
1
18-500 Final Report: 12/08/2019

ALTERAudio
A real time audio manipulation device

Authors: Roshan Nair, Nicholas Paiva, Nicholas Saizan
Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—ALTERAudio allows musicians to add complex
effects to live music using existing MIDI controllers. Current
competition only supports limited effects with single axes of
control. Our system is capable of layering effects and controlling
them as they play. ALTERAudio brings new depth to live music.

Index Terms—Altera, Audio, MIDI, Real-time, FPGA, DSP

I. INTRODUCTION

N today’s music industry, artists are trying to find ways to
distinguish themselves from their peers. With guitar
pedals, and other, similar equipment having been around

for decades, their uses seem to have been fully explored. In
order for artists to use multiple effects they would need many
of these guitar pedal like devices, which is not only clunky but
also difficult to manage. But with ALTERAudio we aim to
challenge these assumptions but giving artists the ability to
manipulate audio in a new and exciting way. By utilizing the
current MIDI equipment that all artists already have and are
familiar with we aim to give them greater control over their
live effects while also giving them the ability to use more
effects at any given time. The best part is that ALTERAudio’s
effects list can easily be expanded with future updates to
satisfy any artist’s creative wishes.

II. DESIGN REQUIREMENTS

There are a few core requirements for this project. They
come from the use case for our project as well as the
capabilities of the competition. The FPGA we have chosen for
this project is the Altera Cyclone V, on the Terasic DE0-CV
board. The smaller footprint of this board and the capable
FPGA are conducive to the following requirements.

First, we want realtime playback coming from the device.
The delay through the device should not be perceptible if we
want to be able to use it in a live setting. Because the
minimum perceptible delay to the human ear is about 30ms,
we would like the total delay through our device to be less
than that. This will be measured quantitatively by using an
oscilloscope to measure the onboard test points.

Secondly, the quality of the sound is important. If the output
of our device is noisy or distorted, it will be difficult to play.

This requirement can be enumerated both qualitatively and
quantitatively. Qualitatively, we want audio to sound the same
playing directly from an output device as it sounds coming
from the ALTERAudio device when no effects are enabled.
Any obvious differences will be perceptible by the human ear.
Quantitatively, we want a flat frequency response (less than
1dB of variation across the audible range) and low noise on
the input (less than 5mV). The first requirement comes from a
standard in the audio industry, while the second comes from
the fact that 5mV represents a few LSBs of our ADC input.
We will be using a 16 bit, 48kHz, dual channel representation
to encode the sound.

Third, it is necessary to support multiple effects through the
pipeline to truly compete with existing solutions. The
requirements and validation for this will be specific to the
effect, which is explained in more detail below. We
implemented the following effects:

1. Panning
2. Bit Crushing
3. Tremolo
4. Sine Amplitude Modulation
5. Delay
6. Moving Average Filter
7. Echoing
8. Chorus
9. Pitch Shifting
10. Frequency Filtering

Some of the effects follow from others. For example,
Amplitude Modulation uses similar code to Tremolo. The
effects listed above are roughly ordered by difficulty of
implementation.

Fourth, the control of our device should be intuitive and
capable of variation. The intuitiveness of our design is hard to
measure quantitatively. Qualitatively, we can test this by
having someone not familiar with the project play with the
device. To make the operation intuitive, we emulate the way a
piano is controlled. This will allow for a lot of variation in the
effects as well. The device will be capable of utilizing both
key velocity and pressure (Aftertouch) measurements.

Fifth, we want the packaging of the device to be neat and
robust. We will accomplish this by assembling a custom PCB
that will slot into our FPGA.

Finally, we want to have a frame rate to the onboard display
of greater than 24FPS. 24 FPS is the standard frame rate of the
movie industry, and will result in a smooth picture. We use the
display to show the transformed audio signal in real time.
Some of the effects, such as panning and tremolo, are very
easy to see on the display. Pitch shifting and frequency
filtering are not very obvious.

