
18-447

Computer Architecture

Lecture 22: Memory Controllers

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 3/25/2015

Lab 4 Grades

2

0

5

10

15

20

40 50 60 70 80 90

N
u

m
b

e
r

o
f

St
u

d
e

n
ts

 Mean: 89.7

 Median: 94.3

 Standard Deviation: 16.2

Lab 4 Extra Credit

 Pete Ehrett (fastest) – 2%

 Navneet Saini (2nd fastest) – 1%

3

Announcements (I)

 No office hours today

 Hosting a seminar in this room right after this lecture

 Swarun Kumar, MIT, “Pushing the Limits of Wireless
Networks: Interference Management and Indoor Positioning”

 March 25, 2:30-3:30pm, HH 1107

 From talk abstract:

(…) perhaps our biggest expectation from modern wireless networks is faster
communication speeds. However, state-of-the-art Wi-Fi networks continue to
struggle in crowded environments — airports and hotel lobbies. The core
reason is interference — Wi-Fi access points today avoid transmitting at the
same time on the same frequency, since they would otherwise interfere with
each other. I describe OpenRF, a novel system that enables today’s Wi-Fi
access points to directly combat this interference and demonstrate significantly
faster data-rates for real applications.

4

Today’s Seminar on Flash Memory (4-5pm)

 March 25, Wednesday, CIC Panther Hollow Room, 4-5pm

 Yixin Luo, PhD Student, CMU

 Data Retention in MLC NAND Flash Memory:
Characterization, Optimization and Recovery

 Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory:
Characterization, Optimization and Recovery"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)]
Best paper session.

 http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-
retention_hpca15.pdf

5

http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf

Flash Memory (SSD) Controllers

 Similar to DRAM memory controllers, except:

 They are flash memory specific

 They do much more: error correction, garbage collection,
page remapping, …

6Cai+, ñFlash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory

Lifetimeò, ICCD 2012.

Where We Are in Lecture Schedule

 The memory hierarchy

 Caches, caches, more caches

 Virtualizing the memory hierarchy: Virtual Memory

 Main memory: DRAM

 Main memory control, scheduling

 Memory latency tolerance techniques

 Non-volatile memory

 Multiprocessors

 Coherence and consistency

 Interconnection networks

 Multi-core issues

7

Required Reading (for the Next Few Lectures)

 Onur Mutlu, Justin Meza, and Lavanya Subramanian,
"The Main Memory System: Challenges and
Opportunities"
Invited Article in Communications of the Korean Institute of
Information Scientists and Engineers (KIISE), 2015.

http://users.ece.cmu.edu/~omutlu/pub/main-memory-
system_kiise15.pdf

8

http://users.ece.cmu.edu/~omutlu/projects.htm
http://users.ece.cmu.edu/~omutlu/pub/main-memory-system_kiise15.pdf

Required Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” ISCA 2012.
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-
refresh_isca12.pdf

9

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

Memory Controllers

DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that
need to be controlled.

 The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

 These other technologies can place other demands on the
controller

11

DRAM Types

 DRAM has different types with different interfaces optimized
for different purposes

 Commodity: DDR, DDR2, DDR3, DDR4, …

 Low power (for mobile): LPDDR1, …, LPDDR5, …

 High bandwidth (for graphics): GDDR2, …, GDDR5, …

 Low latency: eDRAM, RLDRAM, …

 3D stacked: WIO, HBM, HMC, …

 …

 Underlying microarchitecture is fundamentally the same

 A flexible memory controller can support various DRAM types

 This complicates the memory controller

 Difficult to support all types (and upgrades)

12

DRAM Types (II)

13

Kim et al., ñRamulator: A Fast and Extensible DRAM Simulator,ò IEEE Comp Arch Letters 2015.

DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to for high performance + QoS

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes

14

DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request s
importance in the processing core)

15

A Modern DRAM Controller (I)

16

17

A Modern DRAM Controller (II)

DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

18

DRAM Scheduling Policies (II)

 A scheduling policy is a request prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

 Will it stall the processor?

 Interference caused to other cores

 …

19

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row row hit

-- Next access might need a different row row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row avoid a row conflict

-- Next access might need the same row extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

20

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

21

Memory Interference and Scheduling

in Multi-Core Systems

23

Review: A Modern DRAM Controller

Review: DRAM Bank Operation

24

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

Scheduling Policy for Single-Core Systems

 A row-conflict memory access takes significantly longer than a
row-hit access

 Current controllers take advantage of the row buffer

 FR-FCFS (first ready, first come first served) scheduling policy

1. Row-hit first

2. Oldest first

Goal 1: Maximize row buffer hit rate maximize DRAM throughput

Goal 2: Prioritize older requests ensure forward progress

 Is this a good policy in a multi-core system?

