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Abstract
We introduce a new organization for multi-bank

cach es: the skewed-associative cache. A two-way
skewed-associative cache has the same hardware com-
plexity as a two-way set-associative cache, yet simula-
tions show that it typically exhibits the same hit ratio
as a four-way set associative cache with the same size.
Then skewed-associative caches must be preferred to
set-associative caches.

Until the three last years external caches were used
and their size could be relatively large. Previous stud-
ies have showed that, for cache sizes larger than 64
Kbyt es, direct-mapped caches exhibit hit ratios nearly
as good as set-associative caches at a lower hardware
cost. Moreover, the cache hit time on a direct-mapped
cache may be quite smaller than the cache hit time on
a set-associative cache, because optimistic use of data
jlowing out from the cache is quite natural.

But now, microprocessors are designed with small
on-chip caches. Performance of low-end microproces-
sor systems highly depends on cache behavior. Simu-
lations show that using some associativity in on-chip
caches allows to boost the performance of these low-
end systems.

When considering optimistic use of data (or in-
struction) jlowing out from the cache, the cache
hit time of a two-way skewed-associative (or set-
associative) cache is very close to the cache hit time
of a direct-mapped cache. Therefore two-way skewed
associative caches represent the best tradeoff for today
microprocessors with on-chip caches whose sizes are in
the range of 4-8K bytes.
Keywords: microprocessors, cache, set-associative
cache, skewed-associative cache.

1 Introduction
For a few years, the direct-mapped cache organi-

zation has been considered as the best organization
for microprocessor caches [7, 14]. But technology has
changed, large external caches which were associated
with first generation RISC microprocessors are now
replaced by small on-chip caches.

In section 2.1, we introduce a new organization
for multi-bank cache: the skewed-associative cache.
A two-way skewed-associative cache has the same
hardware complexity as a two-way set-associative
cache. Simulations presented in section 3 show that
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a two-way skewed-associative cache typically exhibits
the same hit ratio as a four-way set associative
cache with the same size: two-way skewed-associative
caches must be preferred to two-way or four-way set-
associative caches.

Then we compare using on-chip two-way skewed-
associative caches in place of on-chip direct-mapped
caches. In low-end microprocessor systems, the miss
penalty is high; increasing clock frequency does not
lead to a significant performance improvement. Us-
ing a t we-way skewed associative cache rather than
a direct-mapped cache improves the performance of
the system even when it slightly reduces the clock fre-
quency.

On high-end microprocessor systems, a fast second-
level cache is used; the performance depends more di-
rectly on the clock freq-uency. In order to reduce cy-
cle time, optimistic use of data flowing out from the
caches may be used. Using this technic on micro-
processors with on-chip two-way skewed-associative
caches will lead to better performance than using on-
chip direct-mapped caches,

Finally, we show that skewed-associative caches
may be used for implementing physically indexed
caches as well as virtually indexed caches.

2 Skewed-associative caches
In this section, we present a new organization for a,

multi-bank cache: the skewed-associative cache.

2.1 Background
High-end microprocessors based systems are built

with a secondary external cache: a miss on the pri-
mary cache will be served in a few cycles when the
line is present in the secondary cache. As the cost ojf

a fast secondary cache is prohibitive, there will not be
secondary caches in low-end systems; the miss penalty
will be very high (20 or even 50 CPU cycles) (see Fig-
ure 1).

Let us recall some technological parameters:

1. Access time to the first word of a line in main
memory is generally higher than 250 ns.

2. Access time to the first word of a line in the sec-
ond level cache is around 60 ns (assuming 12- 15ns
static memory chips): a throughput of one worcl

per 20 ns may then be obtained,l

1 This ~ome,pond, to TI SuperSparc second-led ca~’e

specification[l 91
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Figure 1: Basic implementations of microprocessor
based systems
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Figure 2: Miss penalties converted in Instruction De-
lays

Figure 2 shows the miss penalties converted in In-
struction Delays for some of the recently announced
microprocessors when assuming these access delays.

Reducing miss ratio on on-chip caches has become
a key issue for performance on all microprocessor sys-
tems.