2
18-500 Final Report: 12/08/2019

Fig. 1. Block Diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall architecture of our DSP is a pipeline. Data is
translated from the audio input into digital form by the ADC,
and then passed to the first effect in the pipeline as a 16 bit
two’s complement value. The first effect then does its
operations and transfers control to the next part of the pipeline
and so on. The last effect outputs data that is converted back
into an audio signal by the DAC. The MIDI controller is used
to control the individual effects, and its output is interpreted
by a MIDI decoder.

Fig. 2. Pipeline Diagram with half the effects

Each of these DSP blocks has valid/ready protocols for the
input and output. Though the system deals with real-time
audio, the sample rate is 48.8 kHz which is three orders of
magnitude slower than the clock rate of the RTL (~50Mhz).
Additionally the SDRAM and all memory handling logic is
clocked at 100 Mhz. There are thus a large number of clock
cycles between successive audio frame samples. This leads to
the standard of the valid/ready protocol to transmit data.

As a result of this structure, each of these DSP blocks have
the ability to stall in order to access memory or perform
multiple reads and writes for a single audio sample. Each of
these DSP blocks additionally have a set number of registers
that can take in different input values which are then used to
control the effects. This is a simple read into a set of registers
provided by the decoder.

Some of the DSP require the use of stored audio samples in
order to perform the effect. Memory reads and writes are
available in two forms: block RAM and SDRAM. The block
RAM is limited in size and is therefore used in Chorus, Pitch
Shifting, and Frequency Filtering modules since it
comparatively has a smaller memory footprint than the other
effects. For the blocks such as the Echoing Effect a large
number of samples are needed in order to store seconds of
audio samples at the rate of 48.8 kHz. These blocks instead
communicate with the SDRAM chip which provides a larger
set of working memory.

A. Filtering Effect
The goal of the filtering effect is to implement an arbitrary

digital filter. With this capability it is possible to implement an
equalizer and other interesting effects. We considered using a
Short Time Fourier Transform (STFT) to implement
frequency filtering, but the inherent delay and complexity of
this method was intractable. Instead we opted to implement a
Finite Impulse Response (FIR) filter block. This is a time
domain solution with only minimal pipeline delay. To
properly implement the FIR filter we use a precompiled
impulse response and fixed-point arithmetic. We decided to

3
18-500 Final Report: 12/08/2019

use four bands for our final device. The middle bands isolate
the vocals of the song quite well.

Fig. 3. Chosen Filter Bands

The filters were generated using MATLAB’s FIR tools.
They are then translated into an impulse response that can be
convoluted with the signal in the time domain. The impulse
response is converted from floating point arithmetic to a form
that can be used for fixed point arithmetic by multiplying it by
(2^(n-1)), where n is the desired word size of the filter data.
The data is exported from MATLAB and then processed
through a Python script into the Intel Hex file format so that it
can be loaded into ROM on the FPGA.

Fig. 4. Impulse Response for the blue band in Fig. 3

To generate the final audio for this effect, it is a simple
matter of convolution with the audio data stream. The impulse
response contains 512 points, and a two-port RAM/ROM
solution is used to lower the amount of time required to
calculate each data point.
B. Pitch Shifting Effect

The pitch shifting effect is used to shift the frequency
content of the signal and make it sound higher or lower
pitched. The method we use to implement pitch shifting is
based on the implementation described in [1].

Fig. 5. Resampling Process, [1]

There are two pointers that move around a single ring
buffer. The first pointer writes data at the sample rate, while
the second pointer moves faster or slower depending on the
desired shifting. Interpolation is used to resample the signal. If
the output pointer gets too close or far from the input pointer,
it jumps to a new place in the buffer. The goal is to have the
output pointer never cross the input pointer.

