
18-447  

Computer Architecture 

Lecture 7: Pipelining 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

Spring 2014, 1/29/2014 

 

 

 



Can We Do Better? 

 What limitations do you see with the multi-cycle design? 

 

 Limited concurrency 

 Some hardware resources are idle during different phases of 
instruction processing cycle 

 “Fetch” logic is idle when an instruction is being “decoded” or 
“executed” 

 Most of the datapath is idle when a memory access is 
happening 

2 



Can We Use the Idle Hardware to Improve Concurrency?

  
 Goal: Concurrency  throughput (more “work” completed 

in one cycle) 

 

 Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction 

 E.g., when an instruction is being decoded, fetch the next 
instruction 

 E.g., when an instruction is being executed, decode another 
instruction 

 E.g., when an instruction is accessing data memory (ld/st), 
execute the next instruction 

 E.g., when an instruction is writing its result into the register 
file, access data memory for the next instruction 

3 



Pipelining: Basic Idea 

 More systematically: 

 Pipeline the execution of multiple instructions 

 Analogy: “Assembly line processing” of instructions 
 

 Idea: 

 Divide the instruction processing cycle into distinct “stages” of 
processing 

 Ensure there are enough hardware resources to process one 
instruction in each stage 

 Process a different instruction in each stage 

 Instructions consecutive in program order are processed in 
consecutive stages 

 

 Benefit: Increases instruction processing throughput (1/CPI) 

 Downside: Start thinking about this… 
4 



Example: Execution of Four Independent ADDs 

 Multi-cycle: 4 cycles per instruction 

 

 

 

 

 

 Pipelined: 4 cycles per 4 instructions (steady state) 

 

 

 

 

 

 

 

5 

Time 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

Time 



The Laundry Analogy  

 

 

 

 

 

 

 “place one dirty load of clothes in the washer” 

 “when the washer is finished, place the wet load in the dryer” 

 “when the dryer is finished, take out the dry load and fold” 

 “when folding is finished, ask your roommate (??) to put the clothes 
away” 

 

6 

   - steps to do a load are sequentially dependent 
   - no dependence between different loads 
   - different steps do not share resources 
 

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Pipelining Multiple Loads of Laundry 

 

7 

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

- latency per load is the same 
- throughput increased by 4 

- 4 loads of laundry in parallel 
- no additional resources 

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Pipelining Multiple Loads of Laundry: In Practice 

 

8 

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

the slowest step decides throughput 

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Pipelining Multiple Loads of Laundry: In Practice 

 

9 

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

A 

B 

A 

B 

Throughput restored (2 loads per hour) using 2 dryers  

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task


order

Task


order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



An Ideal Pipeline 

 Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing) 
 

 Repetition of identical operations 

 The same operation is repeated on a large number of different 
inputs 

 Repetition of independent operations 

 No dependencies between repeated operations 

 Uniformly partitionable suboperations 

 Processing can be evenly divided into uniform-latency 
suboperations (that do not share resources) 

 

 Fitting examples: automobile assembly line, doing laundry 

 What about the instruction processing “cycle”? 

 10 



Ideal Pipelining 

 

11 

combinational logic (F,D,E,M,W) 
T psec 

BW=~(1/T) 

BW=~(2/T) T/2 ps (F,D,E) T/2 ps (M,W) 

BW=~(3/T) T/3 
 ps (F,D) 

T/3 
 ps (E,M) 

T/3 
 ps (M,W) 



More Realistic Pipeline: Throughput 

 Nonpipelined version with delay T   

  BW = 1/(T+S) where S = latch delay 

 

 

 
 

 

 k-stage pipelined version 

  BWk-stage = 1 / (T/k +S ) 

  BWmax = 1 / (1 gate delay + S ) 

  

 

12 

T ps 

T/k 
 ps 

T/k 
 ps 

   



More Realistic Pipeline: Cost 

 Nonpipelined version with combinational cost G   

  Cost = G+L where L = latch cost 

 

 

 
 

 

 k-stage pipelined version 

  Costk-stage = G + Lk  

  

13 

G gates 

G/k G/k 



Pipelining Instruction Processing 

14 



Remember: The Instruction Processing Cycle 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

15 

1. Instruction fetch (IF) 
2. Instruction decode and  
    register operand fetch (ID/RF) 
3. Execute/Evaluate memory address (EX/AG) 
4. Memory operand fetch (MEM) 
5. Store/writeback result (WB)  

 



Remember the Single-Cycle Uarch 

 

16 

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU


result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken 

PCSrc1=Jump 

ALU operation 

bcond 

Based on original figure from [P&H CO&D, COPYRIGHT 2004 
Elsevier. ALL RIGHTS RESERVED.] 

