18-447

Computer Architecture
Lecture 7: Pipelining

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/29/2014

Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

o “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening

Can We Use the Idle Hardware to Improve Concurrency?

Goal: Concurrency - throughput (more “work” completed
in one cycle)

Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

a Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...

Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F|(D|E|W
F D |E |W
F D |E | W
F|D|E|wW
Time

Pipelined: 4 cycles per 4 instructions (steady state)

F|D|E|wW
F|D|E|wW
F|D|E|wW
F D |E |W

Time

The Laundry Analogy

8 9 10 11 12 1 2 AM

[— 2
—
D ——
v

= “place one dirty load of clothes in the washer”
= “when the washer is finished, place the wet load in the dryer”
= “when the dryer is finished, take out the dry load and fold”

= “when folding is finished, ask your roommate (??) to put the clothes

away”’
- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

g '@ - 4 loads of laundry in parallel
".. - no additional resources
".. - throughput increased by 4

- latency per load is the same

Based on o

riginal figure

from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

6 PM 7 8 9 10 11 12 1 2 AM

the slowest step decides throughput

8

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

Throughput restored (2 loads per hour) using 2 dryers
9

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle™?
10

Ideal Pipelining

L, BW="(2/T)

. , combinational logic (F,D,E,M,W) L, BW=~(1/T)
T psec

— » T/2 ps (F,D,E) * T/2 ps (M,W)

N | T/3 | 7/3 17/3
ps (FD) ps (E,M) ps (M,W)

- BW="~(3/T)

11

More Realistic Pipeline: Throughput

Nonpipelined version with delay T
BW = 1/(T+S) where S = latch delay

k-stage pipelined version
BW i stage = 1 [/ (T/k +S)
BW_ . =1/(1gatedelay+S)

T/k

— > » | —> 6 o o6 o6 o o6 o6 —)

pS

T/k
ps

12

More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G
Cost = G+L where L = latch cost

— » G gates "

k-stage pipelined version
Costy 1a0e = G + LK

) =G/k > —>ooooooo—>G/k

13

Pipelining Instruction Processing

14

Remember: The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

o~ W

15

Remember the Single-Cycle Uarch

Instruction [25-0] | @A\

Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

Add

ReadO
address

Instr[uction[l
Instructionl]
memory

Instruction [31-26]
——————————————

Instruction [25—21]

Instruction [20— 16]

Instruction [15—11]
e e |

Instruction [15—-0]

0
M M
| O u u
X X
ALU
Add result \l/ 0
0
Jump
Readl
register 1 Readll
Readl data 1
register 2
__Registers Readls ALU Alu
Write[] data 2 0 result Address Readl 7
register M data il
u u
Write X
Datal] X
data 1) memory 0
Writeld
bcond™| gata
16) 32
\ SignO|_\
N Tlextend [M
Instruction [5—0] r
—> » T >

Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]

— BW="(1/T)

16

Dividing Into Stages

200ps 100ps 200ps 200ps 100ps
IF: Instruction fetch ID: Instruction decode/] EX: Execute/O MEM: Memory access | WB: Write back
register file read address calculation
ignore
............. for now
Add prea
4
|:} ReadO
| pC Address register 1 Readll
,| Readd data 1 [STPTTTTTTTTITIrr
Instruction regiSteL&igisters Read H
Instruction \flggits‘gr data2 Address Datall Fé‘;?g]]M RF
5 — |t memony x : write
Write[
data
Ay I —
\\ @ \\
Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?
17

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Instruction Pipeline Throughput

Programl]
executiond

ord

erl] Time

(in instructions)

Y

Iw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Program(]

executiond

order[
(in instructions)

v

Iw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time

2 200 400 600 800 1000 1200 1400 1600 1800
T T T T T T T T T >
Instruction Datall
fetch Reg ALU access Reg
< >l Instruction Datall
800ps fetch Reg ALU access Reg
< >l Instruction(]
800ps fetch
<_]
800ps
2 200 400 600 800 1000 1200 1400
T T T T T T >
Instruction(] Datall
fetch Reg ALU acgess Reg
Instruction] Datall
200ps fetch Reg ALU access Reg
<“—*Instruction[Datall
200ps fetch Reg| ALU access | X9

P P P PP
200ps

200ps

200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicted by the ideal model. Why?

