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Abstract—ALTERAudio allows musicians to add complex      
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control. Our system is capable of layering effects and controlling          
them as they play. ALTERAudio brings new depth to live music.  
 

Index Terms—Altera, Audio, MIDI, Real-time, FPGA, DSP 
 

I. INTRODUCTION 
 

N today’s music industry, artists are trying to find ways to           
distinguish themselves from their peers. With guitar       
pedals, and other, similar equipment having been around        

for decades, their uses seem to have been fully explored. In           
order for artists to use multiple effects they would need many           
of these guitar pedal like devices, which is not only clunky but            
also difficult to manage. But with ALTERAudio we aim to          
challenge these assumptions but giving artists the ability to         
manipulate audio in a new and exciting way. By utilizing the           
current MIDI equipment that all artists already have and are          
familiar with we aim to give them greater control over their           
live effects while also giving them the ability to use more           
effects at any given time. The best part is that ALTERAudio’s           
effects list can easily be expanded with future updates to          
satisfy any artist’s creative wishes. 

II. DESIGN REQUIREMENTS 
 

There are a few core requirements for this project. They          
come from the use case for our project as well as the            
capabilities of the competition. The FPGA we have chosen for          
this project is the Altera Cyclone V, on the Terasic DE0-CV           
board. The smaller footprint of this board and the capable          
FPGA are conducive to the following requirements. 

First, we want realtime playback coming from the device.         
The delay through the device should not be perceptible if we           
want to be able to use it in a live setting. Because the             
minimum perceptible delay to the human ear is about 30ms,          
we would like the total delay through our device to be less            
than that. This will be measured quantitatively by using an          
oscilloscope to measure the onboard test points. 

Secondly, the quality of the sound is important. If the output           
of our device is noisy or distorted, it will be difficult to play.             

This requirement can be enumerated both qualitatively and        
quantitatively. Qualitatively, we want audio to sound the same         
playing directly from an output device as it sounds coming          
from the ALTERAudio device when no effects are enabled.         
Any obvious differences will be perceptible by the human ear.          
Quantitatively, we want a flat frequency response (less than         
1dB of variation across the audible range) and low noise on           
the input (less than 5mV). The first requirement comes from a           
standard in the audio industry, while the second comes from          
the fact that 5mV represents a few LSBs of our ADC input.            
We will be using a 16 bit, 48kHz, dual channel representation           
to encode the sound. 

Third, it is necessary to support multiple effects through the          
pipeline to truly compete with existing solutions. The        
requirements and validation for this will be specific to the          
effect, which is explained in more detail below. We         
implemented the following effects: 

1. Panning 
2. Bit Crushing 
3. Tremolo 
4. Sine Amplitude Modulation 
5. Delay 
6. Moving Average Filter 
7. Echoing 
8. Chorus 
9. Pitch Shifting 
10. Frequency Filtering 

 
Some of the effects follow from others. For example,         
Amplitude Modulation uses similar code to Tremolo. The        
effects listed above are roughly ordered by difficulty of         
implementation.  

Fourth, the control of our device should be intuitive and          
capable of variation. The intuitiveness of our design is hard to           
measure quantitatively. Qualitatively, we can test this by        
having someone not familiar with the project play with the          
device. To make the operation intuitive, we emulate the way a           
piano is controlled. This will allow for a lot of variation in the             
effects as well. The device will be capable of utilizing both           
key velocity and pressure (Aftertouch) measurements.  

Fifth, we want the packaging of the device to be neat and            
robust. We will accomplish this by assembling a custom PCB          
that will slot into our FPGA. 

Finally, we want to have a frame rate to the onboard display            
of greater than 24FPS. 24 FPS is the standard frame rate of the             
movie industry, and will result in a smooth picture. We use the            
display to show the transformed audio signal in real time.          
Some of the effects, such as panning and tremolo, are very           
easy to see on the display. Pitch shifting and frequency          
filtering are not very obvious. 
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Fig. 1. Block Diagram  

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The overall architecture of our DSP is a pipeline. Data is           
translated from the audio input into digital form by the ADC,           
and then passed to the first effect in the pipeline as a 16 bit              
two’s complement value. The first effect then does its         
operations and transfers control to the next part of the pipeline           
and so on. The last effect outputs data that is converted back            
into an audio signal by the DAC. The MIDI controller is used            
to control the individual effects, and its output is interpreted          
by a MIDI decoder. 