T BW=~(1/T) 



Dividing Into Stages 

17 

200ps 

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

Instruction

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

Address

Data


memory
1

ALU

result

M

u

x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/


register file read

EX: Execute/


address calculation

MEM: Memory access WB: Write back

Is this the correct partitioning?  
 Why not 4 or 6 stages?  Why not different boundaries? 

100ps 200ps 200ps 100ps 

RF 
write 

ignore 
for now 

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Instruction Pipeline Throughput 

 

18 

Instruction


fetch
Reg ALU

Data


access
Reg

8 ns
Instruction


fetch
Reg ALU

Data


access
Reg

8 ns
Instruction


fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program


execution


order


(in instructions)

Instruction


fetch
Reg ALU

Data


access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction


fetch
Reg ALU

Data


access
Reg

2 ns
Instruction


fetch
Reg ALU

Data


access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns




Program


execution


order


(in instructions)

200          400         600          800         1000        1200       1400       1600        1800 

200          400         600          800         1000        1200       1400 

800ps 

800ps 

800ps 

200ps 200ps 200ps 200ps 200ps 

200ps 

200ps 

5-stage speedup is 4, not 5 as predicted by the ideal model. Why? 



Enabling Pipelined Processing: Pipeline Registers 

 

19 
T 

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

Instruction

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

Address

Data


memory
1

ALU

result

M

u

x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/


register file read

EX: Execute/


address calculation

MEM: Memory access WB: Write back

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Data


memory

Address

No resource is used by more than 1 stage! 
IR

D
 

P
C

F 

P
C

D
+4

 

P
C

E+
4

 

n
P

C
M

 

A
E 

B
E 

Im
m

E 

A
o

u
t M

 
B

M
 

M
D

R
W

 
A

o
u

t W
 

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

T/k 
 ps 

T/k 
 ps 



Pipelined Operation Example 

 

20 

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data


memory

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data


memory

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data


memory

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data


memory

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Execution

lw

Address

Data


memory

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

Data


memory

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

data

Read

dataData


memory

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write

register

Address

97108/Patterson 


Figure 06.15

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

Data


memory

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

data

Read

dataData


memory

1

ALU

result

M

u

x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write

register

Address

97108/Patterson 


Figure 06.15

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0

Address

Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

Data


memory

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

All instruction classes must follow the same path and timing  
through the pipeline stages.  Any performance impact? 



Pipelined Operation Example 

 

21 

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data


memory

Address

Data


memory

Clock 1

Clock 2

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data


memory

Address

Data


memory

Clock 1

Clock 2

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

3216
Sign


extend

Write

register

Write

data

Memory

lw $10, 20($1)

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign


extend

Address

Data


memory

Data


memory

Address

Clock 3

Clock 4

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

3216
Sign


extend

Write

register

Write

data

Memory

lw $10, 20($1)

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign


extend

Address

Data


memory

Data


memory

Address

Clock 3

Clock 4

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

lw $10, 20($1)

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data

memory

Address

Data


memory

Clock 6

Clock 5

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

lw $10, 20($1)

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data

memory

Address

Data


memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Illustrating Pipeline Operation: Operation View 

 

22 

MEM 

EX 

ID 

IF Inst4 

WB 

IF 

MEM 

IF 

MEM 

EX 

t0 t1 t2 t3 t4 t5 

ID 

EX IF ID 

IF ID 

Inst0 ID 

IF Inst1 

EX 

ID 

IF Inst2 

MEM 

EX 

ID 

IF Inst3 

WB 

WB MEM 

EX 

WB 



Illustrating Pipeline Operation: Resource View 

 