18

Enabling Pipelined Processing: Pipeline Registers

—f No resource is used by more than 1 stage!

IFID ID/EX EX/MEM MEM/WB
q
+ =
Add = O
O a
c ReadO
-) Address -§ register 1 Read .
(a £ Read() data 1 nS N
Instruction = fengtekZ) 8 =
memory I~ __Registers Read() Y-
o writel] data 2 < Address H—l O —{1
= register data o
WiiteD Datall E u]
rite
data memory (;(
\éVriteI]
ata
16) 5 p= _,_,;
\ SignO E - o 5
VT lextend E o

T/k T/k

—> > > —» © 0 0 0 ¢ o0 o —)p

ps ps

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

'

Pipelined Operation Example

All instruction classes must follow the same path and timing

through the pipeline stages. Any performance impact?
pr—) 0
M
u
X
1
IF/ID EX/IMEM MEM/WB
Add
a
c ReadO
—| PC Address -% register 1 Readl]
g Read data 1
] <
Instruction(] NN reglsrerR%egisters Read T
memory Write data 2 Address Readll | (1
register data
Datall M
— | \é\;rti;etl memory ;
Write 0
data ‘
16 /\ 32
\ SignO|_\ -
X @ X

20

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelined

Operation Examp

le

L PC

MEM/WB
—L

pre—
0
]
— IF/ID ID/IEX EX/IMEM
Add .
4 —
S ReadO
Address = register 1 Readl
>
aub) Read data 1l ‘
Instructiond = register 2) Ly
memor | __Registers Readi)
’ registe data 2 Address Read
register sy
Datall
Write Date
data ry
Writed
data
16 . 32
\ SignO|\
N Tlextend| N
Clock 6 — L |

| sub $11, $2, $3 |

Write back

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

[lustrating Pipeline Operation: Operation View

Inst,
Inst,
Inst,
Inst,
Inst,

T 5] 15 L3 Ly s —f—

IF ID EX |[MEM]|[wB
IF ID EX |[MEM]|[wWB
IF ID EX |[MEM]|[wB

IF ID EX [|[MEM|/WB <

IF ID EX ||MEM

IF ID EX <

IF D <

IF =2

22

[lustrating Pipeline Operation: Resource View

| PR P R U I PO Y PR A TR (R

ID I R P P PO Y O O (Y

EX I R U N P PO N A
MEM oL Lo e |

WB s 1L | Lol |

Control Points 1n a Pip

eline

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

PCSrc
0
MO
uld
X
e
IF/ID ID/EX EXIMEM MEM/WB
Add ,\
Add
4 = Al eosuit
Branch
Shiftr]
RegWrite left 2
s Readl MemWrite
PC (&= Address S register 1 ReadI]
% ReadO data 1 ALUSrC >
i £ register 2 ero >
In;tétrj:]:gonD = 4 ~Registers Readlls ALU aLud
ry WriteO data2 [result Address Readll |
register data
Datal
WriteO
| data - memory
WriteO
data
Instruction T
[15-0] 16 6 ‘
\ \ ALU
A N | control MemRead
Instructiond
[20-16]
0
. MO| ALUOp
Instructiond ud
[15—-11] X
1
RegDst

MemtoReg

Identical set of control points as the single-cycle datapath!

24

Control Signals in a Pipeline

= For a given instruction
0 same control signals as single-cycle, but
0 control signals required at different cycles, depending on stage
- decode once using the same logic as single-cycle and buffer control

signals until consumed e L
Instruction f
—> Control [—>| M | WB L
EX[— M — “|we|
IF/ID ID/EX EX/MEM MEM/WB

. or carry relevant “instruction word/field” down the pipeline and
decode locally within each or in a previous stage

Which one is better?