Fig. 6. Pointer Jumping, [1]

Our implementation differs from [1] in a few key ways.
Firstly, we use linear interpolation instead of sinc interpolation
for ease of computation. Secondly, we do not search the audio
stream for the best jumping point. Thirdly, we use our filtering
block to only shift the mid band frequencies. This is because
our simpler implementation does not have the same quality,
and lower frequency signals tend to create discontinuities
when the output pointer jumps. Filtering the signal results in
better performance of our implementation. Overall, our pitch
shifting implementation works quite well for how simple it is.
C. Moving Average Effect

Fig. 7. Frequency Response for a Moving Average Filter [15]

The moving average effect is a special case of an FIR filter.
This effect is implemented in a more efficient manner in the
FPGA hardware. Whereas the FIR filtering block performs
512 multiplications and additions per sample, the moving
average filter does two additions per sample. This results in a
highly efficient smoothing filter. This effect is similar to a
low-pass filter, but does not have the same frequency response

4
18-500 Final Report: 12/08/2019

and bandwidth. This effect was implemented before the FIR
filter block, and we decided to keep it in because its sound has
a different character than the FIR lowpass filter.
D. Bit Crushing Effect

The goal of this audio effect is to uniformly provide
constant noise to an audio signal such that the precision of the
signal decreases, emulating an older audio device. These
systems however worked natively in these low resolution
audio samples which gave them their unique audio. In our
16-bit implementation this can be achieved by zeroing out the
least significant bits in the audio sample (and gates with 0). In
order to make this effect work better with lower volume
signals, the bit crushing module tracks the envelope of the
audio signal and crushes the top few bits of its magnitude. We
also have a similar effect that clips off the top bits of the
signal.
E. Panning Effect

Panning is when one channel of audio is at a different
magnitude than the other channel of audio. Our system is
stereo which results in each frame containing a left and right
channel. Increasing the amplitude of one of these audio
channels while decreasing the other channel will achieve this
panning effect. Even at high amplitudes panning should not
lose significant data resulting in clipping. Additionally this
module needs to have the option of auto adjusting itself to give
the illusion of ‘moving’ audio between the two channels.
F. Chorus Effect

The chorus effect is achieved by mixing samples with future
audio samples. However, these stored samples have a delay,
frequency shift, and amplitude changes. The delay is very
small as it is not meant to sound like an echo. Instead, it
should make a single sound be perceived as multiple sounds in
unison. This has a relatively small memory footprint because
it only needs a few stored samples of audio. As a result the
required size to fit these samples can be placed in block RAM
itself. Multipliers will be used to implement the necessary
frequency shifts and amplitude changes.

Fig. 8. Chorus effect achieved with delaying a sample, modulating the

amplitude slightly with a LFO (low frequency oscillator)

G. Delay
The delay effect is, from a signal processing perspective,

relatively simple. Audio comes in at one end, and comes out at
the other at a later time. From an implementation perspective,
it is more difficult. A relatively large amount of memory is
required to implement a noticeable delay. To implement delay
on our device we used the onboard SDRAM.

H. Echoing Effect
Echoing is achieved by storing a large number of successive

samples and injecting them into the audio stream after a
certain delay. The delay target is from 0.25 to 2 seconds. With
the specifications of the system this results in a max of
2116800 bits (seconds * sample rate * number of channels *
bit precision) stored for each audio frame. Since this will not
fit into the block RAM this DSP module instead will need to
maintain a circular buffer of samples in DRAM where the
newest sample will replace the oldest. Then on every new
audio frame, this will add the current sample with the stored
sample.
I. Amplitude Modulation and Tremolo

This operation achieves a tremolo effect in the outputted
audio stream. The volume or amplitude of the signal changes
according to a certain frequency which results in a periodic
vibrating sound. It is achieved by modulating the amplitude of
the audio stream by a certain frequency. Within a given
period, each sample of the audio stream is scaled according to
a reference sinusoid. This block utilizes the on chip multipliers
of the FPGA to multiply each sample by a different scaled
value on each sample within the sinusoid period.

Fig. 9. Amplitude modulation with a pulse train being used as the sample

signal. [14]

IV. TESTING AND VERIFICATION

Because we have so many different effects, testing is very
important. If any of the effects malfunction, they can cause
other effects to malfunction as well. To combat this, we’ve
developed a rigorous testing plan that involves simulation and
data collection.

A. Audio Interface
The audio interface itself is easy to test. Trivially, we can

use the interface as a pass through and perform a manual,
auditory inspection. We can also do more rigorous qualitative
tests to evaluate the “flatness” of the frequency response and
the noise on the input. To measure the frequency response we
can input sine waves generated by a function generator, and
measure the amplitude of the sine waves on the output. To

5
18-500 Final Report: 12/08/2019

measure the noise in the circuit we can watch the input jitter
when there is no audio connected.