23 

I0 

I0 

I1 

I0 

I1 

I2 

I0 

I1 

I2 

I3 

I0 

I1 

I2 

I3 

I4 

I1 

I2 

I3 

I4 

I5 

I2 

I3 

I4 

I5 

I6 

I3 

I4 

I5 

I6 

I7 

I4 

I5 

I6 

I7 

I8 

I5 

I6 

I7 

I8 

I9 

I6 

I7 

I8 

I9 

I10 

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

IF 

ID 

EX 

MEM 

WB 



Control Points in a Pipeline 

 

24 

PC

Instruction

memory

Address

In
s
tr

u
c
ti
o
n

Instruction

[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction

[15– 0]

0

0
Registers

Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1
Write


data

Read


data M

u

x

1

ALU


control

RegWrite

MemRead

Instruction

[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data

memory

PCSrc

Zero

Add
Add


result

Shift


left 2

ALU


result

ALU

Zero

Add

0

1

M

u

x

0

1

M

u

x

Identical set of control points as the single-cycle datapath!! 

Based on original figure from [P&H CO&D, 
COPYRIGHT 2004 Elsevier. ALL RIGHTS 
RESERVED.] 



Control Signals in a Pipeline 

 For a given instruction 

 same control signals as single-cycle, but 

 control signals required at different cycles, depending on stage 

 decode once using the same logic as single-cycle and buffer control 
signals until consumed 

 

 

 

 

 

 

 or carry relevant “instruction word/field” down the pipeline and 
decode locally within each or in a previous stage 

                Which one is better? 

 
25 

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction



Pipelined Control Signals 

 

26 

PC

Instruction

memory

In
s
tr

u
c
ti
o

n

Add

Instruction

[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15– 0]

0

0

M

u

x

0

1

Add
Add


result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction

[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
e

m
W

ri
te

Address

Data

memory

Address

Based on original figure from [P&H CO&D, 
COPYRIGHT 2004 Elsevier. ALL RIGHTS 
RESERVED.] 



An Ideal Pipeline 

 Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing) 
 

 Repetition of identical operations 

 The same operation is repeated on a large number of different 
inputs 

 Repetition of independent operations 

 No dependencies between repeated operations 

 Uniformly partitionable suboperations 

 Processing an be evenly divided into uniform-latency 
suboperations (that do not share resources) 

 

 Fitting examples: automobile assembly line, doing laundry 

 What about the instruction processing “cycle”? 

 27 



Instruction Pipeline: Not An Ideal Pipeline 
 Identical operations ... NOT!  

    different instructions do not need all stages 

- Forcing different instructions to go through the same multi-function pipe 

 external fragmentation (some pipe stages idle for some instructions) 

 Uniform suboperations  ...  NOT!  

    difficult to balance the different pipeline stages 

- Not all pipeline stages do the same amount of work 

 internal fragmentation (some pipe stages are too-fast but take the 
same clock cycle time) 

 Independent operations ... NOT! 

    instructions are not independent of each other 
- Need to detect and resolve inter-instruction dependencies to ensure the  
pipeline operates correctly 

 Pipeline is not always moving (it stalls) 
28 



Issues in Pipeline Design 

 Balancing work in pipeline stages 

 How many stages and what is done in each stage 
 

 Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow 

 Handling dependences  

 Data 

 Control 

 Handling resource contention 

 Handling long-latency (multi-cycle) operations 
 

 Handling exceptions, interrupts 
 

 Advanced: Improving pipeline throughput 

 Minimizing stalls 

 
29 



Causes of Pipeline Stalls 

 Resource contention 

 

 Dependences (between instructions) 

 Data 

 Control 

 

 Long-latency (multi-cycle) operations 

 

 

30 



Dependences and Their Types 

 Also called “dependency” or less desirably “hazard” 

 

 Dependencies dictate ordering requirements between 
instructions 

 

 Two types 

 Data dependence 

 Control dependence 

 

 Resource contention is sometimes called resource 
dependence 

 However, this is not fundamental to (dictated by) program 
semantics, so we will treat it separately 

31 



Handling Resource Contention 

 Happens when instructions in two pipeline stages need the 
same resource 

 

 Solution 1: Eliminate the cause of contention 

 Duplicate the resource or increase its throughput 

 E.g., use separate instruction and data memories (caches) 

 E.g., use multiple ports for memory structures 

 

 Solution 2: Detect the resource contention and stall one of 
the contending stages 

 Which stage do you stall? 