2.2 Skewing on caches: principle
A set-associative cache is illustrated by Figure 3:

a X way set-associative cache is built with X distinct
banks. A line of data with base address D may be
physically mapped on physical line f(D) in any of the
distinct banks. This vision of a set-associative cache
fits with its physical implementation: X banks of static
memory RAMs.

We propose a very slight modification in this design
aa illustrated in Figure 4!

Different mapping functions are used for the
distinct cache banks i.e., a line of data with
base address D may be mapped on physical
line fo(D) in cache bank O or in ~1(D) in
cache bank 1, etc.

We call a multi-bank cache with such a marminz of
the lines onto the distinct banks: a
cache.

. .
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Figure 3: 3 data conflicting for a single set on a two-
way set-associative cache
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Figure 4: Data conflicting for a cache line on bank O,
but not on bank 1 on a skewed-associative cache

This hardware modification incurs a very small
hardware over cost when designing a new micropro-
cessor with on-chip caches since the mapping func-
tions can be chosen so that the implementation uses
a very few gates. But we shall see that this may help
to increase the hit ratio of caches and then to increase
the overall performance of a microprocessor using a
multi-bank cache structure.

Related works

In 1977, Smith [15] considered set-associative caches
and suggested selecting the set by hashing the main
memory address; this approach corresponds to fig-
ure 3: a single hashing function is used.

More recently Agarwal [2] (Chapter 6.7.2) studied
hash-rehash caches.

As in a conventional cache, the address in-
dexes into a cache set, and the word of data
is sent to the processor if it is valid in the
set. This case is called a first time hit. On
a miss, the address again indexes into the
cache but using a different hashing function.
If the second access is also unsuccessful, the
data must be fetched from memory.

Hash-rehash caches present better overall hit ratios
than direct-mapped caches. But Agarwal remarked
that for a 64 Kbytes cache, hash-rehash caches induce
longer execution time than two-way set-associative
caches.
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In hash-rehash caches, the primary cache itself is
used as a secondary cache after a first time miss.
However in skewed-associative caches? different hash-
ing functions are used at the same ttme for indexing
the distinct cache banks.

2.3 Choosing the skewing functions

In this section, we give some insight on the prop-
erties that might exhibit functions chosen for skewing
the lines in the distinct cache banks in order to obtain
a good hit ratio.

2.3.1 Equitability y

First of all like in classical caches, for each line in
the cache, the numbers of lines of data in the main
memory that may be mapped onto this cache line must
be equal.

2.3.2 Inter-bank dispersion

In a usual X-way set-associative cache, when (X+l)
lines of data contend for the same set in the cache,
they are all conflicting for the same place in the X
cache banks: one of the lines must be rejected from
the cache (Figure 3).

We have introduced skewed-associative caches to
avoid this situation by scattering the data: mapping
functions can be chosen such that whenever two lines
of data conflict for a single location in cache bank i,
they have very low probability to conflict for a location
in cache bank j (Figure 4).

Ideally, mapping functions may be chosen such w
the set of lines that might be mapped on a cache line
of bank i will be equaly distributed over all the lines
in the other cache banks.

2.3.3 Local dispersion in a single bank

Many applications exhibit spatial locality, therefore
the mapping functions must be chosen so as to avoid
having two “almost” neighbor lines of data conflicting
for the same physical line in cache bank i.

The different mapping functions must respect a cer-
tain form of local dispersion on a single bank; the map-
ping functions fi must limit the number of conflicts
when mapping any region of consecutive lines of data
in a single cache bank i.

2.3.4 Simple hardware implementation

A key issue for the overall performance of a micropro-
cessor is the pipeline length. Using distinct mapping
functions on the distinct cache banks will have no ef-
fects on the performance, w long as the computations
of the mapping functions can be added to a non critical
stage in the pipeline and do not lengthen the pipeline
cycle. Let us notice that in most of the new genera-
tion microprocessors, the address computation stage is
not the critical stage in the pipeline (e.g. in TI Super-
Sparc, two cascaded ALU operations maybe executed
in a single cycle).
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Figure 5: An example of a two-way skewed-associative
cache

In order to achieve this, we have to chose mapping
functions whose hardware implementations are ver,y
simple: as few gate delays as possible.