We measured the frequency response of our audio
passthrough, and found that it is satisfiably flat. The gain is
quite flat in the most important audio range of 1-10kHz, and
the peak in the higher frequencies does not degrade audio
quality. When listening to the puretones we were measuring
with, we could barely hear sounds above 14kHz.

Fig. 10. Frequency Response of our Audio Passthrough

B. MIDI Decoder
The MIDI interface is very well documented online. Using

all of this documentation we can develop an FSM-D which we
expect to decode the incoming MIDI data properly. To verify
that we are receiving pitch parameter correctly, we can display
which key is read by the MIDI decoder on the onboard hex
displays on the FPGA. Testing for key pressed, key released,
velocity, and aftertouch can be testing similarly. Because
velocity and aftertouch will be dependant on how hard we are
pressing, it will also be worth our time to verify the decoding
is working in a testbench before we test in synthesized
hardware.

We’ve thoroughly tested the MIDI decoder by comparing
the decoded data to hand-decoded samples on the
oscilloscope. Additionally, we have tested it by using it to
control the other effects and ensuring that it controls them
properly. From our testing, we have determined that we have
upwards of 90% accuracy on our MIDI decoder module.

C. Filtering Blocks
To test our filtering blocks, we mostly completed qualitative

testing. The filters are effective enough that this sufficed. We
did not collect any data for the FIR filter blocks, but took an
informal frequency response by listening for cutoff
frequencies with our ears. The cutoff frequencies matched our
expectations, and the rolloff is very sharp. We also tested our
FIR filter blocks by playing music and isolating the high, mid,
and low ranges of the track. From our qualitative testing, the
FIR filter blocks work phenomenally.

We tested the moving average block more formally. We
tested this filter with a pure square wave on the input. When

the moving average is applied to this input it produces a
triangle wave of a similar frequency, as expected. When we
measured the FFT of these different waves, the higher
frequency harmonics of the original wave are reduced
significantly while the lower frequency harmonics are
preserved. This is exactly as desired. We also tested the
moving average filter qualitatively, and it clearly attenuates
higher frequency components.

Fig. 11. Moving Average Filter Waveforms (Top: Square wave input and

averaged output. Bottom: Input spectra vs. Output spectra)

D. Pitch Shifting
Pitch shifting is another effect that is easy to test

qualitatively. We tried audio from various artists and pitch
shifted the tracks both higher and lower. The effect of the
pitch shifting is quite obvious to the ear. This effect also
shows up quite well on a spectrograph. We recorded audio
while switching between high and low pitch shifts, and then
plotted a spectrograph of that recording. When downshifting is
enabled, there is much more energy in the lower frequencies.
When downshifting is enabled, we can see more energy in the
higher frequencies. This is exactly as desired.

6
18-500 Final Report: 12/08/2019

Fig. 12. Pitch Shifting Frequency Spectra

E. Bit Crushing
Bit crushing is easily verifiable using an automated

testbench which inputs various digital audio samples with bit
crushing enabled. The output can be checked to ensure that
only the lower bits of the signal were removed and that the
remaining bit information is left intact. We have also verified
bit crushing by capturing it on an oscilloscope. The bit crushed
wave forms, on the left, are indeed blockier than the
uncrushed waveforms on the right.

Fig. 13. Bit Crushing Effect Waveform (Left: Crushed, Right: Original)

F. Panning Effect
Similarly to bit crushing, panning can be verified digitally

in our testbench. To do this we will send in audio data and a
panning parameter at random. Then on the output we will
record the signal being output on both the left and right audio
channels. Simultaneously we can replicate the multiplication
of audio in and panning parameter to obtain a reference output
value. By comparing the reference to the actual we can ensure
our module is behaving correctly.

Waveforms of our panning effect in use are pictured below.
To capture this picture we passed in a pure sinusoidal tone of
equal magnitude to both channels. The panning turns on in
roughly the middle of the capture. The increase and decreases
in signal magnitude are clearly visible in this picture.

