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Readings for Next Few Lectures

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 
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Data Dependence Handling: 

More Depth & Implementation
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Remember: Data Dependence Types
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Flow dependence
r3  r1 op  r2 Read-after-Write
r5  r3 op  r4 (RAW)

Anti dependence
r3  r1 op  r2 Write-after-Read
r1  r4 op  r5 (WAR)

Output-dependence
r3  r1 op  r2 Write-after-Write
r5  r3 op  r4 (WAW)
r3  r6 op  r7



How to Handle Data Dependences

 Anti and output dependences are easier to handle 

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

5



RAW Dependence Handling

 Following flow dependences lead to conflicts in the 5-stage 
pipeline
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Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict 
between 2 data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?
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R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF



Safe and Unsafe Movement of Pipeline
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i:rk_

j:_rk Reg Read

Reg Write

iOj

stage X
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dist(i,j)   dist(X,Y)  ??
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RAW Dependence
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dist(i,j)   dist(X,Y)  Unsafe to keep j moving

dist(i,j)  > dist(X,Y)  Safe



RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

What about WAW and WAR dependence?

What about memory data dependence?
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R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF



Pipeline Stall: Resolving Data Dependence

10

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx  _
bubble
bubble
j: _  rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx  _
bubble
bubble
bubble
j: _  rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall==make the dependent instruction 
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages



How to Implement Stalling

 Stall

 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one 
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Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, must stall when IB in ID stage wants to read a 
register to be written by IA in EX, MEM or WB stage
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Stall Conditions

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to advance 
normally during stall cycles
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Impact of Stall on Performance

 Each stall cycle corresponds to one lost cycle in which no 
instruction can be completed

 For a program with N instructions and S stall cycles, 
Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is 
resolved, i2 and i3 must be okay too
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Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... }
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addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls



Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 “add rx ry rz” literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a communication abstraction

 “add rx ry rz” means 1. get the results of the last instructions to 
define the values of RF[ry] and RF[rz], respectively, and 2. until 
another instruction redefines RF[rx], younger instructions that refer 
to RF[rx] should use this instruction’s result

 What matters is to maintain the correct “dataflow” between 
operations, thus
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ID ID IDIF ID

WBIF ID EX MEMadd ra r- r-

addi  r- ra r- MEMIF EX WB



Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by IA in 
EX, MEM or WB stage, then the operand required by IB is not yet 
in RF

 retrieve operand from datapath instead of the RF

 retrieve operand from the youngest definition if multiple 
definitions are outstanding
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Data Forwarding Paths (v1)
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Data Forwarding Paths (v2)
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Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

forward operand from WB stage // dist=2

else

use AEX (operand from register file) // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’t use_rs( ) appear in the forwarding logic?
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What does the above not take into account?



Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an immediately 
preceding LW instruction requires a stall
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R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB



Sample Assembly, No Forwarding (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... }
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addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls



Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... }
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addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
nop
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:



Pipelining the LC-3b

24



Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence
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An Example LC-3b Pipeline
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Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be 
used in pipelined datapath (can be propagated to stages later 
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of 
dependencies
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Control Store in a Pipelined Machine
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 Pipeline stall: Pipeline does not move because an operation 
in a stage cannot complete

 Stall Signals: Ensure the pipeline operates correctly in the 
presence of such an operation

 Why could an operation in a stage not complete?

Stall Signals
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Pipelined LC-3b

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-lc3b-pipelining.pdf
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End of Pipelining the LC-3b
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Questions to Ponder

 What is the role of the hardware vs. the software in data 
dependence handling?

 Software based interlocking 

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline 
slots?

 What are the advantages/disadvantages of each?
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Questions to Ponder

 What is the role of the hardware vs. the software in the 
order in which instructions are executed in the pipeline?

 Software based instruction scheduling  static scheduling

 Hardware based instruction scheduling  dynamic scheduling
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More on Software vs. Hardware
 Software based scheduling of instructions  static scheduling

 Compiler orders the instructions, hardware executes them in 
that order

 Contrast this with dynamic scheduling (in which hardware will 
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes 
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction 

 How can the compiler alleviate this (i.e., estimate the 
unknown)?

 Answer: Profiling
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Control Dependence Handling
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Review: Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction?
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Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Stall Fetch Until Next PC is Available: Good Idea?
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Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, just 
guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what about the 
remaining 14%?
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Guessing NextPC = PC + 4 

 Always predict the next sequential instruction is the next 
instruction to be executed

 This is a form of next fetch address prediction and branch 
prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…) 
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Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their 
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution
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Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000))  { … }

 3 conditional branches

 Problem: This increases the number of control 
dependencies

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture
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Predicated Execution

 Idea: Convert control dependence to data dependence

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
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Conditional Execution in ARM

 Same as predicated execution

 Every instruction is conditionally executed
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Predicated Execution

 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code)

 Advantages

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
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Predicated Execution

 We will get back to this…

 Some readings (optional):

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional Branching 
and Predication for Adaptive Predicated Execution,” MICRO 
2005.
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