 
Fig. 2. Pipeline Diagram with half the effects 

Each of these DSP blocks has valid/ready protocols for the          
input and output. Though the system deals with real-time         
audio, the sample rate is 48.8 kHz which is three orders of            
magnitude slower than the clock rate of the RTL (~50Mhz).          
Additionally the SDRAM and all memory handling logic is         
clocked at 100 Mhz. There are thus a large number of clock            
cycles between successive audio frame samples. This leads to         
the standard of the valid/ready protocol to transmit data. 

As a result of this structure, each of these DSP blocks have            
the ability to stall in order to access memory or perform           
multiple reads and writes for a single audio sample. Each of           
these DSP blocks additionally have a set number of registers          
that can take in different input values which are then used to            
control the effects. This is a simple read into a set of registers             
provided by the decoder. 

Some of the DSP require the use of stored audio samples in            
order to perform the effect. Memory reads and writes are          
available in two forms: block RAM and SDRAM. The block          
RAM is limited in size and is therefore used in Chorus, Pitch            
Shifting, and Frequency Filtering modules since it       
comparatively has a smaller memory footprint than the other         
effects. For the blocks such as the Echoing Effect a large           
number of samples are needed in order to store seconds of           
audio samples at the rate of 48.8 kHz. These blocks instead           
communicate with the SDRAM chip which provides a larger         
set of working memory. 

A. Filtering Effect 
The goal of the filtering effect is to implement an arbitrary           

digital filter. With this capability it is possible to implement an           
equalizer and other interesting effects. We considered using a         
Short Time Fourier Transform (STFT) to implement       
frequency filtering, but the inherent delay and complexity of         
this method was intractable. Instead we opted to implement a          
Finite Impulse Response (FIR) filter block. This is a time          
domain solution with only minimal pipeline delay. To        
properly implement the FIR filter we use a precompiled         
impulse response and fixed-point arithmetic. We decided to        
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use four bands for our final device. The middle bands isolate           
the vocals of the song quite well.  

 
Fig. 3. Chosen Filter Bands 

The filters were generated using MATLAB’s FIR tools.        
They are then translated into an impulse response that can be           
convoluted with the signal in the time domain. The impulse          
response is converted from floating point arithmetic to a form          
that can be used for fixed point arithmetic by multiplying it by            
(2^(n-1)), where n is the desired word size of the filter data.            
The data is exported from MATLAB and then processed         
through a Python script into the Intel Hex file format so that it             
can be loaded into ROM on the FPGA.  

 
Fig. 4. Impulse Response for the blue band in Fig. 3 

To generate the final audio for this effect, it is a simple            
matter of convolution with the audio data stream. The impulse          
response contains 512 points, and a two-port RAM/ROM        
solution is used to lower the amount of time required to           
calculate each data point.  
B. Pitch Shifting Effect 

The pitch shifting effect is used to shift the frequency 
content of the signal and make it sound higher or lower 
pitched. The method we use to implement pitch shifting is 
based on the implementation described in [1].  

 
Fig. 5. Resampling Process, [1] 

 

There are two pointers that move around a single ring 
buffer. The first pointer writes data at the sample rate, while 
the second pointer moves faster or slower depending on the 
desired shifting. Interpolation is used to resample the signal. If 
the output pointer gets too close or far from the input pointer, 
it jumps to a new place in the buffer. The goal is to have the 
output pointer never cross the input pointer. 