 Example: What if you had a single read and write port for the 
register file? 

32 



Data Dependences 

 Types of data dependences 

 Flow dependence (true data dependence – read after write) 

 Output dependence (write after write) 

 Anti dependence (write after read) 

 

 Which ones cause stalls in a pipelined machine? 

 For all of them, we need to ensure semantics of the program 
are correct 

 Flow dependences always need to be obeyed because they 
constitute true dependence on a value 

 Anti and output dependences exist due to limited number of 
architectural registers  

 They are dependence on a name, not a value 

 We will later see what we can do about them 

 

 

33 



Data Dependence Types 

 

34 

Flow dependence 
r3          r1  op  r2             Read-after-Write   
r5    r3  op  r4   (RAW) 
 

Anti dependence 
r3     r1  op  r2  Write-after-Read  
r1     r4  op  r5   (WAR) 
  
Output-dependence 
r3    r1  op  r2   Write-after-Write  
r5    r3  op  r4   (WAW) 
r3    r6  op  r7   



How to Handle Data Dependences 

 Anti and output dependences are easier to handle  

 write to the destination in one stage and in program order 

 

 Flow dependences are more interesting 

 

 Five fundamental ways of handling flow dependences 

35 



Readings for Next Few Lectures 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 

36 



Review: Pipelining: Basic Idea 

 Idea: 

 Divide the instruction processing cycle into distinct “stages” of 
processing 

 Ensure there are enough hardware resources to process one 
instruction in each stage 

 Process a different instruction in each stage 

 Instructions consecutive in program order are processed in 
consecutive stages 

 

 

 Benefit: Increases instruction processing throughput (1/CPI) 

 Downside: ??? 

37 



Review: Execution of Four Independent ADDs 

 Multi-cycle: 4 cycles per instruction 

 

 

 

 

 

 Pipelined: 4 cycles per 4 instructions (steady state) 

 

 

 

 

 

 

 

38 

Time 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

F D E W 

Time 

Is life always this beautiful? 



Review: Pipelined Operation Example 

 

39 

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data


memory

Address

Data


memory

Clock 1

Clock 2

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data


memory

Address

Data


memory

Clock 1

Clock 2

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

3216
Sign


extend

Write

register

Write

data

Memory

lw $10, 20($1)

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign


extend

Address

Data


memory

Data


memory

Address

Clock 3

Clock 4

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

3216
Sign


extend

Write

register

Write

data

Memory

lw $10, 20($1)

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign


extend

Address

Data


memory

Data


memory

Address

Clock 3

Clock 4

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

lw $10, 20($1)

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data

memory

Address

Data


memory

Clock 6

Clock 5

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

lw $10, 20($1)

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data

memory

Address

Data


memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

Is life always this beautiful? 



Review: Instruction Pipeline: Not An Ideal Pipeline 

 Identical operations ... NOT!  

    different instructions do not need all stages 

- Forcing different instructions to go through the same multi-function pipe 

 external fragmentation (some pipe stages idle for some instructions) 

 Uniform suboperations  ...  NOT!  

    difficult to balance the different pipeline stages 

- Not all pipeline stages do the same amount of work 

 internal fragmentation (some pipe stages are too-fast but take the 
same clock cycle time) 

 Independent operations ... NOT! 

    instructions are not independent of each other 
- Need to detect and resolve inter-instruction dependencies to ensure the  
pipeline operates correctly 

 Pipeline is not always moving (it stalls) 
40 



Review: Fundamental Issues in Pipeline Design 

 Balancing work in pipeline stages 

 How many stages and what is done in each stage 
 

 Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow 

 Handling dependences  

 Data 

 Control 

 Handling resource contention 

 Handling long-latency (multi-cycle) operations 
 

 Handling exceptions, interrupts 
 

 Advanced: Improving pipeline throughput 

 Minimizing stalls 

 
41 



Review: Data Dependences 

 Types of data dependences 

 Flow dependence (true data dependence – read after write) 

 Output dependence (write after write) 

 Anti dependence (write after read) 

 

 Which ones cause stalls in a pipelined machine? 