In [20], we exhibited a family of four functions

fi mapping which respects the previous properties.
For an address A, each bit of ~i (A) is obtained b,y
Exclusive-ORing at most 4 bits of the binary decomp-
osition of A.

2.4 Skewing on t we-way associat iv(e

caches

In this paper, we focus only on two-way skewed,-
associative caches. Our basic goals here are to min-
imize hardware implementation cost and extra delay
on cache hit time.
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An example

Let us consider the particular case of 64 bytes lines
and 4096 bytes cache banks. (an, .. , ao) is the binary
representation of the address. A possible organization
for a two-way skewed associative cache is illustrated
in Figure 5. -

The skewing functions used in this example verify
the previously mentioned criterions for “good” skew-
ing functions.

On this example, only three two entries XOR gates
are added to the classical cache bank design. In the
proposed design? the access time to the cache bank
is only slightly increased by the delay for crossing a
XOR gate when using skewing functions.

We believe” that the access time may even be ex-
actly the same as in a classical two-way set-associative
cache:

1. In a microprocessor, when using a one-cycle ac-
cess cache, the cache hit time generally deter-
mines the machine cycle. The address computa-
tion is performed in a less critical stage: the XOR
gates may be added at the end of that stage.

2. When using a pipelined cache, row selection may
be done in the second cycle.

A formal description of the family of skewing
functions

Let 2’ be the size of the line.
Let 2“ be the number of cache lines in a cache bank

and let us consider the decomposition of a binary rep-
resentation of an address A in bit substrings A = (A3
,A2, Al, Ao), A. is a c bit string: the displacement in
the line. Al and A2 are two n bits strings and A3 is
the string of the q – (2x n + c) most significant bits.

Let us consider T an integer such that O ~ T < 2“
and ~ its binary opposite,(~ = 2“ – 1 – T).

Let ~ be a Bit Permute Permutation on the set
{O, .. . 2“ – 1} (e.g. Identity, Perfect Shuffle, Bit Rever-
sal).
We consider the mapping functions defined respec-
tively by:

F:,b ~ (#

-[

,... 2“+’ – 1}
(A3, A2, A1, AO) - ~1 @ (#(A2).T), Ao)

F:’+ : S - {o, ..,2”+’ - 1}

(z43, A2, x41, AII) - (Al@ (4(442) .~),J40)

@ is the exclusive OR and . is the bitwise product.
These functions satisfy the criterions for “good”

skewing functions defined in the paper (Equitability,
inter-bank dispersion and local dispersion).

Each bit of the F~’+(A) or F~’+(A) is either di-
rectly a bit of the binary representation of address A
or the XOR of two bits of this binary representation.

T maybe chosen in order to allow symmetric design
of the two cache banks: when n is even, having the

same number of bits equal to one and zero seems an
interesting approach.

In the previous example in figure 5, T= 44 (binary
decomposition 101010) and the Bit Permute Permu-
tation is the identity.

2.5 Replacement policy on a two-way

skewed-associative cache
When a miss occurs on a X-bank cache, the line of

data to be replaced must be chosen among X lines.
Different replacement policies may be used. LRU re-
placement policy or pseudo-random replacement pol-
icy are generally used in set-associative caches.

The pseudo-random replacement policy is the sim-
plest to implement. But LRU replacement policy gen-
erally works better and may be implemented at a rea-
sonable hardware cost. Implementing a LRU replace-
ment policy on a two-way set-associative cache is quite
simple: a single bit tag per set sufficient. More gener-
ally a LRU replacement policy for a X-way associative
is feasible with adding only X x (X – 1)/2 bit tags to
each set.

Unfortunately, we have not been able to find concise
information to associate with a cache line which would
allow a simple hardware implementation of a LRU re-
placement policy on a skewed-associative cache.

Nevertheless, for two-way skewed-associative
caches, a pseudo-LRU replacement policy may work
fine:

A tag bit is associated with each line in bank
O: when the line is indexed, the tag bit is
asserted when the data was in bank O and
reasserted when the data is in bank 1.