Fig. 14. Panning Effect Waveforms

G. Chorus Effect
Testing the chorus effect will involve carefully choosing a

testing input which enabled us to get a sense of how the
system is working. By inputting a signal similar to an impulse
response we can view the output waveform to confirm that
there are indeed multiple ‘voices’ each with a different
associated delay as compared to the original input ‘voice’.

H. Delay / Echoing Effects
We tested the delay and echoing Effect in various ways.

The first testing method we used is subjective testing. We
played various non-periodic songs, and listened to the results.
Delayed audio comes in at the prescribed time, overlayed with
the original audio, for a mind-bending effect.

We also tested delay and echo on the oscilloscope by
playing bursts of sound and watching for their replication later
in time. We verified that the echoes come in at the correct
time. Pictured below is a two second delay.

Fig. 15. Delay Effect Waveforms

V. SYSTEM IMPLEMENTATION AND TRADE STUDY

Our system is composed of two main components. The
custom PCB and the DE0-CV FPGA board. The custom PCB
houses all of the circuitry for the audio system, the MIDI
interface, and the display. The PCB has various test points to
make the validation process easier. To make connection to the
FPGA simple and robust, the PCB is designed to replace the
acrylic cover that comes with the dev board. Designing a PCB
took more effort than a breadboard circuit, but it will be
cleaner and easier to debug. The FPGA implements the
custom DSP that enables our effects. More detailed
discussions follow below.

7
18-500 Final Report: 12/08/2019

(a)

(b)

Fig. 16. System picture. (a) Main PCB. (b) DE0-CV FPGA.

A. Audio Subsystem

Fig. 17. Circuit diagram for the ADC, DAC, and audio connectors

For the audio in/out of the project, we decided to use some
specialized application ADC/DACs from TI. The chips we
used for the ADC and DAC are the PCM1808PWR and
PCM1754DBQR respectively. We chose these chips over
others because they are cheap, well-packaged, and specifically
meant for audio. They both support dual channel 24 bit audio
at high sampling frequencies, but we plan on only using 16
bits at about 48 kHz. AC decoupling capacitors block any DC
biases from travelling through the audio lines. The chips
connect to the FPGA through an I2S interface. This interface
was chosen because it is the interface dictated by the chosen
ADC and DAC.

Fig. 18. I2S Timing Waveforms [9]

I2S is a simple 3 wire interface specifically meant for sound
[5]. Despite the similarity in name, I2S is more similar to SPI
than I2C. I2S has minimal overhead, which is perfect for our
application. Data is sampled on the rising edge of the clock,
and the word select line corresponds to the different channels
of audio.

B. MIDI Interface

Fig. 19. MIDI connector and optoisolator

For the MIDI Interface, we are using a standard optoisolator
circuit to isolate the FPGA from the controller. This isolation
is important to protect against ground loops and DC biases. A
diode on the LED side of the optoisolator protects the circuit
against reverse polarity connections. The MIDI protocol is
current loop based. After the input signal passes through the
optoisolator, the output is basically UART. Commands are
sent as three bytes. The first byte indicates the command, and
the next two are data related to the command. We chose MIDI
over other protocols (such as USB-MIDI, Bluetooth, etc.)
because it is simple, ubiquitous, and robust.

8
18-500 Final Report: 12/08/2019

C. Display

Fig. 20. NHD-C12864A1Z-FSW-FBW-HTT [6]

The display we’ve chosen is from Newhaven Display. It is a
128x64 pixel monochromatic screen. It has a simple SPI
interface for control. We use it to display real-time audio
information for each channel. It ended up working quite well,
although the refresh rate of the display leaves a bit to be
desired. If we attempt to update the display too quickly it ends
up looking blurred.