 For all of them, we need to ensure semantics of the program 
is correct 

 Flow dependences always need to be obeyed because they 
constitute true dependence on a value 

 Anti and output dependences exist due to limited number of 
architectural registers  

 They are dependence on a name, not a value 

 We will later see what we can do about them 

 

 

42 



Data Dependence Types 

 

43 

Flow dependence 
r3          r1  op  r2             Read-after-Write   
r5    r3  op  r4   (RAW) 
 

Anti dependence 
r3     r1  op  r2  Write-after-Read  
r1     r4  op  r5   (WAR) 
  
Output-dependence 
r3    r1  op  r2   Write-after-Write  
r5    r3  op  r4   (WAW) 
r3    r6  op  r7   



Pipelined Operation Example 

 

44 

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data


memory

Address

Data


memory

Clock 1

Clock 2

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data


memory

Address

Data


memory

Clock 1

Clock 2

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

3216
Sign


extend

Write

register

Write

data

Memory

lw $10, 20($1)

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign


extend

Address

Data


memory

Data


memory

Address

Clock 3

Clock 4

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

3216
Sign


extend

Write

register

Write

data

Memory

lw $10, 20($1)

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction


memory

Address

4

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign


extend

Address

Data


memory

Data


memory

Address

Clock 3

Clock 4

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

lw $10, 20($1)

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data

memory

Address

Data


memory

Clock 6

Clock 5

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

lw $10, 20($1)

Instruction


memory

Address

4

32

0

Add
Add


result

1

ALU

result

Zero

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

M

u

x

ALU
Read

data

Write

register

Write

data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data

memory

Address

Data


memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

What if the SUB were dependent on LW? 



How to Handle Data Dependences 

 Anti and output dependences are easier to handle  

 write to the destination in one stage and in program order 

 

 Flow dependences are more interesting 

 

 Five fundamental ways of handling flow dependences 

 Detect and wait until value is available in register file 

 Detect and forward/bypass data to dependent instruction 

 Detect and eliminate the dependence at the software level 

 No need for the hardware to detect dependence 

 Predict the needed value(s), execute “speculatively”, and verify 

 Do something else (fine-grained multithreading) 

 No need to detect 

45 



Interlocking 

 Detection of dependence between instructions in a 
pipelined processor to guarantee correct execution 

 

 Software based interlocking 

    vs.  

 Hardware based interlocking 

 

 MIPS acronym? 

46 



Approaches to Dependence Detection (I) 

 Scoreboarding 

 Each register in register file has a Valid bit associated with it 

 An instruction that is writing to the register resets the Valid bit 

 An instruction in Decode stage checks if all its source and 
destination registers are Valid 

 Yes: No need to stall… No dependence 

 No: Stall the instruction 

 

 Advantage: 

 Simple. 1 bit per register 

 

 Disadvantage: 

 Need to stall for all types of dependences, not only flow dep. 

 

 
47 



Not Stalling on Anti and Output Dependences 

 What changes would you make to the scoreboard to enable 
this? 

 

 

48 



Approaches to Dependence Detection (II) 

 Combinational dependence check logic  

 Special logic that checks if any instruction in later stages is 
supposed to write to any source register of the instruction that 
is being decoded 

 Yes: stall the instruction/pipeline 

 No: no need to stall… no flow dependence 

 

 Advantage: 

 No need to stall on anti and output dependences 

 

 Disadvantage: 

 Logic is more complex than a scoreboard 

 Logic becomes more complex as we make the pipeline deeper 
and wider (flash-forward: think superscalar execution) 

49 



Once You Detect the Dependence in Hardware 

 What do you do afterwards? 