 
Fig. 6. Pointer Jumping, [1] 

Our implementation differs from [1] in a few key ways. 
Firstly, we use linear interpolation instead of sinc interpolation 
for ease of computation. Secondly, we do not search the audio 
stream for the best jumping point. Thirdly, we use our filtering 
block to only shift the mid band frequencies. This is because 
our simpler implementation does not have the same quality, 
and lower frequency signals tend to create discontinuities 
when the output pointer jumps. Filtering the signal results in 
better performance of our implementation. Overall, our pitch 
shifting implementation works quite well for how simple it is. 
C. Moving Average Effect 

 
Fig. 7. Frequency Response for a Moving Average Filter [15] 

The moving average effect is a special case of an FIR filter. 
This effect is implemented in a more efficient manner in the 
FPGA hardware. Whereas the FIR filtering block performs 
512 multiplications and additions per sample, the moving 
average filter does two additions per sample. This results in a 
highly efficient smoothing filter. This effect is similar to a 
low-pass filter, but does not have the same frequency response 
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and bandwidth. This effect was implemented before the FIR 
filter block, and we decided to keep it in because its sound has 
a different character than the FIR lowpass filter.  
D. Bit Crushing Effect 

The goal of this audio effect is to uniformly provide          
constant noise to an audio signal such that the precision of the            
signal decreases, emulating an older audio device. These        
systems however worked natively in these low resolution        
audio samples which gave them their unique audio. In our          
16-bit implementation this can be achieved by zeroing out the          
least significant bits in the audio sample (and gates with 0). In            
order to make this effect work better with lower volume          
signals, the bit crushing module tracks the envelope of the          
audio signal and crushes the top few bits of its magnitude. We            
also have a similar effect that clips off the top bits of the             
signal.  
E. Panning Effect 

Panning is when one channel of audio is at a different           
magnitude than the other channel of audio. Our system is          
stereo which results in each frame containing a left and right           
channel. Increasing the amplitude of one of these audio         
channels while decreasing the other channel will achieve this         
panning effect. Even at high amplitudes panning should not         
lose significant data resulting in clipping. Additionally this        
module needs to have the option of auto adjusting itself to give            
the illusion of ‘moving’ audio between the two channels.  
F. Chorus Effect 

The chorus effect is achieved by mixing samples with future          
audio samples. However, these stored samples have a delay,         
frequency shift, and amplitude changes. The delay is very         
small as it is not meant to sound like an echo. Instead, it             
should make a single sound be perceived as multiple sounds in           
unison. This has a relatively small memory footprint because         
it only needs a few stored samples of audio. As a result the             
required size to fit these samples can be placed in block RAM            
itself. Multipliers will be used to implement the necessary         
frequency shifts and amplitude changes. 

 
Fig. 8. Chorus effect achieved with delaying a sample, modulating the         

amplitude slightly with a LFO (low frequency oscillator) 

G. Delay 
The delay effect is, from a signal processing perspective,         

relatively simple. Audio comes in at one end, and comes out at            
the other at a later time. From an implementation perspective,          
it is more difficult. A relatively large amount of memory is           
required to implement a noticeable delay. To implement delay         
on our device we used the onboard SDRAM. 

H. Echoing Effect 
Echoing is achieved by storing a large number of successive          

samples and injecting them into the audio stream after a          
certain delay. The delay target is from 0.25 to 2 seconds. With            
the specifications of the system this results in a max of           
2116800 bits (seconds * sample rate * number of channels *           
bit precision) stored for each audio frame. Since this will not           
fit into the block RAM this DSP module instead will need to            
maintain a circular buffer of samples in DRAM where the          
newest sample will replace the oldest. Then on every new          
audio frame, this will add the current sample with the stored           
sample. 
I. Amplitude Modulation and Tremolo 

This operation achieves a tremolo effect in the outputted         
audio stream. The volume or amplitude of the signal changes          
according to a certain frequency which results in a periodic          
vibrating sound. It is achieved by modulating the amplitude of          
the audio stream by a certain frequency. Within a given          
period, each sample of the audio stream is scaled according to           
a reference sinusoid. This block utilizes the on chip multipliers          
of the FPGA to multiply each sample by a different scaled           
value on each sample within the sinusoid period.  