D. Enclosure/Packaging
Since ALTERAudio is intended to be a simple and

convenient solution for artists to replace their many audio
manipulation devices it’s important that we package it in a
compact and desirable manner. This is why we’ve designed
our PCB to interface nicely with the FPGA and the display
module. As you can see in Figure 4, the mounting holes of the
PCB are aligned perfectly with the mounting holes of the
FPGAs cover. And the rightmost GPIO box header is aligned
with the male pins on the right side of the PCB. This is so that
the PCB can mount snugly on the FPGA. Furthermore, the
display is seated nicely on top of the whole package. Since the
PCB receives power directly from the FPGA, this means we
only need 1 power cable for the whole system. Connectors for
MIDI and Aux In/Out are placed conveniently around the
board as well.

VI. PROJECT MANAGEMENT

A. Schedule

Fig. 21. Project Gantt Chart

9
18-500 Final Report: 12/08/2019

B. Team Member Responsibilities

Each of the separate subsystems were split among each
team member such that it aligned with their area of
concentration and strength.

Nicholas Paiva’s primary responsibility is in the design of
the PCB. This is split among three parts which include
component selection, schematic design, and finally layout
design. Nicholas is also responsible for the screen interface
and protocol RTL as well as the research/design of the
Frequency Filtering, Pitch Adjustment, and Averaging Effects.

Nick Saizan’s responsibility lies in primarily the MIDI
interface systems which talk to the MIDI ports as well as all
the DSP blocks in our pipeline. He is in charge of ensuring
that the various user inputs such as pad velocity and key
aftertouch are correctly transmitted to all the DSP blocks
which is crucial to configuring them. Additionally he also
shares responsibility managing the on chip blocks in the
FPGA such as block ram and multipliers. For effects he is
responsible for Chorus, and Tremolo/Amplitude Modulation.

Roshan Nair’s responsibility resides the organization of the
DSP pipeline, the verification testbench, and SDRAM
management. The overall valid/ready protocol determines how
each of the DSP blocks talk to each other in the pipeline.
Additionally he is in charge of providing a preliminary way of
testing these effects through simulation. For effects he is
responsible for Panning, 8 bit, and Echoing.

All members share responsibility for PCB to FPGA
integration through the GPIO interfaces.

C. BOM
See below for the full BOM. As of the current timeline in

this project, all components have the intention of being used
with 1-3 extras for replacement in case the original
components fail throughout testing. The PCB specific BOM is
on the following page. Overall we were under our budget by
about $300.

Index Item Cost Quantity

1 Keyboard $179.00 1

2 MIDI Cable $5.99 2

3 FPGA $150.00 1

4 PCB $100.00 1

Fig. 22. Overall BOM

Fig. 23. PCB BOM

D. Tools
a) PCB design - Altium Designer
b) FPGA simulation - VCS
c) FPGA synthesis - Quartus
d) Test data generation - Python

E. Risk Management
The primary risks throughout our project come in the form

of component failure, PCB turnaround time, integration
debugging, and RTL debugging. Component failure can occur
if any of the shipped components are faulty or stop working
during testing. To counteract this we ordered replacements
alongside the originals for backup. PCB turnaround also is
another risk factor as though it is estimated to be around a
week, it could take longer due to external factors and as such
we made sure that other tasks not directly dependent (such as
rtl design and effect research) were scheduled during this
turnaround time period. Extra slack time was placed in our
schedule for integration debugging as any errors in our
communication protocols will bring the entire system down. In
anticipation of RTL bugs in our DSP blocks a rigorous
testbench was developed beforehand so that preliminary
simulation can catch the majority of the initial bugs rather than
finding them in the synthesized hardware.

10
18-500 Final Report: 12/08/2019

VII. SUMMARY

Overall, our project went quite well. We were able to meet
most of the design specifications and implement most of the
effects we sought out to do. We are especially happy with the
user interface of our project because it is quite intuitive and
easy to use. The effects that we implemented are interesting
and fun to play with, and they can be combined and layered in
various ways to make new effects.

One of the limits of our system is the fact that there is only
one audio input port. With a second audio input port there are
more interesting effects we could do with combining the two
tracks.

Another limit of our system is the lack of a Fourier
Transform block. This did not seem difficult at first, but the
more we read about it the more obvious it became that
implementing the Fourier Transform in hardware is a
monumental task. We were able to get around this problem
with some clever time domain implementations, but it would
have been nice to have this capability on our device.