Pipelined Control Signals

PCSrc

|

Control

, \ IF/ID
> Add . \Ij
Add
4 —’/ ® >Add result g
‘;: Shift Branch
ALUSrc =
s ReadO QE) >
PC Address § register 1 Readl \ > ?2:
= ReadO data 1 - g
Instruction £ registekz ist ALU Zero o =
—>| egisters Readl] . /A ALU[
memory \r/griitgtgr data2 [OM result Address %ea?g n
9 y Datal] M
Write[X memory u
| data 1 (;(
Write
" data
Instruction
[15-0] "16 N
x \y MemRead
InstructionO
[20-16]
0
M
Instructiond u
[15-11] X
1
o RegDst -
aV4
Z0

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle™?
27

Instruction Pipeline: Not An Ideal Pipeline

|dentical operations ... NOT!

= different instructions do not need all stages
- Forcing different instructions to go through the same multi-function pipe

- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

= difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work
- internal fragmentation (some pipe stages are too-fast but take the
same clock cycle time)

Independent operations ... NOT!
—> instructions are not independent of each other

- Need to detect and resolve inter-instruction dependencies to ensure the
pipeline operates correctly

— Pipeline is not always moving (it stalls)
28

Issues 1n Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls

29

Causes of Pipeline S7alls

Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations

30

Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependencies dictate ordering requirements between
iInstructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

31

Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?

32

Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

o For all of them, we need to ensure semantics of the program
are correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them

33

Flow dependence
rs <~ r,opr,
I r; op r,

Anti dependence
rs <~ r,opr,

/
'y < [, 0P [I¢

Output-dependence

rs < r,opr,
—

rs < g Op 1y

Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

34

How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences

35

Readings for Next Few Lectures

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

36

Review: Pipelining: Basic Idea

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

a Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: ??7?

37

Review: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F |D|E|W

Time

i

pelined: 4 cycles per 4 instructions (steady state)

F|D|E|W

Is life always this beautiful?

1 J — \'A'

F D |E |W

Time

Review: Pipelined Operation Example

| sub $11, $2, $3 |

pre—
: I wWrite back |
— IF/ID EX/IMEM MEM/WB
— XIME MY
Add
4 ey
c Read
—|PC Address % register 1 Readll
= data 1
a Readl
InstructionO] £ register 2 |
= Registers Read(ll
memory Write[l data 2 Address Readlll__ | _,m
1 register 1T— o
life al his b iful?
Is life always this beautiful:
16 / _ \32 | [J
\ SignO|\
| @ \ V
Clock 6 T - L __‘l

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Review: Instruction Pipeline: Not An Ideal Pipeline

|dentical operations ... NOT!

= different instructions do not need all stages
- Forcing different instructions to go through the same multi-function pipe

- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

= difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work
- internal fragmentation (some pipe stages are too-fast but take the
same clock cycle time)

Independent operations ... NOT!
—> instructions are not independent of each other

- Need to detect and resolve inter-instruction dependencies to ensure the
pipeline operates correctly

— Pipeline is not always moving (it stalls)
40

Review: Fundamental Issues in Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts
Advanced: Improving pipeline throughput

o Minimizing stalls
41

Review: Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

a For all of them, we need to ensure semantics of the program
IS correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited humber of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them

42

Flow dependence
rs <~ r,opr,
I r; op r,

Anti dependence
rs <~ r,opr,

/
'y < [, 0P [I¢

Output-dependence

rs < r,opr,
—

rs < g Op 1y

Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

43

Pipelined Operation Example

| sub $11, $2, $3 |
! Write back !

e
0
O

=

I IF/ID EX/MEM MEMWB
_ XIME M
Add
4 ey
c Read
—|PC Address % register 1 Readll
2 data 1l
Instructiont £ BGZ?Sthr 2 — >
memor = __Registers Read|f]
y Write(l data 2 Address Readll _ | _’m
1 register 1T— o
[]
What if the SUB were dependent on LW?
16 / _ \32 [
A\ SignO|\ V
| @ \
Clock 6 nE - L __‘l

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

45

Interlocking

Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

Software based interlocking
VS.

Hardware based interlocking

MIPS acronym?

46

Approaches to Dependence Detection (I)

Scoreboarding
o Each register in register file has a Valid bit associated with it
o An instruction that is writing to the register resets the Valid bit

o An instruction in Decode stage checks if all its source and
destination registers are Valid

Yes: No need to stall... No dependence
No: Stall the instruction

Advantage:
o Simple. 1 bit per register

Disadvantage:
o Need to stall for all types of dependences, not only flow dep.