 
Fig. 9. Amplitude modulation with a pulse train being used as the sample           

signal. [14] 

 

IV. TESTING AND VERIFICATION  

Because we have so many different effects, testing is very          
important. If any of the effects malfunction, they can cause          
other effects to malfunction as well. To combat this, we’ve          
developed a rigorous testing plan that involves simulation and         
data collection. 

A. Audio Interface 
The audio interface itself is easy to test. Trivially, we can           

use the interface as a pass through and perform a manual,           
auditory inspection. We can also do more rigorous qualitative         
tests to evaluate the “flatness” of the frequency response and          
the noise on the input. To measure the frequency response we           
can input sine waves generated by a function generator, and          
measure the amplitude of the sine waves on the output. To           
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measure the noise in the circuit we can watch the input jitter            
when there is no audio connected.  

We measured the frequency response of our audio        
passthrough, and found that it is satisfiably flat. The gain is           
quite flat in the most important audio range of 1-10kHz, and           
the peak in the higher frequencies does not degrade audio          
quality. When listening to the puretones we were measuring         
with, we could barely hear sounds above 14kHz.  

 
Fig. 10. Frequency Response of our Audio Passthrough 

B. MIDI Decoder 
The MIDI interface is very well documented online. Using         

all of this documentation we can develop an FSM-D which we           
expect to decode the incoming MIDI data properly. To verify          
that we are receiving pitch parameter correctly, we can display          
which key is read by the MIDI decoder on the onboard hex            
displays on the FPGA. Testing for key pressed, key released,          
velocity, and aftertouch can be testing similarly. Because        
velocity and aftertouch will be dependant on how hard we are           
pressing, it will also be worth our time to verify the decoding            
is working in a testbench before we test in synthesized          
hardware. 

We’ve thoroughly tested the MIDI decoder by comparing        
the decoded data to hand-decoded samples on the        
oscilloscope. Additionally, we have tested it by using it to          
control the other effects and ensuring that it controls them          
properly. From our testing, we have determined that we have          
upwards of 90% accuracy on our MIDI decoder module.  

C. Filtering Blocks 
To test our filtering blocks, we mostly completed qualitative         

testing. The filters are effective enough that this sufficed. We          
did not collect any data for the FIR filter blocks, but took an             
informal frequency response by listening for cutoff       
frequencies with our ears. The cutoff frequencies matched our         
expectations, and the rolloff is very sharp. We also tested our           
FIR filter blocks by playing music and isolating the high, mid,           
and low ranges of the track. From our qualitative testing, the           
FIR filter blocks work phenomenally.  

We tested the moving average block more formally. We         
tested this filter with a pure square wave on the input. When            

the moving average is applied to this input it produces a           
triangle wave of a similar frequency, as expected. When we          
measured the FFT of these different waves, the higher         
frequency harmonics of the original wave are reduced        
significantly while the lower frequency harmonics are       
preserved. This is exactly as desired. We also tested the          
moving average filter qualitatively, and it clearly attenuates        
higher frequency components. 

 

 
Fig. 11. Moving Average Filter Waveforms (Top: Square wave input and         

averaged output. Bottom: Input spectra vs. Output spectra) 

D. Pitch Shifting 
Pitch shifting is another effect that is easy to test          

qualitatively. We tried audio from various artists and pitch         
shifted the tracks both higher and lower. The effect of the           
pitch shifting is quite obvious to the ear. This effect also           
shows up quite well on a spectrograph. We recorded audio          
while switching between high and low pitch shifts, and then          
plotted a spectrograph of that recording. When downshifting is         
enabled, there is much more energy in the lower frequencies.          
When downshifting is enabled, we can see more energy in the           
higher frequencies. This is exactly as desired.  
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Fig. 12. Pitch Shifting Frequency Spectra 

E. Bit Crushing 
Bit crushing is easily verifiable using an automated        

testbench which inputs various digital audio samples with bit         
crushing enabled. The output can be checked to ensure that          
only the lower bits of the signal were removed and that the            
remaining bit information is left intact. We have also verified          
bit crushing by capturing it on an oscilloscope. The bit crushed           
wave forms, on the left, are indeed blockier than the          
uncrushed waveforms on the right. 

