we had finished 
merging our high-level software with our low-level software 
by October 17th, and were able to test a single red laser demo. 
By October 29th the hardware systems were finished, and by 
December 2nd we had the whole system working with RGB 
lasers and demo-able. By December 7th, we tweaked more 
GPIO and filtering code and improved laser-output frame rate 
that exceeds our 10fps requirement.  

B. Team Member Responsibilities 
Eliana Cohen: Primary responsibility is to implement a        

method of converting an incoming video stream to a         
vectorized ILDA compliant frame. Secondary responsibility is       
to assist with hardware design. 

 
Enes Palaz: Primary responsibility is to implement       

hardware drivers to convert ILDA compliant frames to        
commands for the DAC. Secondary Responsibility is to help         
with video vectorization. 

 
Jake Zimmer: Primary responsibility is to implement       

physical hardware for the DAC and safety subsystem and to          
write software for the safety subsystem. Secondary       
responsibility is to help with low level hardware drivers. 

 
Fig. 12. Milestone Chart 
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C. Bill of Materials 
 

 
Table. 3 - Detailed list of materials 
 

As seen in Table 2, for the design part of the project we             
tried to manage our budget carefully by lending parts from          
campus resources for testing their performance and       
specifications instead of directly buying them. Because of this         
most of our main microprocessors are both listed as to be           
bought and lent at the same time. We also tried to make use of              
requesting samples from manufacturers like Texas Instruments       
to reduce our costs and get access to varieties of similar           
products like various DACs. 

D. Risk Management 
One of the problems we encountered with our        

high-level software stack was speed when trying to convert         
images. We initially implemented that stack using Python, and         
when we found this implementation was too slow, we were          
able to switch to a lower-level language for performance         
improvement when we switched to C++. Speed was one of the           
riskiest components of our project, as we needed to ensure that           
we met the 10/fps requirement. Later on we found we were           
throttled by GPIO speed, and switching our GPIO libraries         
allowed us to output more points per second from the DAC.           
Our current bottleneck is now the galvo’s speed, but we are           
well within framerate specs with our galvo’s ability to draw          
20k points per second. 
 

VII. SUMMARY 
Our system satisfies the requirements that were set        

initially at a satisfactory manner. While we were able to hit           
our initial specification goals, our selected hardware       
capabilities prevent our system from scaling up properly with         
increasing number of points in frames. One issue that we had           
throughout our project is dropping frame rates with increasing         
number of points. To address this issue with the hardware that           
we currently had, we decided to create a controlled setup for           

our demo with a white backdrop placed a user and camera. As            
a future improvement, it would be a great challenge to make           
the system scalable with increasing amount of points. Main         
ways of doing this would include using faster hardware         
components (like ADC, a computer and galvanometers) and        
coding an adaptive conversion algorithm which would actively        
change filtering parameters based on number of points in         
received frames.  
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Fig. 13. In-depth Milestone Chart 

 