47

Not Stalling on Anti and Output Dependences

= What changes would you make to the scoreboard to enable
this?

48

Approaches to Dependence Detection (1I)

Combinational dependence check logic

o Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

o Yes: stall the instruction/pipeline
o No: no need to stall... no flow dependence

Advantage:
o No need to stall on anti and output dependences

Disadvantage:
o Logic is more complex than a scoreboard

o Logic becomes more complex as we make the pipeline deeper

and wider (flash-forward: think superscalar execution)
49

Once You Detect the

Dependence in Hardware

What do you do afterwards?

Observation: Dependence

between two instructions is

detected before the communicated data value becomes

available

Option 1: Stall the depenc
Option 2: Stall the depenc

necessary - data forward
Option 3: ...

ent instruction right away

ent instruction only when
ing/bypassing

50

Data Forwarding/Bypassing

Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

Goal: We do not want to stall the pipeline unnecessarily

Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

Benefit: Consumer can move in the pipeline until the point

the value can be supplied - less stalling
51

A Special Case of Data Dependence

Control dependence
o Data dependence on the Instruction Pointer / Program Counter

52

Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
o How do we determine the next Fetch PC?

In fact, how do we know whether or not the fetched

instruction is a control-flow instruction?
53

Data Dependence Handling:
More Depth & Implementation

Remember: Data Dependence Types

Flow dependence
s <~ r,opr, Read-after-Write
s = r; op r, (RAW)

Anti dependence

rs < r,opr, Write-after-Read
/
ry < I, Op Ic (WAR)

Output-dependence

s <~ r,opr, Write-after-Write
(— (WAW)

rs < rg op ry

55

How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

56

RAW Dependence Handling

Following flow dependences lead to conflicts in the 5-stage
pipeline

addi rar- -

addi M- ‘E* At
addi r-ry- * F

addi r-ra- *

addi r-ra -

addi r-ra -

Register Data Dependence Analysis

R/I-Type | LW SW Br J Ir

IF

EX

MEM

WB write RF | write RF

For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

o dependence type: RAW, WAR, WAW?
o instruction types involved?
o distance between the two instructions?

Safe and Unsate Movement of Pipeline

lsta

l

lsta Y
Reg Write

l

RAW Dependence

X
Reg Readﬁ jine—_

i<,

l

Reg Write

l

l

Reg Read

l

WAR Dependence

jir—_

iir

WAW Dependence

l

Reg Write

l

l

Reg Write

l

dist(i,j) < dist(X,Y) = Unsafe to keep j moving
dist(i,j) > dist(X,Y) = Safe

59

RAW Dependence Analysis Example

R/I-Type LW SW Br J Jr

IF

ID

EX
MEM
WB write RF | write RF

Instructions |, and I; (where |, comes before I;) have RAW
dependence iff
o g (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
o dist(l,, 15) < dist(ID, WB) = 3
What about WAW and WAR dependence?
What about memory data dependence?

60

Pipeline Stall: Resolving Data Dependence

Inst,
Inst.
Inst,
Inst,
Inst,

T 5] 15 L3 L s -
IF D |[ALU |[[MEM]|[WB
i [IF ID |[|ALU |[MEM||WB I\
. [IF_Jp—]—0—][Ib]lA 3
E—pe—1pe—iF _[[iD <
IF =2

Stall==make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages

2. drain all down-stream stages

How to Implement Stalling

PCSrc

|

1

Add

IF/ID

Control

EX/MEM

—>| Address

Instruction]
memory

RegWrite

ReadO

register 1 Read

Readl data 1

l Instruction

register 2
Registers Read

Write data 2

register

Write
data

5

LM‘EM/WB

Instruction
[15-0] D{G

Instructiond
[20-16]

Branch

1 -

MemWrite

Write

Instruction
[15-11]

N Tlcontrol

P xeczZ©

ALUOp

data

Address

Read(]|

data
DatalJ

memory

WB

MemRead

RegDst

'
I_i l

MemtoReg

o disable PC and IR latching; ensure stalled instruction stays in its stage

a Insert “invalid” instructions/nops into the stage following the stalled one

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

62

Stall Conditions

Instructions |, and I; (where |, comes before I;) have RAW
dependence iff

o g (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
a dist(l,, I5) < dist(ID, WB) = 3