 
Fig. 13. Bit Crushing Effect Waveform (Left: Crushed, Right: Original) 

F. Panning Effect 
Similarly to bit crushing, panning can be verified digitally         

in our testbench. To do this we will send in audio data and a              
panning parameter at random. Then on the output we will          
record the signal being output on both the left and right audio            
channels. Simultaneously we can replicate the multiplication       
of audio in and panning parameter to obtain a reference output           
value. By comparing the reference to the actual we can ensure           
our module is behaving correctly. 

Waveforms of our panning effect in use are pictured below.          
To capture this picture we passed in a pure sinusoidal tone of            
equal magnitude to both channels. The panning turns on in          
roughly the middle of the capture. The increase and decreases          
in signal magnitude are clearly visible in this picture. 

 
Fig. 14. Panning Effect Waveforms 

G. Chorus Effect 
Testing the chorus effect will involve carefully choosing a         

testing input which enabled us to get a sense of how the            
system is working. By inputting a signal similar to an impulse           
response we can view the output waveform to confirm that          
there are indeed multiple ‘voices’ each with a different         
associated delay as compared to the original input ‘voice’. 

H. Delay / Echoing Effects 
We tested the delay and echoing Effect in various ways.          

The first testing method we used is subjective testing. We          
played various non-periodic songs, and listened to the results.         
Delayed audio comes in at the prescribed time, overlayed with          
the original audio, for a mind-bending effect.  

We also tested delay and echo on the oscilloscope by          
playing bursts of sound and watching for their replication later          
in time. We verified that the echoes come in at the correct            
time. Pictured below is a two second delay. 

 
Fig. 15. Delay Effect Waveforms 

V. SYSTEM IMPLEMENTATION AND TRADE STUDY 

Our system is composed of two main components. The         
custom PCB and the DE0-CV FPGA board. The custom PCB          
houses all of the circuitry for the audio system, the MIDI           
interface, and the display. The PCB has various test points to           
make the validation process easier. To make connection to the          
FPGA simple and robust, the PCB is designed to replace the           
acrylic cover that comes with the dev board. Designing a PCB           
took more effort than a breadboard circuit, but it will be           
cleaner and easier to debug. The FPGA implements the         
custom DSP that enables our effects. More detailed        
discussions follow below. 
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(a) 

 
(b) 

Fig. 16. System picture. (a) Main PCB. (b) DE0-CV FPGA. 

A. Audio Subsystem 

 
Fig. 17. Circuit diagram for the ADC, DAC, and audio connectors 

For the audio in/out of the project, we decided to use some            
specialized application ADC/DACs from TI. The chips we        
used for the ADC and DAC are the PCM1808PWR and          
PCM1754DBQR respectively. We chose these chips over       
others because they are cheap, well-packaged, and specifically        
meant for audio. They both support dual channel 24 bit audio           
at high sampling frequencies, but we plan on only using 16           
bits at about 48 kHz. AC decoupling capacitors block any DC           
biases from travelling through the audio lines. The chips         
connect to the FPGA through an I2S interface. This interface          
was chosen because it is the interface dictated by the chosen           
ADC and DAC. 

 

Fig. 18. I2S Timing Waveforms [9] 

I2S is a simple 3 wire interface specifically meant for sound           
[5]. Despite the similarity in name, I2S is more similar to SPI            
than I2C. I2S has minimal overhead, which is perfect for our           
application. Data is sampled on the rising edge of the clock,           
and the word select line corresponds to the different channels          
of audio. 