On a miss, the tag of the line selected in
bank O is read: when this tag is 1, the miss-
ing line is written in bank 1 otherwise the
missing line is written in bank O

Notice that implementing this replacement policy on
a two-way skewed-associative cache requires the same
hardware as implementing a LR U replacement policy
on a two-way set-associative cache.

3 Simulations
Cache simulations have been conducted in order to

compare skewed-associative caches with usual cache
organizations.

Presented results show that for equal sizes, a two-
way skewed-associative cache exhibits approximately
the same miss ratio as a four-way set-associative cache.

3.1 Traces
Our set of traces is composed with two distinct sets.
The first set is composed with the three traces from

the Hennessy-Patterson software obtained from the
DLX simulator [5] (gee, TeX and Spice).

Seven other traces were generated using the Sparc-
Sim simulator facility [18]; this set wss composed with:

● RESEAU: the simulator of a particular int ercon-
nection network

● POISSON : a Poisson solver
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STRASSEN: a matrix-matrix multiply using the
Strassen algorithm.

LINPACKUD: part of the LINPACK benchmark

CACHE : The cache simulator itself

CPTC : A P~cal-to-C translator

SPARSE: multiply of a sparse matrix by a full
vector.

In the results presented in the paper, all the bench-
marks were valued with the same weight.

For direct-mapped caches, a victim cache of four
lines was assumed. A similar mechanism was evalu-
ated for multi-way associative caches, but as it did not
bring significant hit improvement, we do not consider
it in the paper.

Virtual indexing of the cache was assumed for the
simulations. Physical indexing will be discussed in
section 5.

3.2 Miss ratios
Different cache configurations have been simulated:

mixed data/instructions and split caches. Results for
a 16 bytes line size are reported in figures 6 to 9.
Notice that the reported miss ratios are certainly very
optimistic: single process traces, exceptions not sim-
ulated (TLB miss, etc.), no system, .. Effective miss
ratios will certainly be higher.

For separate instruction and data caches, the mi-
croprocessor is assumed to execute one instruction per
cycle. The miss ratios reported in Figures 8 and 9 is
the average number of misses per sequenced instruc-
tion (i.e Instruction Misses +Data Misses

Number of Instructions ).

For direct-mapped _caches, a victim buffer [9] of four
lines was assumed. The ratio of misses which effec-
tively induce an access on memory or on a second level
cache is reported in column ‘(Miss-Vict” 2.

LRU replacement policy was used for set-
associative caches. The pseudo-LRU replacement pol-
icy described in the previous section was used for two-
way skewed-associative caches.

These results show that at equal sizes a two-way
skewed-associative cache exhibits approximately the
same miss ratio as a four-way set-associative cache.
Figures 10 and 11 shows that this conclusion is valid
on the two sets of traces. Experiments were also con-
ducted with larger line sizes and lead to the same con-
clusion.

At this point of the study, we make the following
recommendation:

A two-way skewed associative cache must be
preferred to a usual two-way or four-way set-
associative caches.

Remark 1: Other simulations were conducted assum-
ing a LRU policy replacement on a two-way skewed-
associative cache. Better hit ratios than with the

2Victim caching doesnot lead to significant hit improvement
for skewed-associative or set-associative caches

Organization I Mizs I Miss - Vict I

~

Figure 6: mixed data/instruction cache: 4096 bytes

i%

I Organization Miss I Miss - Vict I

irect mapped I 0.046719 I 0.041846 ~
I_2-way set-associative I 0.029362 j I
t 4-way set-associative I 0.024265 I

2-way skewed-associative I 0.024287 I

Figure 7: mixed data/instruction cache: 8192 bytes

I Organization Miss I Miss - Vict

Direct mapped I 0.058757 ! 0.054152--
2-way set-associative 0.041994
4-way set-associative 0.036830

2-way skewed-associative 0.037562

Figure 8: two 4096 bytes split caches

Organization

Direct rnamed

Miss I Miss - Vict

~

Figure 9: two 8192 bytes split caches

pseudo-LRU policy were obtained, but unfortunately
LRU policy cannot be implemented at a reasonable
hardware cost.