In other words, must stall when I in ID stage wants to read a
register to be written by 1, in EX, MEM or WB stage

03

Stall Conditions

= Helper functions
a rs(l) returns the rs field of |

0 use_rs(l) returns true if | requires RF[rs] and rs!=r0

» Stall when

2 (rs(IRp)==) && use rs(IR,;) && or

2 (rs(IRp)==) && use rs(IR,;) && or
2 (rs(IRp)==) && use rs(IR,;) && or

2 (rt(Ir)==) && use rt(Ir,) && or

2 (rt(Ir)==) && use rt(Ir,) && or
o (rt(Ir)==) && use rt(Ir,) &&

= ltis crucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

04

Impact ot Stall on Performance

Each stall cycle corresponds to 1 lost ALU cycle

For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

S depends on

o frequency of RAW dependences

0 exact distance between the dependent instructions
o distance between dependences

. . . . « 7 .
suppose i, i, and i, all depend on iy, once i; sdependence is
resolved, i, and i; must be okay too

65

Sample Assembly (P&H)

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

$s1,550,-1 _—— 3 stalls

5t0,5s1,0 __— 3 stalls
St0, Szero, exit2

St1,8s1,2 _— 3 stalls

$t2,5a0,5t1 —3 stalls
St3, 0(St2)

St4,4(S5t2) _— 3 stalls
St0, St4,St3_— 3 stalls

St0, Szero, exit2

Ss1, Ss1, -1
for2tst

06

add rar-r

addi r-rar

Data Forwarding (or Data Bypassing)

It is intuitive to think of RF as state

11

0 ” literally means get values from and
respectively and put result in

But, RF is just a part of a computing abstraction

11

0 ” means 1. get the results of the last instructions to
define the values of and , respectively, and 2. until
another instruction redefines , younger instructions that
refers to should use this instruction’ s result

What matters is to maintain the correct “dataflow” between
operations, thus

- F_Jio_Jfex \[mEmI[wB |
: IF _,LD/\EX MEM][wWB

67

Resolving RAW Dependence with Forwarding

Instructions |, and I; (where |, comes before I;) have RAW
dependence iff

o g (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
a dist(l,, I5) < dist(ID, WB) = 3

In other words, if I in ID stage reads a register written by |, in
EX, MEM or WB stage, then the operand required by I; is not yet
in RF

= retrieve operand from datapath instead of the RF

= retrieve operand from the youngest definition if multiple
definitions are outstanding

068

Data Forwarding Paths (v1)

__ dist(i,j)=3

— ML
- r { Forwar >ALU
= i . . .
1 b | dist(i,j)=1
5 L
. |
internal ForwardB
forward? /MQ
N

Forwarding[

3

Datall

dist(i,j)=2

S

memory

! X/IMEM.RegisterRi

VIEM/WB.RegisterRd

unit

dist(i,j)=3

MO
ull
X

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

09

Data Forwarding Paths (v2)

dist(i j)=3

ID/EX

1]

Rs

Rt

Rt

Rd

Im
u

EX/IMEM

X

t ForwardA >ALU

dist(i,j)=1

M
u
X

L

ForwardB

[

»

xcZ)

b. With forwarding

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Forwarding[
unit

MEM/WB

Datall

dist(i,j)=2

memory

EX/MEM.RegisterRd

MEM/WB.RegisterRd

M
u
X

Assumes RF forwards internally

Data Forwarding LLogic (for v2)

if (rs.,!1=0) && (rs. ==) && then
forward operand from MEM stage // dist=1

else if (rs.,1=0) && (rs.,==) && then
forward operand from WB stage // dist=2

else
use A, (operand from register file) // dist >=3

Ordering matters!! Must check youngest match first

Why doesn’ t use_rs() appear in the forwarding logic?

What does the above not take into account?