Finally, we did not have time to implement every effect we
wanted to. Some effects, such as the vocoder, were more
complicated than we thought they would be. Others, such as
autotuning, did not make much sense for our platform in its
current state. Without a second audio input, what do you
autotune to? These are design considerations that were not
obvious until it was too late to adjust the architecture of our
system to accommodate them.

A. Future Work
We do not plan on working on this system beyond this

semester. This is primarily because we will not be able to keep
two of the most integral parts of our project: the FPGA and the
keyboard. We could potentially purchase them later on our
own, but there does not seem to be much reason for that. If we
did keep working on this system, we would add a second
audio port to accommodate a microphone. We would also add
more effects.
B. Lessons Learned

We learned quite a few lessons about project management
and design throughout this semester.

First, audio is not trivial. There are a lot of considerations
about audio that are not obvious at first that can greatly affect
a system. If the magnitude of the signal is not handled
properly, effects might have different results when a song is
played at different volumes.

Second, always understand the format of your data before
you use it. We were not initially aware that our audio data
from the ADC is in two's complement format. This is actually
never mentioned anywhere in the ADC datasheet. We
assumed it was unsigned, and this resulted in a few odd
problems until it was resolved.

Fig. 24. The troublesome datasheet section

Third, always read datasheets carefully. We did not read the
datasheet for our ADC carefully enough, and as a result did
not realize that the first bit on the DOUT line for the I2C
protocol is a junk bit. We ended up with this junk bit as the
most significant bit of our audio data.

Fourth, always run Design Rule Checks (DRC). If you rush
through changes to your design and forget to run DRC, you
will probably end up with obvious and avoidable mistakes.
The best way to always remember to run your DRC is with a
checklist you go through before ordering.

Fifth, don’t underestimate the difficulty of using IP blocks.
We spent a whole day nonstop trying to get the FFT IP block
in Quartus to work to no avail. Make sure to budget enough
time for setting them up, and don’t depend on them working.
Always have a backup plan.

Sixth, don’t spend too much time trying to solve any one
problem. This ties into the last point. If we hadn’t spent so
long on trying to get the FFT to work, perhaps we could have
implemented more effects. Wasting time hitting a wall makes
the project suffer.

Finally, don’t underestimate how much time integration
takes. We spent the first half of the semester designing our
board and writing drivers, and didn’t get to the interesting part
of writing effects until much later than we planned. Integration
is often overlooked, but incredibly important.

REFERENCES

[1] A. Haghparast, “Real-Time Pitch-Shifting of Musical Signals By a
Time-Varying Factor”, 2007. Available: Semantic Scholar,
https://www.semanticscholar.org/paper/REAL-TIME-PITCH-SHIFTIN
G-OF-MUSICAL-SIGNALS-BY-A-Haghparast-Penttinen/87fcd0d6e5a
e2eefc208f054e871119af6e79fa4

[2] G. Slade, “The Fast Fourier Transform in Hardware: A Tutorial Based
on an FPGA Implementation,” 2013. Available: MIT,
http://web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf

https://www.semanticscholar.org/paper/REAL-TIME-PITCH-SHIFTING-OF-MUSICAL-SIGNALS-BY-A-Haghparast-Penttinen/87fcd0d6e5ae2eefc208f054e871119af6e79fa4
https://www.semanticscholar.org/paper/REAL-TIME-PITCH-SHIFTING-OF-MUSICAL-SIGNALS-BY-A-Haghparast-Penttinen/87fcd0d6e5ae2eefc208f054e871119af6e79fa4
https://www.semanticscholar.org/paper/REAL-TIME-PITCH-SHIFTING-OF-MUSICAL-SIGNALS-BY-A-Haghparast-Penttinen/87fcd0d6e5ae2eefc208f054e871119af6e79fa4
http://web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf

11
18-500 Final Report: 12/08/2019

[3] A. Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy, “Efficient

FPGA implementation of FFT/IFFT Processor,” 2009. Available:
Semantic Scholar,
https://pdfs.semanticscholar.org/0726/8155508a66c45e061462beacb7d8
1a4e1d69.pdf