3.3 Skewing versus hashing

Hewlett-Packard recently introduced the HP71OO
microprocessor. In this microprocessor, addresses are
hashed before accessing a direct-mapped cache. On
the HP71OO, the whole virtual address including pro-
cess number is hashed and a very large external cache
is used (greater than 128 Kbytes); the microprocessor
designers claimed that this techruc improves the aver-
age hit ratio on a virtually-indexed large cache when
running multiprocess workloads. This phenomenurn
was also observed by Agarwal [2].

Set-associative caches indexed with the function j,
instead of the usual bit-selection have been simulated
for associativity degree 1,2 and 4. Results for split
8192 bytes caches are shown A Saure 12. On our
benchmark set and for a small cache size, hashing the
addresses does not lead to very significant hit ratio
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Organisation I Miss I k_–-

Direct mapped

I 2-wav set-associative

I 4-wav set-associative

tiiss - Vict

-
I #

2-wav skewed-associative i 0.016981 I

Figure 10: SparcSim traces

Organization Miss Miss - Vict

Direct mapped 0.047087 0.043712
2-way set-associative 0.033811
4way set-associative 0.030103
2-way skewed-associative 0.029928

Figure 11: DLX traces

immovement.
?’hese results show that the improvement of per-

formance of skewed-associative over set-associative
caches is mostly due to the inter-bank dispersion prop-
erty (see section 2.3 .2) and not to a simple hashing on
the addresses.

3.4 Local dispersion

In order to illustrate why, the local dispersion prop-

el
erty (see section 2.3.3 is very important, we simu-
lated a two-way skewe -associative cache where skew-
ing functions f. and fl are two independent ~andom
functions. Average miss ratio for these simulations are
given in figure 12 in row “skewed-assoc. RAND”. As
fo and fl are independent random functions, there
may be local interferences on a single cache bank.
These interferences affect a lot the hit ratio.

Orgamzatlon MISS MM - V let I
1 D-wect maBDed I 0.03’(8’(6 I 0.034900 I

Dmect ma~~ed hashed 0.037586 0.032970
2-way set-assoc. 0.025992
2-way set-assoc. hashed 0.0256 23

4-way set-assoc. 0.021844
4-way set-assoc. hashed 020895

2-way skewed-assoc. 0.02086 5
2-way skewed-assoc. RAND 024202

Figure 12: Skewing versus hsshing

4 Influence on performance
In this sectio?, we show that, for 8K bytes cache,

using an associative cache structure will lead to better
performance than using a direct-mapped cache struc-
ture.

4.1 Caches for low-end microprocessor

systems
In this section, we consider low-end microprocessor

systems.

When cache hit time does not determine the
microprocessor clock

From now, we resent performance using Cycle Per In-
struction or Time per Instruction assuming separate
instruction cache and data cache.

Figure 13 illustrates the performance in Cycle Per
Instruction on our benchmark set for different memory
latencies. Both cache sizes are 8192 bytes and length
of a cache line is 16 bytes.

Formula (1) is used for deriving Figure 13 from Fig-
ure 9.

3 x (miss – vict) x C’ycZe + vict + Lat * (miss – vict) (1)

where miss is the miss ratio of the cache, vict is is
the ratio of misses that hits in the victim cache 3 and
Lat is the latency for accessing the missing line in the
main memory (or second level cache). The internal
delay in the microprocessor is assumed to be 3 cycles.
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Figure 13: Separate instruction cache and data cache

Wken the cache hit time does not determine di-
rectly the clock frequency of the microprocessor (e.g.
when cache access is pipelined), then an associative
structure must be used for the cache: performance
benefits for memory latency of the order of 20 cycles
is about 20 Yo.

Unfortunately, on many microprocessors, the cache
hit time is determined by the clock frequency of the
microprocessor.

Sfor &e=t mapped caches od3’
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When cache hit time determines the micropro-
cessor clock

For illustrating why on-chip caches used in low-end mi-
croprocessors must be associative, we consider two mi-
croprocessors directly accessing a main memory with
a 250 ns access time 4:

●

●

Processor PI is a single-issue RISC micropro-
cessor with two on-chip 8K bytes direct-mapped
caches.