71

Data Forwarding (Dependence Analysts)

R/I-Type LW SW Br J Jr
IF
ID
EX produce
MEM produce (use)
WB

Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

72

Sample Assembly, Revisited (P&H)

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
W
W

Ss1, SsO, -1

St0, Ss1, 0

St0, Szero, exit2
St1, Ss1, 2

St2, Sao0, Stl
St3, 0(St2)

St4, 4(St2)

St0, St4, St3
St0, Szero, exit2

Ss1, Ss1, -1
for2tst

73

Pipelining the LLC-3b

Pipelining the L.C-3b

Let’s remember the single-bus datapath

We'll divide it into 5 stages
o Fetch

Decode/RF Access

Address Generation/Execute
Memory

Store Result

Conservative handling of data and control dependences
o Stall on branch
o Stall on flow dependence

75

LD.IR—

GateMARMUX

GatePC

LDPC—— PC |

2

Pt

ZEXT &
LSHF1
4
&7:01 2
ADDR2MUX

< ADDRIMUX

LD REG—>

3
SR2 —4+>|

REG
FILE

0

<—<—DR
SR2 SR1

3
ouT OUT [<7—SRI

[10:0]

GateMDR

<—DATA SIZE
LOGIC
<—MAR[0]

W 1L.D MDR

AR MIO.EN

6 6

LOGIC
<—DATASTZE

<—MAR[0]

INMUX 4‘I

/—c> SR2MUX
CONTROL
T f I Y
R
Y v
2 B A
LD.CC—>|N|Z|P .
NPVl I "o
ALUK
3 .
GateALU GateSHF
6
El.D . MAR
»
R.W
WE
o
Logic|_ v o 0 9 - - — — — ——1n HEN
J; <SATA MIQEN | npyT | OUTPUT g
Y . -
SIZE | |
WEI WEO v, [KBDR| ["DDR | -
Jy ADDR.CTL
St [KBSR | | DSR |
MEMORY _
_]
L 5 ! "N]
MEM EN [<
R

An Example LLC-3b Pipeline

FETCH DECODE AGEX MEM SR
I
! A Y
/ Address
Register = Generation - -
File Logic
Y D—Cache -
- 'II’CI— i Destination Reg.
Value .
Select Logic
Y - A
A
Control Store ALU L _
ROM -
I-CACHE ™ SHF [™
Y ™| Branch
Logic
Dependency
! Check Logic
_I Fetch Control Logic
A%
- -

T

From other stages

From other stages

77

FETCH STAGE

TRAP.PC

TARGET .PC

N Y

INPUTS____

LOGIC

LD.PC

77
1
/i{ﬁ /kﬁ fﬁ /ﬁ "%
Y
+2 T
LD DE
i
16
’ //16
PC
‘16
Y
//"
I-CACHE 16

l

ICACHER ~ INPUTS—

LOGIC

N

7

|

LDDE

DE.NPC

DE.IR

DE.V

YV.DEBRSTALL

AGEX.CS

AGEX.IR

AGEX.5R1

AGEX.SR2Z

AGEX.CC

AGEX.DRID
AGEX.V

79

LD AGEX

DECODE STAGE

R Ty N N i
J.,,“,,,,H.,mUM.H,HHM.H”m,H”M,H../,,,,,,“”,m,H,”;m&mmyk%v%ﬁﬁﬁ RN R
i i . i A [+ m
[on]
. -
. 2 : H
B = m
H A
= = = ™ a -
g = - B H # =
™ B
= &
wl & = =
=1 — —
- — =
= VIVODHE HE 5
le m - e VLVE DO S
I = CHHOTHS A —— = L
o = m = O g H
h Nk Gl v o o 5 m
P ORHOHS S = 55 2
A i [g & g -
o e
=) < =& w
3 = o=
big) ..,_..,_.,1._ ﬂ
b
s - U e T HS A
o o) < = 0" e MANTTWEW A
= = o
E5 L. - N mm — DAATXADVA
S @ £ ~ s - m m ..TM3| CIHTHS
: :
m & » m il|x3rf| CITHCT INHIN
AEHE 5 A AN XEDY
slz |2 2
2 M 5] =
S8 12/ g
74 SN T B 2885
% |2 e m m o
il z & i
Y a |a g &
ot ..nﬂ,. ,..A//.,ﬁ..é, o ﬂﬂ 4 e
NN NN\ 2
j
W e - &
= m a
7 g
i a =
o