 

 Observation: Dependence between two instructions is 
detected before the communicated data value becomes 
available 

 

 Option 1: Stall the dependent instruction right away 

 Option 2: Stall the dependent instruction only when 
necessary  data forwarding/bypassing 

 Option 3: … 

50 



Data Forwarding/Bypassing 

 Problem: A consumer (dependent) instruction has to wait in 
decode stage until the producer instruction writes its value 
in the register file 
 

 Goal: We do not want to stall the pipeline unnecessarily 
 

 Observation: The data value needed by the consumer 
instruction can be supplied directly from a later stage in the 
pipeline (instead of only from the register file) 
 

 Idea: Add additional dependence check logic and data 
forwarding paths (buses) to supply the producer’s value to 
the consumer right after the value is available 
 

 Benefit: Consumer can move in the pipeline until the point 
the value can be supplied  less stalling 

51 



A Special Case of Data Dependence 

 Control dependence 

 Data dependence on the Instruction Pointer / Program Counter 

 

 

52 



Control Dependence 

 Question: What should the fetch PC be in the next cycle? 

 Answer: The address of the next instruction 

 All instructions are control dependent on previous ones. Why? 

 

 If the fetched instruction is a non-control-flow instruction: 

 Next Fetch PC is the address of the next-sequential instruction 

 Easy to determine if we know the size of the fetched instruction 

 

 If the instruction that is fetched is a control-flow instruction: 

 How do we determine the next Fetch PC? 

 

 In fact, how do we know whether or not the fetched 
instruction is a control-flow instruction? 

 53 



Data Dependence Handling:  

More Depth & Implementation 

54 



Remember: Data Dependence Types 

 

55 

Flow dependence 
r3          r1  op  r2             Read-after-Write   
r5    r3  op  r4   (RAW) 
 

Anti dependence 
r3     r1  op  r2  Write-after-Read  
r1     r4  op  r5   (WAR) 
  
Output-dependence 
r3    r1  op  r2   Write-after-Write  
r5    r3  op  r4   (WAW) 
r3    r6  op  r7   



How to Handle Data Dependences 

 Anti and output dependences are easier to handle  

 write to the destination in one stage and in program order 

 

 Flow dependences are more interesting 

 

 Five fundamental ways of handling flow dependences 

 Detect and wait until value is available in register file 

 Detect and forward/bypass data to dependent instruction 

 Detect and eliminate the dependence at the software level 

 No need for the hardware to detect dependence 

 Predict the needed value(s), execute “speculatively”, and verify 

 Do something else (fine-grained multithreading) 

 No need to detect 

56 



RAW Dependence Handling 

 Following flow dependences lead to conflicts in the 5-stage 
pipeline 

57 

MEM 

WB IF ID 

IF 

EX 

ID 

MEM 

EX WB 

addi ra r- - 
  

addi   r- ra -  

MEM IF ID EX 

IF ID EX 

IF ID 

IF 

addi   r- ra -  

addi   r- ra -  

addi   r- ra -  

addi   r- ra -  

? 



Register Data Dependence Analysis 

 

 

 

 

 

 

 

 

 For a given pipeline, when is there a potential conflict 
between 2 data dependent instructions? 

 dependence type: RAW, WAR, WAW? 

 instruction types involved? 

 distance between the two instructions? 

 
58 

R/I-Type LW SW Br J Jr 

IF 

ID read RF read RF read RF read RF read RF 

EX 

MEM 

WB write RF write RF 



Safe and Unsafe Movement of Pipeline 

 

59 

i:rk_ 

j:_rk Reg Read 

Reg Write 

iOj 

stage X 

stage Y 

dist(i,j)   dist(X,Y)   ?? 

dist(i,j)  > dist(X,Y)   ?? 

RAW Dependence 

i:_rk 

j:rk_ Reg Write 

Reg Read 

iAj 

WAR Dependence 

i:rk_ 

j:rk_ Reg Write 

Reg Write 

iDj 

WAW Dependence 

dist(i,j)   dist(X,Y)   Unsafe to keep j moving 

dist(i,j)  > dist(X,Y)   Safe 



RAW Dependence Analysis Example 

 

 

 

 

 

 

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff 

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW) 

 dist(IA, IB)  dist(ID, WB) = 3 

          What about WAW and WAR dependence? 

    What about memory data dependence? 