Processor P2 is a single-issue RISC microproces-
sor with two on-chip 8K bytes two-way skewed-
associative caches. - -

Figure 14 illustrates the clock needed on each of the
two processors for achieving a performance of one in-
struction per X ns on our set of benchmarks.

R— clack(.)

44m — h-PI

42m
/ – b

-. P?.

4203

2s.02~ /

36.ce /

34.Q2 /
/

32m

Zeal / /

28.03 /

26S0 //

24m //

22.00 /

mm / /

18.03 // ‘

ISm //

1402 //

1202 /

Io,ol / /

802 //

SW //

403
//

2.W r
052 1 luperinumim

10cd 53(O 3oce .m.ml 50.L12

Figure 14: Comparing P1 and P2 connected to main
memory

Remark that Processor P2 achieved one instruction
per 20 ns with a 14 ns clock, while Processor PI needs
a 10 ns clock to achieve the same performance level.

This example clearly indicates that for low-end mi-
croprocessor systems, the structure of the caches have
to be associative:

Using a two-way skewed-associative cache is
the reasonable choice.

4.2 Caches for high-end microprocessor

systems
In high-end microprocessor systems, second level

caches will be used. For getting back the first word of

4In this example, the important parameter is the sequenc-

ing rate, a single-issue microprocessor at frequency F may be
replace by a dual-issue microprocessor at frequency F/2

data of a missing line from this second level. cache, a
delay around 60 ns seems realistic with today technol-
ogy.

As for low-end microprocessor systems, an associa-
tive structure of cache must be used when the cache
hit time does not determine the basic clock of the pro-
cessor (see Figure 13).

As in the previous section, in Figure 15, we compare
the clocks needed on the hypothetic processors P1 anc[
P2 for achieving a constant performance when they are
connected to a second level cache 5
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Figure 15: Comparing P1 and P2 both connected with
a second level cache

On this figure, one will notice that the effective per-
formance of processor P1 and processor P2 at a given
frequency are quite close:

With a 10 ns clock, processor P2 achieves
one instruction per 12 ns, while processor P1
achieves this level of performance with a 9 ns
clock.

When data flowing out from the cache cannot be
used before tag check, the cache hit time on a two-
way skewed-associative cache and on a direct mapped
cache are within a very few per cent 6, then using
two-way skewed-associative caches will lead to slightly
better overall performance of the system than using
direct-mapped caches.

Optimistic execution
‘In order to increase clock frequency, data flowing

out from the cache may be used before tag check with
direct-mapped caches. Checking the validity of the
data word may be executed in parallel with the other
activities in the pipeline. The current cycle in the

5For simplicity, we do not consider second level cachemisses.
62 % was reported by Hill [6]
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pipeline will be canceled if the data (or instruction) is
found to be unvalid.

We shall refer to this technic as optimistic execu-
tion.

Optimistic execution was also proposed for a set-
associative cache: the most-recently-used data (MRU)
in the selected set [3] can be systematically used.

For a 128 Kbytes cache, assuming a 12 cy-
cles penalty on a global miss, and a one cy-
cle penalty on a miss on the MRU region,
but a hit on the global cache, the cache ac-
cess time was shown to be within 4?lo of the
performance of a true one-cycle 4way set-
associative cache7.

Although a 32-way set-associative cache was initially
considered,, the authors claimed that reducing asso-
ciativity degree to four and using the optimistic MRU
policy dramatically reduce the cache hit time in the
range of 30-3570.

Using optimistic execution on a direct-mapped
cache and on a set-associative (or skewed-associative)
cache seem to lead to very close cache hit times.

When using a skewed-associative associative cache,
the (pseudo) Most Recently Used data is selected. We
assume that a miss on pseudo MRU region which hits
in the other cache bank costs one stall cycle on the
processor ‘.

Notice that, on a four-way set-associative cache, the
hit ratio on the MRU region corresponds to the hit
ratio on a direct-mapped cache which size is only the
fourth of the original cache size, while on a two-way
skewed-associative cach~, this hit ratio corresponds
approximately to the hlt ratio on a direct-mapped
cache which size is half of the original cache size.
There a two-way skewed-associative cache will achieve
better performance than a four-way set-associative
cache.