25

Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

26

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?

27

(Un)expected Slowdowns in Multi-Core

28

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, Memory performance attacks: Denial of memory service
in multi-core systems, USENIX Security 2007.

29

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2

CACHE

L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

stream random

DRAM

Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = rand();

A[index] = B[index];

é

}

30

A Memory Performance Hog

STREAM

- Sequential memory access

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

index = j*linesize;

A[index] = B[index];

é

}

streaming random

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.

31

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.

Effect of the Memory Performance Hog

32

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, Memory Performance Attacks, USENIX Security 2007.

Problems due to Uncontrolled Interference

33

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

Cores make

very slow

progress

Memory performance hogLow priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

34

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system

Recap: Inter-Thread Interference in Memory

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts reduced DRAM throughput

 Threads can also destroy each other s DRAM bank
parallelism

 Otherwise parallel requests can become serialized

35

Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called protocol overhead

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

 A thread’s concurrent requests are serviced serially instead of
in parallel

36

Problem: QoS-Unaware Memory Control

 Existing DRAM controllers are unaware of inter-thread
interference in DRAM system

 They simply aim to maximize DRAM throughput

 Thread-unaware and thread-unfair

 No intent to service each thread s requests in parallel

 FR-FCFS policy: 1) row-hit first, 2) oldest first

 Unfairly prioritizes threads with high row-buffer locality

 Unfairly prioritizes threads that are memory intensive (many outstanding
memory accesses)

37

Solution: QoS-Aware Memory Request Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

38

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/mutlu_micro07_talk.ppt

The Problem: Unfairness

40

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

 Poor performance predictability (no performance isolation)

Uncontrollable, unpredictable system

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone

fair scheduling

 Also improves overall system performance by ensuring cores
make “proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors, MICRO 2007.

41

42

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone

 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

43

STFM Scheduling Algorithm [MICRO 07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness < a

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥ a

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

44

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

a 1.05

1.03

1.06

1.031.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16Row 111

STFM Pros and Cons

 Upsides:

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a
thread

 Good at providing fairness

 Being fair can improve performance

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect

45

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systemsò

35th International Symposium on Computer Architecture (ISCA),

pages 63-74, Beijing, China, June 2008. Slides (ppt)

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread s MLP

 Can service each thread s outstanding requests serially, not in parallel

47

Bank Parallelism of a Thread

48

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

49

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

50

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a batch

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

51

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, Parallelism-Aware Batch Scheduling, ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

52

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

53

Within-Batch Scheduling

 Can use any DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

54

HOW?

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread s stall-time within the batch

 Ranks threads with shorter stall-time higher

55

* W.E. Smith, Various optimizers for single stage production, Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

56

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

57

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

(1) Marked requests first

(2) Row-hit requests first

(3) Higher-rank thread first (shortest stall-time first)

(4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving: does not waste bandwidth when it can be used

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Mutlu and Moscibroda, Parallelism-Aware Batch Scheduling, ISCA 2008.

58

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

59

60

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

61

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Does not always prioritize the latency-sensitive applications

62

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FCFS

FRFCFS

STFM

PAR-BS

ATLAS

64

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
e

ss
24 cores, 4 memory controllers, 96 workloads

Throughput vs. Fairness

Take turns accessing memory

Throughput vs. Fairness

65

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread Bthread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

66

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
ÅShuffle thread ranking

Memory-intensive threads have
different vulnerability to interference
ÅShuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICROô10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

67

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

68

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

higher
MPKI

T
<h 10%

ClusterThreshold

Intensive
clusterTh

Non-intensive
cluster

T= Total memory bandwidth usage

Step2 Memory bandwidth usage Th divides clusters

TCM: Quantum-Based Operation

69

Time

Previous quantum
(~1M cycles)

During quantum:
ÅMonitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
ÅPerform clustering
ÅCompute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1.Highest-rank: Requests from higher ranked threads prioritized

ÅNon-Intensive cluster > Intensive cluster

ÅNon-Intensive cluster: lower intensity higher rank

ÅIntensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

70

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

71

Better system throughput

B
et

te
r

fa
ir

n
e

ss
24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

72

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss

FRFCFS

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

 (Relatively) simple

 Downsides:

 Scalability to large buffer sizes?

 Robustness of clustering and shuffling algorithms?

73