 
60 

R/I-Type LW SW Br J Jr 

IF 

ID read RF read RF read RF read RF read RF 

EX 

MEM 

WB write RF write RF 



Pipeline Stall: Resolving Data Dependence 

 

61 

IF 

WB 

IF ID ALU MEM 

IF ID ALU MEM 

IF ID ALU MEM 

IF ID ALU 

t0 t1 t2 t3 t4 t5 

IF ID MEM 

IF ID ALU 

IF ID 

Insti 

Instj 

Instk 

Instl 

WB 

WB 

i: rx  _ 
j: _  rx dist(i,j)=1 

i 

j 

Insth 

WB 

MEM 

ALU 

i: rx  _ 
bubble 
j: _  rx  dist(i,j)=2 

WB 

IF ID ALU MEM 

IF ID ALU MEM 

IF ID ALU MEM 

IF ID ALU 

t0 t1 t2 t3 t4 t5 

MEM 

Insti 

Instj 

Instk 

Instl 

WB 

WB i 

j 

Insth 

ID 

IF 

IF 

IF ID ALU 

IF ID 
i: rx  _ 
bubble 
bubble 
j: _  rx  dist(i,j)=3 

IF 

IF ID ALU MEM 

IF ID ALU MEM 

IF ID ALU 

IF ID 

t0 t1 t2 t3 t4 t5 

IF 

MEM 

ALU 

ID 

Insti 

Instj 

Instk 

Instl 

WB 

WB i 

j 

Insth 

ID 

IF 

ID 

IF 

i: rx  _ 
bubble 
bubble 
bubble 
j: _  rx  dist(i,j)=4 

IF 

IF ID ALU MEM 

IF ID ALU MEM 

IF ID 

IF 

t0 t1 t2 t3 t4 t5 

ALU 

ID 

Insti 

Instj 

Instk 

Instl 

WB 

WB i 

j 

Insth 

ID 

IF 

ID 

IF 

ID 

IF 

Stall==make the dependent instruction  
      wait until its source data value is available 
 1. stop all up-stream stages 
 2. drain all down-stream stages 



How to Implement Stalling 

 

 

 

 

 

 

 

 

 
 

 Stall 

 disable PC and IR latching; ensure stalled instruction stays in its stage 

 Insert “invalid” instructions/nops into the stage following the stalled one  

 62 

PC

Instruction

memory

In
s
tr

u
c
ti
o

n

Add

Instruction

[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15– 0]

0

0

M

u

x

0

1

Add
Add


result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction

[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
e

m
W

ri
te

Address

Data

memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Stall Conditions 

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff 

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW) 

 dist(IA, IB)  dist(ID, WB) = 3 

 

 In other words, must stall when IB in ID stage wants to read a 
register to be written by IA in EX, MEM or WB stage 

 

63 



Stall Conditions 

 Helper functions 

 rs(I) returns the rs field of I 

 use_rs(I) returns true if I requires RF[rs] and rs!=r0 

 Stall when 

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX  or 

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM  or 

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB  or 

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX  or 

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM  or 

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB 

 

 It is crucial that the EX, MEM and WB stages continue to advance 
normally during stall cycles 

 64 



Impact of Stall on Performance 

 Each stall cycle corresponds to 1 lost ALU cycle 

 

 For a program with N instructions and S stall cycles,  
 Average CPI=(N+S)/N 

 

 S depends on 

 frequency of RAW dependences 

 exact distance between the dependent instructions 

 distance between dependences 

 suppose i1,i2 and i3 all depend on i0, once i1’s dependence is 
resolved, i2 and i3 must be okay too 

 

65 



Sample Assembly (P&H) 

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... } 

 

66 

 
   addi  $s1, $s0, -1 
for2tst: slti  $t0, $s1, 0 
   bne  $t0, $zero, exit2 
   sll $t1, $s1, 2 
   add  $t2, $a0, $t1 
   lw  $t3, 0($t2) 
   lw $t4, 4($t2) 
   slt  $t0, $t4, $t3 
   beq $t0, $zero, exit2 
   ......... 
   addi $s1, $s1, -1 
   j for2tst 
exit2: 

3 stalls 

3 stalls 

3 stalls 

3 stalls 

3 stalls 
3 stalls 



Data Forwarding (or Data Bypassing) 

 It is intuitive to think of RF as state 

 “add rx ry rz” literally means get values from RF[ry] and RF[rz] 
respectively and put result in RF[rx] 