In Figure 16, we compare the clocks needed on the
hypothetic processors P1 and P2 for achieving a con-
stant performance, but here we assume optimistic ex-
ecution on both processors.

Performance of processor P 1 and performance of
processor P2 are quite close:

With a 8 ns clock, processor P2 achieves
one instruction per 10 ns, while processor PI
achieves this performance with a 7.2 ns clock.

As, cache hit times for the two processors would be
in a very few per cent (may be 5 Yo), using a two-way
skewed associative cache would lead to slightly better
performance.

5 Skewed-associative caches and vir-

tual memory
5.1 Virtual indexing or physical indexing

As already mentionned~cach; hi~ time is one of th;
critical path in the microprocessor. Caches may be

7considering a constant cycle
8 This ~~UPtion is q~te pessimistic, when the read data

(or instruction) i. not used directly by the next instruction, no
cycle is lost
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Figure 16: Optimistic execution on PI and P2, both
connected with a second level cache

virtually or physically indexed. When sharing pages
between processes, physical addressing of the cache
allows to avoid multiple copies of the same line of
data in the cache and then the data in the cache al-
ways remain coherent; physical addressing of the cache
may be considered as very desirable. Unfortunately,
for physically indexed caches, the virtual-to-physical
address translation must precede the cache indexing,
thus increasing the overall cache hit time.

Virtually indexed caches are used in HP7xxx,
MIPS R4000 for example. When the cache is virtually
indexed, using a skewed-associative cache in place of
a set-associative cache will not lenghten the cache hit
time.

5.1.1 An artifice for physical indexed caches

Physically indexed caches are used in Dec 21064,
TI SuperSparc, IBM Power for example. When the
virtual-to-physical address translation effectively pre-
cedes the cache indexing, using a skewed-associative
cache in place of a set-associative cache would not
lenghten the overall hit time.

But, on the Dec 21064 and the TI SuperSparc, an
artifice has been used in order to allow to execute in
parallel the indexing of the cache and the virtual-to-
physical address translation. The size of the cache
bank is chosen equal to (or inferior than) the mini-
mum size of a page of the virtual memory; on a direct-
mapped or a set-associative cache, the bits required
for indexing the cache are not translated: virtual-to-
physical address translation and cache indexing may
be executed in parallel.

Such an artifice cannot be used for skewed-
associative caches: in order to enable inter-bank dis-
persion, some extra bits of th address are used for com-
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puting the distinct mapping functions for the distinct
cache banks e.g. for computing the skewing functions
FO and F1 proposed in section 2.4 for a 8Kbytes two-
way skewed-associative cache with a 16 bytes cache
line, the 20 lowest significant bits of the address must
be known!

5.1.2 Uncompleted address translation

Some recent works [13, 12] have shown that, when the
page allocation algorlthm is implemented in such a
way that virtual-to-physical address translation does
not affect the lowest significant bits of the virtual page
number, the miss ratio on a physically indexed cache
is lower than when usual page allocation algorithm is
used.

This result holds for medium range primary caches
(16 KB to 512 KB) [13], ax well ae for large secondary
caches [12]. On the other hand, a too large number of
untranslated bits would lead to a significant increase
of page faults, particularly on low-end microprocessor
systems; e.g. on a 8 Megabyte system, having 20 bits
untranslated is not realistic.

But keeping 15 or even 18 bits untranslated? even
on a low-end system would not lead to a sigruficant
increase of the number of page faults:

Let us consider a 8 Megabytes physical mem-
ory and a virtual page size of 4Kbytes,
with the usual page allocation, the physical
memory acts as a 2048 lines fully-associative
cache, while if the 15 lowest significant
bits must not be affected by the virtual-to-
physical address translation, it would act as
a 256-way set-associative cache. It is well
known that the behavior of these two struc-
tures of caches are very close!

5.2 Part ial skewing

In this section, we assume that the page allocation
algorithm is implemented in such a way that it does
not affect a few of the lowest significant bits of the
page number.

If the computation of mapping functions on the
cache banks uses only the untranslated address bits,
then the artifice described in section 5.1.1 maybe used
for executing in parallel the indexing of a skewed-
associative cache and the virtual-to-physical address
translation.