B. MIDI Interface 

 
Fig. 19. MIDI connector and optoisolator 

For the MIDI Interface, we are using a standard optoisolator          
circuit to isolate the FPGA from the controller. This isolation          
is important to protect against ground loops and DC biases. A           
diode on the LED side of the optoisolator protects the circuit           
against reverse polarity connections. The MIDI protocol is        
current loop based. After the input signal passes through the          
optoisolator, the output is basically UART. Commands are        
sent as three bytes. The first byte indicates the command, and           
the next two are data related to the command. We chose MIDI            
over other protocols (such as USB-MIDI, Bluetooth, etc.)        
because it is simple, ubiquitous, and robust.  
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C. Display 

 
Fig. 20. NHD-C12864A1Z-FSW-FBW-HTT [6] 

The display we’ve chosen is from Newhaven Display. It is a           
128x64 pixel monochromatic screen. It has a simple SPI         
interface for control. We use it to display real-time audio          
information for each channel. It ended up working quite well,          
although the refresh rate of the display leaves a bit to be            
desired. If we attempt to update the display too quickly it ends            
up looking blurred.  

D. Enclosure/Packaging 
Since ALTERAudio is intended to be a simple and         

convenient solution for artists to replace their many audio         
manipulation devices it’s important that we package it in a          
compact and desirable manner. This is why we’ve designed         
our PCB to interface nicely with the FPGA and the display           
module. As you can see in Figure 4, the mounting holes of the             
PCB are aligned perfectly with the mounting holes of the          
FPGAs cover. And the rightmost GPIO box header is aligned          
with the male pins on the right side of the PCB. This is so that               
the PCB can mount snugly on the FPGA. Furthermore, the          
display is seated nicely on top of the whole package. Since the            
PCB receives power directly from the FPGA, this means we          
only need 1 power cable for the whole system. Connectors for           
MIDI and Aux In/Out are placed conveniently around the         
board as well.  
 

 
 

VI. PROJECT MANAGEMENT 

A. Schedule 

 
Fig. 21. Project Gantt Chart 
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B. Team Member Responsibilities 

Each of the separate subsystems were split among each         
team member such that it aligned with their area of          
concentration and strength. 

Nicholas Paiva’s primary responsibility is in the design of         
the PCB. This is split among three parts which include          
component selection, schematic design, and finally layout       
design. Nicholas is also responsible for the screen interface         
and protocol RTL as well as the research/design of the          
Frequency Filtering, Pitch Adjustment, and Averaging Effects. 

Nick Saizan’s responsibility lies in primarily the MIDI        
interface systems which talk to the MIDI ports as well as all            
the DSP blocks in our pipeline. He is in charge of ensuring            
that the various user inputs such as pad velocity and key           
aftertouch are correctly transmitted to all the DSP blocks         
which is crucial to configuring them. Additionally he also         
shares responsibility managing the on chip blocks in the         
FPGA such as block ram and multipliers. For effects he is           
responsible for Chorus, and Tremolo/Amplitude Modulation. 

Roshan Nair’s responsibility resides the organization of the        
DSP pipeline, the verification testbench, and SDRAM       
management. The overall valid/ready protocol determines how       
each of the DSP blocks talk to each other in the pipeline.            
Additionally he is in charge of providing a preliminary way of           
testing these effects through simulation. For effects he is         
responsible for Panning, 8 bit, and Echoing. 

All members share responsibility for PCB to FPGA        
integration through the GPIO interfaces. 

C. BOM 
See below for the full BOM. As of the current timeline in            

this project, all components have the intention of being used          
with 1-3 extras for replacement in case the original         
components fail throughout testing. The PCB specific BOM is         
on the following page. Overall we were under our budget by           
about $300. 
 
Index Item Cost Quantity 

1 Keyboard $179.00 1 

2 MIDI Cable $5.99 2 

3 FPGA $150.00 1 

4 PCB $100.00 1 
 

Fig. 22. Overall BOM 

 
Fig. 23. PCB BOM 

D. Tools 
a) PCB design - Altium Designer 
b) FPGA simulation - VCS 
c) FPGA synthesis - Quartus 
d) Test data generation - Python 