[4] “Window Function,” Wikipedia.org:
https://en.wikipedia.org/wiki/Window_function

[5] “I2S”, Wikipedia.org: https://en.wikipedia.org/wiki/I%C2%B2S
[6] “Newhaven Display,” Digikey.com:

https://www.digikey.com/product-detail/en/newhaven-display-intl/NHD-
C12864A1Z-FSW-FBW-HTT/NHD-C12864A1Z-FSW-FBW-HTT-ND/
3767469

[7] D. Vandenneucker, “MIDI Tutorial for Programmers,” 2012. Available:
https://www.cs.cmu.edu/~music/cmsip/readings/MIDI%20tutorial%20fo
r%20programmers.html

[8] D. Brink, “David’s MIDI Spec,” 1995. Available: cs.cmu.edu,
https://www.cs.cmu.edu/~music/cmsip/readings/davids-midi-spec.htm

[9] By wdwd - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=16579640

[10] “Chorus Guitar Effects,” Available:
https://www.hobby-hour.com/guitar/chorus_effects.php

[11] Digilent, “Waveform Tools...The Spectrum Analyzer,” 2016. Available:
https://blog.digilentinc.com/waveforms-tools-with-the-ad2-and-eeboard-
the-spectrum-analyzer/

[12] S. Carroll, G. Mirza, J. Talmage, “PitchShifter,” 2017. Available:
https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/s2017/
jmt329_swc63_gzm3/jmt329_swc63_gzm3/PitchShifter/index.html

[13] “Synchronize Sports Broadcasts with Television,” 2016. Available:
https://www.fountainware.com/Products/AudioDelay/index.htm

[14] ELPROCUS, “Pulse Amplitude Modulation,” Available:
https://www.elprocus.com/pulse-amplitude-modulation/

[15] Analog.com, “Moving Average Filters,” Available:
https://www.analog.com/media/en/technical-documentation/dsp-book/ds
p_book_Ch15.pdf

https://pdfs.semanticscholar.org/0726/8155508a66c45e061462beacb7d81a4e1d69.pdf
https://pdfs.semanticscholar.org/0726/8155508a66c45e061462beacb7d81a4e1d69.pdf
https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/I%C2%B2S
https://www.digikey.com/product-detail/en/newhaven-display-intl/NHD-C12864A1Z-FSW-FBW-HTT/NHD-C12864A1Z-FSW-FBW-HTT-ND/3767469
https://www.digikey.com/product-detail/en/newhaven-display-intl/NHD-C12864A1Z-FSW-FBW-HTT/NHD-C12864A1Z-FSW-FBW-HTT-ND/3767469
https://www.digikey.com/product-detail/en/newhaven-display-intl/NHD-C12864A1Z-FSW-FBW-HTT/NHD-C12864A1Z-FSW-FBW-HTT-ND/3767469
https://www.cs.cmu.edu/~music/cmsip/readings/MIDI%20tutorial%20for%20programmers.html
https://www.cs.cmu.edu/~music/cmsip/readings/MIDI%20tutorial%20for%20programmers.html
https://www.cs.cmu.edu/~music/cmsip/readings/davids-midi-spec.htm
https://commons.wikimedia.org/w/index.php?curid=16579640
https://www.hobby-hour.com/guitar/chorus_effects.php
https://blog.digilentinc.com/waveforms-tools-with-the-ad2-and-eeboard-the-spectrum-analyzer/
https://blog.digilentinc.com/waveforms-tools-with-the-ad2-and-eeboard-the-spectrum-analyzer/
https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/s2017/jmt329_swc63_gzm3/jmt329_swc63_gzm3/PitchShifter/index.html
https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/s2017/jmt329_swc63_gzm3/jmt329_swc63_gzm3/PitchShifter/index.html
https://www.fountainware.com/Products/AudioDelay/index.htm
https://www.elprocus.com/pulse-amplitude-modulation/
https://www.elprocus.com/pulse-amplitude-modulation/
https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf
https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf

12
18-500 Final Report: 12/08/2019

13
18-500 Final Report: 12/08/2019

14
18-500 Final Report: 12/08/2019