In this section, we show that skewed-associative
cache may also perform well in the case where only
a limited number of bits are skewed.

A case study Let us consider that the 15 lowest
significant bits of the virtual addresses not translated
i.e the virtual address and the phy~icsl addreee are
equal modulo 32K.

Let us consider the mapping functions defined by:

if X = 215X4 + 212X3 + 29X2 + 24X1 +X. then

fo: s

-/

0,... 4095}

(X4, X3, X2, X1, XO) + X2, X1, XO)

fl: s - {o, ..,4095}

(X4, X3, X2, X1, XO) + (X3@ XZ, X~, XrJ)

fv is the usual bit truncation; fl does not change the
mne lowest slgruficant bits, and the three highest sig-
nificant bits are simply obtained a XOR.

fo and fl maybe used as mapping functions for a
two-way 8Kbytes skewed-associative cache.

Notice that when using these functions> the inter-
bank dispersion of data will only be partial: the set
of data that can be mapped (by mapping function fo)
onto a given line in bank O is distributed among only
8 lines on cache bank 1 by mapping function fl.

Simulations were conducted using these skewing
functions for 8K bytes two-way skewed-associative
caches; miss ratios are reported in figure 17. The miss
ratios obtained when using this partial skewing are in
the same range as the miss ratios observed when using
the complete skewing described in section 2.1.

Organization Miss

Unified 2-way partial skewed-assoc. 0.024503

Unified 2-way complete skewed-assoc. 0.024287

Split 2-way partial skewed-assoc. 0.020891

Split 2-way complete skewed-aasoc. 0.020865

Figure 17: Partial versus Complete skewing

Our simulation results tend to show that there is
no significative hit ratio improvement when increasing
the inter-bank dispersion degree over 8 on a two-way
skewed-associative cache as there is no significative hit
ratio improvement when increasing the associativity
degree over 4 or 8 on a set-associative cache.

This result associated with the results presented in
[13, 12] may encourage microprocessor designers to im-
plement physically indexed skewed-associative caches
and to impose implementing operating systems with
page allocation algorithms respecting the 15 or may
be 18 lowest significant bits of the virtual address.

6 Conclusion
We have introduced a new multi-bank cache orga-

nization: the skewed-associative cache. The two-way
skewed-associative cache has the same hardware com-
plexity as a two-way set-associative, but exhibits a
miss ratio close to the miss ratio of a four-way set-
associative cache:

A two-way skewed-associative cache must be
preferred to a two-way or four-way set asso-
ciative cache.
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Today, microprocessors are built with relatively
small on-chip caches. In .1992, 8 Kbytes is the cur-
rent size for on-chip caches. For this size, miss ratios
on direct-mapped caches are significantly higher than
on associative caches. In section 4, we have pointed
out that, for low-end microprocessor systems, some
associativit y on on-chip cache(s) will enhance perfor-
mance: using direct-mapped cache may allow to in-
crease clock frequency, but when the miss penalty be-
comes high, using a skewed associative cache with a
slower clock will lead to a better over all system per-
formance.

Peak performance on high-end systems is a major
commercial argument for microprocessor vendors. In
high-end systems, large very fast second level caches
are used. Performance in these systems highly de-
pends on the clock frequency. In order to reduce the
clock frequency, the cache access may be ipelined (

fe.g. in MIPS R4000 [10] or in DEC 21064[4 ) and opti-
mistic execution may be used (e.g. MIPS R4000). Op-
timistic execution on skewed-associative caches will al-
low to reach a clock frequency within a few per cent of
the clock reachable when using direct-mapped caches.
In section 4.2, we have pointed that using such an
optimistic execution will lead to slightly better perfor-
mance when using a t we-way skewed associative cache.

At last, in section 5, we have shown that skewed-
associative caches may be used for implementing phys-
ical caches as well as virtual caches without lenghten-
ing the cache hit time.

As most of the microprocessor chips are designed to
built both high-end microprocessor systems and low-
end microprocessor systems, using two-way skewed-
associative cache structure seems a very interesting
trade-off.

Further work on skewed-associative caches will in-
clude studies on higher degree of associativit y, using
skewed-associative caches as second-level caches and
for TLBs.
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