AGEX STAGE

5 -
AGEX. NPC | 716 h .
.’.r - 16 J—
LSHIT LSHF1 [7¢™ 0 15 MEM. ADDRESS
ADDRIMUX ‘5’6

ADDRESSMUX

Annmmx% 2 3

N
DAMMMNN

AGEX. CS ’ -
116 & | MEM. C8
’I{ﬁ 14 7| _ AGEXCS[19:9] ™ .;p’{',
o (& = . 7
Ml % 5 E i
s [+] :H: :-'__z" e
N B g AGEX.NPC T ';% MEM. NPC
= = = P
nl o= = co MEM. CC
AGEX. IR .8 ACEX.CC —l,.fj—h- S
A //,r;:,r”
s
'_':::-' # I - Fa -
AGEX.SR1| T SHF araal] ///?j / MEMALU RESULT
f/f 16 ///".-
- A 777
AGEX. SR2 16 o - r,;:.-.-
RE40 |_SEXT |t 6 |0 ALU e 7
6 = g = ALURESULTMUX 4 MEM. IR
AGEX. CC E = z AGEXIR —7{z—*| M DRI
SRIMUX 7 ‘
o = AGEXDRID _, ol 777
AGEX.DRID | g g g : } ’é
. A, ﬁ E » l_"'::":'.":'."-'.‘ MEM.V
g g Q ALUK
AGEX.Y = T LD MEM
$ J' \l.* INPUTS—* LOGIC
= LOGIC

YV.AGEXLD.CC '=_|

VAGEXLDREG =
AGEX DRID VAGEX BRSTALL = 0
7
3

MEM STAGE

MEM ADDRESS

MEMCS

MEMNEC

MEMCC

MEMALU.RESULT

MEMIR

MEMDRID
MEM.V

MEM.STALL

- ,Mfﬁ % L TRAPFC
2
. 7 _ Ny
% 16 =y g % 3 % //;
DATASIZE — “ w2 %

é DCACHER/W — IE:E}IC g g % %
Z . =
/// e iy
7 DCACHER WE1 WE0 //{(/,,//
% R ADDR | ?/?
//////; DCAChII-l{E ELJ;:I;: — V.DCACHE EN END—CACI—[E 16| LOGIC //, Z
5/?//5 DATA MEM.CS[10:7] —.F-? /
. i y
yﬁ”/f 416 7 //
/ p o - . ¥ 7
/ o toaie e e
'5/ -)
| 3 .
. 2 M.CC g%é MEM.ALU RESULT #//4
’%/ B 5 | MEMV Ao ? /
/ “IR[11:9] I 777 - /{y////,

% BROP___ | ZEE = MEMIR —7%7
// UNCONOP | BR %%%é 16 ///
\/\&{‘\J TRAP.OP LOGIC MEMDRID g///
] DN

3 2 V.MEM.LD.CE™—
MEM.DRID v:gﬁg:;ﬁiﬂ_ LOGIC INPUTS ™| LOGIC
= MEM PCMUX

SR.ADDRESS

SRDATA

SR.CS

SRNPC

SR.ALURESULT

SRIR
SR.DRID

SR.V

81

SR STAGE

SR.ADDRESS

SR.DATA

SR.CS

SR.INPC

SRALURESULT

SR.IR
SR.DRID

SR.V

e rp——
VARLDEREG
B EEmm—
V.5ELD.CC

N
DN

%

LOGIC

SRV
SRJIC5[3:2]

\

/

3
™ SR.CCDATA

]

o
a
0

16

TA

= SRREGDA

e

T

DA

7

\
N

N

\

_

.