E. Risk Management 
The primary risks throughout our project come in the form          

of component failure, PCB turnaround time, integration       
debugging, and RTL debugging. Component failure can occur        
if any of the shipped components are faulty or stop working           
during testing. To counteract this we ordered replacements        
alongside the originals for backup. PCB turnaround also is         
another risk factor as though it is estimated to be around a            
week, it could take longer due to external factors and as such            
we made sure that other tasks not directly dependent (such as           
rtl design and effect research) were scheduled during this         
turnaround time period. Extra slack time was placed in our          
schedule for integration debugging as any errors in our         
communication protocols will bring the entire system down. In         
anticipation of RTL bugs in our DSP blocks a rigorous          
testbench was developed beforehand so that preliminary       
simulation can catch the majority of the initial bugs rather than           
finding them in the synthesized hardware. 
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VII. SUMMARY 

Overall, our project went quite well. We were able to meet           
most of the design specifications and implement most of the          
effects we sought out to do. We are especially happy with the            
user interface of our project because it is quite intuitive and           
easy to use. The effects that we implemented are interesting          
and fun to play with, and they can be combined and layered in             
various ways to make new effects. 

One of the limits of our system is the fact that there is only              
one audio input port. With a second audio input port there are            
more interesting effects we could do with combining the two          
tracks.  

Another limit of our system is the lack of a Fourier           
Transform block. This did not seem difficult at first, but the           
more we read about it the more obvious it became that           
implementing the Fourier Transform in hardware is a        
monumental task. We were able to get around this problem          
with some clever time domain implementations, but it would         
have been nice to have this capability on our device. 

Finally, we did not have time to implement every effect we           
wanted to. Some effects, such as the vocoder, were more          
complicated than we thought they would be. Others, such as          
autotuning, did not make much sense for our platform in its           
current state. Without a second audio input, what do you          
autotune to? These are design considerations that were not         
obvious until it was too late to adjust the architecture of our            
system to accommodate them.  

A. Future Work 
We do not plan on working on this system beyond this           

semester. This is primarily because we will not be able to keep            
two of the most integral parts of our project: the FPGA and the             
keyboard. We could potentially purchase them later on our         
own, but there does not seem to be much reason for that. If we              
did keep working on this system, we would add a second           
audio port to accommodate a microphone. We would also add          
more effects.  
B. Lessons Learned 

We learned quite a few lessons about project management         
and design throughout this semester. 

First, audio is not trivial. There are a lot of considerations           
about audio that are not obvious at first that can greatly affect            
a system. If the magnitude of the signal is not handled           
properly, effects might have different results when a song is          
played at different volumes. 

Second, always understand the format of your data before         
you use it. We were not initially aware that our audio data            
from the ADC is in two's complement format. This is actually           
never mentioned anywhere in the ADC datasheet. We        
assumed it was unsigned, and this resulted in a few odd           
problems until it was resolved. 

 

 

Fig. 24. The troublesome datasheet section 

Third, always read datasheets carefully. We did not read the          
datasheet for our ADC carefully enough, and as a result did           
not realize that the first bit on the DOUT line for the I2C             
protocol is a junk bit. We ended up with this junk bit as the              
most significant bit of our audio data. 

Fourth, always run Design Rule Checks (DRC). If you rush          
through changes to your design and forget to run DRC, you           
will probably end up with obvious and avoidable mistakes.         
The best way to always remember to run your DRC is with a             
checklist you go through before ordering. 

Fifth, don’t underestimate the difficulty of using IP blocks.         
We spent a whole day nonstop trying to get the FFT IP block             
in Quartus to work to no avail. Make sure to budget enough            
time for setting them up, and don’t depend on them working.           
Always have a backup plan. 

Sixth, don’t spend too much time trying to solve any one           
problem. This ties into the last point. If we hadn’t spent so            
long on trying to get the FFT to work, perhaps we could have             
implemented more effects. Wasting time hitting a wall makes         
the project suffer.  

Finally, don’t underestimate how much time integration       
takes. We spent the first half of the semester designing our           
board and writing drivers, and didn’t get to the interesting part           
of writing effects until much later than we planned. Integration          
is often overlooked, but incredibly important. 
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