 But, RF is just a part of a computing abstraction 

 “add rx ry rz” means 1. get the results of the last instructions to 
define the values of RF[ry] and RF[rz], respectively, and 2. until 
another instruction redefines RF[rx], younger instructions that 
refers to RF[rx] should use this instruction’s result 

 What matters is to maintain the correct “dataflow” between 
operations, thus 

 

67 

ID ID ID IF ID 

WB IF ID EX MEM add ra r- r- 
  

addi   r- ra r- MEM IF EX WB 



Resolving RAW Dependence with Forwarding 

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff 

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW) 

 dist(IA, IB)  dist(ID, WB) = 3 

 

 In other words, if IB in ID stage reads a register written by IA in 
EX, MEM or WB stage, then the operand required by IB is not yet 
in RF 

  retrieve operand from datapath instead of the RF 

  retrieve operand from the youngest definition if multiple 
definitions are outstanding 

 

68 



Data Forwarding Paths (v1) 

 

69 

Registers

M

u

x M


u

x

ALU

ID/EX MEM/WB

Data


memory

M

u

x

Forwarding


unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data


memory

EX/MEM

a. No forwarding

Registers

M

u

x

dist(i,j)=1 
dist(i,j)=2 

dist(i,j)=3 

dist(i,j)=3 

internal  
forward? 

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Data Forwarding Paths (v2) 

 

70 

Registers

M

u

x M


u

x

ALU

ID/EX MEM/WB

Data


memory

M

u

x

Forwarding


unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data


memory

EX/MEM

a. No forwarding

Registers

M

u

x

Assumes RF forwards internally [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

dist(i,j)=1 
dist(i,j)=2 

dist(i,j)=3 



Data Forwarding Logic (for v2) 

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM  then 

 forward operand from MEM stage // dist=1 

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB  then 

 forward operand from WB stage // dist=2 

else 

 use AEX (operand from register file) // dist >= 3 

 

Ordering matters!! Must check youngest match first 

 

Why doesn’t use_rs( ) appear in the forwarding logic? 

    

 

71 

What does the above not take into account? 



Data Forwarding (Dependence Analysis) 

 

 

 

 

 

 

 

 

 

 Even with data-forwarding, RAW dependence on an immediately 
preceding LW instruction requires a stall 

 

72 

R/I-Type LW SW Br J Jr 

IF 

ID use 

EX 
use 

produce use use use 

MEM produce (use) 

WB 



Sample Assembly, Revisited (P&H) 

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... } 

 

73 

 
   addi  $s1, $s0, -1 
for2tst: slti  $t0, $s1, 0 
   bne  $t0, $zero, exit2 
   sll $t1, $s1, 2 
   add  $t2, $a0, $t1 
   lw  $t3, 0($t2) 
   lw $t4, 4($t2) 
   nop 
   slt  $t0, $t4, $t3 
   beq $t0, $zero, exit2 
   ......... 
   addi $s1, $s1, -1 
   j for2tst 
exit2: 



Pipelining the LC-3b 

74 



Pipelining the LC-3b 

 Let’s remember the single-bus datapath 

 

 We’ll divide it into 5 stages 

 Fetch 

 Decode/RF Access 

 Address Generation/Execute 

 Memory 

 Store Result 

 

 Conservative handling of data and control dependences 

 Stall on branch 

 Stall on flow dependence 

75 





An Example LC-3b Pipeline 

 

77 



78 



79 



80 



81 



82 



Control of the LC-3b Pipeline 

 Three types of control signals 

 

 Datapath Control Signals 

 Control signals that control the operation of the datapath 

 

 Control Store Signals 

 Control signals (microinstructions) stored in control store to be 
used in pipelined datapath (can be propagated to stages later 
than decode) 

 

 Stall Signals 

 Ensure the pipeline operates correctly in the presence of 
dependencies 

83 



84 



Control Store in a Pipelined Machine 

85 



 Pipeline stall: Pipeline does not move because an operation 
in a stage cannot complete 

 Stall Signals: Ensure the pipeline operates correctly in the 
presence of such an operation 

 Why could an operation in a stage not complete? 

Stall Signals 

86 