SE.DRID

82

Control of the L.LC-3b Pipeline

Three types of control signals

Datapath Control Signals
o Control signals that control the operation of the datapath

Control Store Signals

o Control signals (microinstructions) stored in control store to be

used in pipelined datapath (can be propagated to stages later
than decode)

Stall Signals

o Ensure the pipeline operates correctly in the presence of
dependencies

83

Slage Sipmal dame Sipnal Values
FETCH MEM.PCMLUIN2: 4 PO+ sselect posl
TARCGET.RC sselect MEM TARGETPC (branch target)
TEAPPC sselect MEM TRAFPC
LD Tt MO0, LA
LIDDEN:$ MO0, LOAINT)
DECODE DEMLUXA: 119 westinstion IR[11:%]
kT wlestimation BT
SR NEEDED: NOND, YES(LY samsserted i instruction needs SR
SRINEEDEDS: MO0, YES(LY sasserted i instruction needs SR2
DE.BRAOFL: MO0y, BR{Dy ;BR Opeode
SE2IDMLUIX:4 20 ssearce TR[Z:0]
118 ssouree [R]11:9]
LD AGEX/:4 MO0, LOAINT)
VAGEX LD MO0, LOAINT)
VIMEM LD MO0, LOAINT)
VERLDUCC:H MO0, LOAINT)
WAGEX LD REG: MO0, LOAINT)
V.MEMLDEREG: 11 MO0, LOAINT)
V.ERLDREG: MO0, LOAINT)
AGEX ADDRIMLUN: NPT sselect valoe from AGEX.NPC
BaseR sselect valoe from AGEX. SR 1(BaseR)
ADDEIMLUNT: ZERQ sselect the value 2em
offsels sselect SEXTIIRISD]
Pl sselect SEXTIRIED]
PCoffwetll sselect SEXTIR] 10:07)
LSHF1s1: MO0, Thit Left shife(1)
ADDRESSMLUNIL: T sselect LIHFZEXTIIR[741110
ADDER sselect outpat of addness sdder
SRIMLIX: SR sselect From AGEX.SE2
4.0 JAR[E:0)
ALURST: ADDHOE, ANIDNDL)
MOR(ID), PASSBEI1L)
ALURESULTMLUNSL: SHIFTER sselect autpal of the shifter
ALU select 1put out the ALL
LD AEN MO0, LOAI 1)
MEM DCACHE BN MO, YES(1) ssserted i the Instruction scoesses memory
DUCACHE BWL: RINO), WRIL)
DATA BIFEN: BYTED, WD L)
BRE O WOy, BR{DY BR
LTNCON 0F L WO, Uncond BRI DY ARPRET, ISR, ISRER
TRAPORL: WOy, Trapi Ly TRAF
SR DR VALUEMUXT: ADDRESS sselect value from SEADDRESS
DATA ssilect value from SR.DATA
NPC ssilect value om SR.NPC
ALL ssilect valee from SRLALLU RESULT
LINREG: MO0, LOAINT)
LDUCCs L MO0, LOAIT)

Tahle 1: Data Path Contral Signals

tz The comtral sipral is penerated by lopic inthat stage
11: The cantrol signal s generated by bogic in another stage

84

Control Store in a Pipelined Machine

Number Signal Name Stages

0 SRI.NEEDED DECODE

1 SR2Z.NEEDED DECODE

2 DEMUX DECODE

3 ADDRIMUX AGEX

4 ADDRZMUXI AGEX

3 ADDRIMUXID AGEX

6 LSHF1 AGEX

7 ADDRESSMUX AGEX

8 SRIMUX AGEX

9 ALUKI AGEX

10 ALUKO AGEX

11 ALURESULTMUX AGEX

12 BR.OP DECODE, MEM
13 UNCON.OP MEM

14 TRAP.OP MEM

15 BR.STALL DECODE, AGEX, MEM
16 DCACHE.EN MEM

17 DCACHE.RW MEM

18 DATA SIZE MEM

19 DR VALUEMUX]1 SR

20 DR.VALUEMUXO SR

21 LD.REG AGEX, MEM, SR
22 LD.CC AGEX, MEM, SR

Table 2: Control Store ROM Signals

Stall Signals

= Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

= Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

= Why could an operation in a stage not complete?

Signal Name (renerated in
ICACHE.R/1: FETCH NO, READY
DEP.STALL/I: DEC NO, STALL
VIDE.BR.STALL/IL: DEC NO, STALL
V.AGEX.BRE.STALL/L: AGEX NO, STALL
MEM.STALL/I: MEM NO, STALL
V.MEM.BR.STALL/L: MEM NO, STALL

Table 3: STALL Signals

