18-447 Computer Architecture Lecture 6: Multi-Cycle and Microprogrammed Microarchitectures

Prof. Onur Mutlu Carnegie Mellon University Spring 2014, 1/27/2014

Assignments

- Lab 2 due next Friday (start early)
- HW1 due next week
- HW0
 - Make sure you submitted this!

Extra Credit for Lab Assignment 2

- Complete your normal (single-cycle) implementation first, and get it checked off in lab.
- Then, implement the MIPS core using a microcoded approach similar to what we will discuss in class.
- We are not specifying any particular details of the microcode format or the microarchitecture; you can be creative.
- For the extra credit, the microcoded implementation should execute the same programs that your ordinary implementation does, and you should demo it by the normal lab deadline.
- You will get maximum 4% of course grade
- Document what you have done and demonstrate well

Readings for Today

- P&P, Revised Appendix C
 - Microarchitecture of the LC-3b
 - Appendix A (LC-3b ISA) will be useful in following this
- P&H, Appendix D
 - Mapping Control to Hardware
- Optional
 - Maurice Wilkes, "The Best Way to Design an Automatic Calculating Machine," Manchester Univ. Computer Inaugural Conf., 1951.

Readings for Next Lecture

- Pipelining
 - □ P&H Chapter 4.5-4.8
- Pipelined LC-3b Microarchitecture
 - http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi a=18447-lc3b-pipelining.pdf

Quick Recap of Past Five Lectures

- Basics
 - Why Computer Architecture
 - Levels of Transformation
 - Memory Topics: DRAM Refresh and Memory Performance Attacks
- ISA Tradeoffs
- Single-Cycle Microarchitectures
- Multi-Cycle Microarchitectures
- Performance Analysis
 - Amdahl's Law
- Microarchitecture Design Principles

Microarchitecture Design Principles

Critical path design

□ Find the maximum combinational logic delay and decrease it

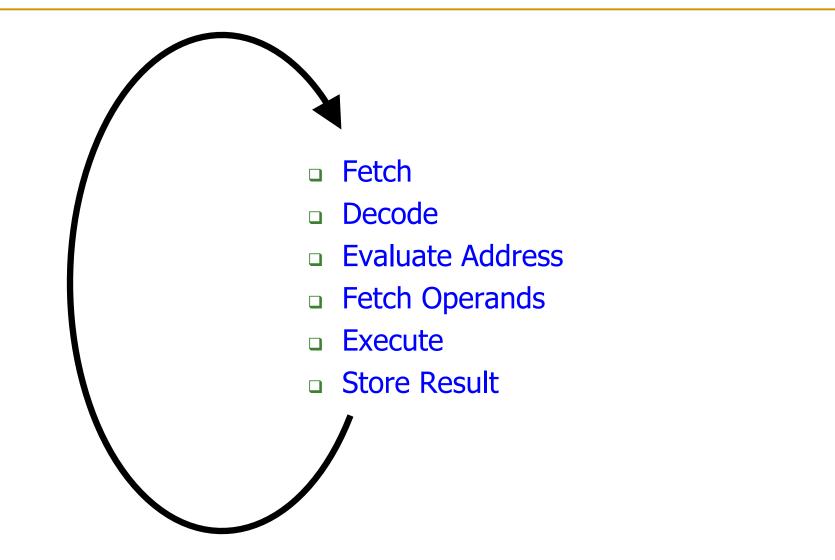
- Bread and butter (common case) design
 - Spend time and resources on where it matters
 - i.e., improve what the machine is really designed to do
 - Common case vs. uncommon case

Balanced design

- Balance instruction/data flow through hardware components
- Balance the hardware needed to accomplish the work

How does a single-cycle microarchitecture fare in light of these principles?

Multi-Cycle Microarchitectures


- Goal: Let each instruction take (close to) only as much time it really needs
 - Idea
 - Determine clock cycle time independently of instruction processing time
 - Each instruction takes as many clock cycles as it needs to take
 - Multiple state transitions per instruction
 - The states followed by each instruction is different

A Multi-Cycle Microarchitecture A Closer Look

How Do We Implement This?

- Maurice Wilkes, "The Best Way to Design an Automatic Calculating Machine," Manchester Univ. Computer Inaugural Conf., 1951.
- The concept of microcoded/microprogrammed machines
- Realization
 - One can implement the "process instruction" step as a finite state machine that sequences between states and eventually returns back to the "fetch instruction" state
 - □ A state is defined by the control signals asserted in it
 - Control signals for the next state determined in current state

The Instruction Processing Cycle

A Basic Multi-Cycle Microarchitecture

- Instruction processing cycle divided into "states"
 - A stage in the instruction processing cycle can take multiple states
- A multi-cycle microarchitecture sequences from state to state to process an instruction
 - The behavior of the machine in a state is completely determined by control signals in that state
- The behavior of the entire processor is specified fully by a finite state machine
- In a state (clock cycle), control signals control
 - How the datapath should process the data
 - How to generate the control signals for the next clock cycle

Microprogrammed Control Terminology

- Control signals associated with the current state
 Microinstruction
- Act of transitioning from one state to another
 - Determining the next state and the microinstruction for the next state
 - Microsequencing
- Control store stores control signals for every possible state
 Store for microinstructions for the entire FSM
- Microsequencer determines which set of control signals will be used in the next clock cycle (i.e., next state)

What Happens In A Clock Cycle?

- The control signals (microinstruction) for the current state control
 - Processing in the data path
 - Generation of control signals (microinstruction) for the next cycle
 - See Supplemental Figure 1 (next slide)
- Datapath and microsequencer operate concurrently
- Question: why not generate control signals for the current cycle in the current cycle?
 - This will lengthen the clock cycle
 - Why would it lengthen the clock cycle?
 - See Supplemental Figure 2

A Clock Cycle

		5	upplomental Figures
Cyde N	Cycle N+1		
1) Processing in Palapath for	- Cycle N		
(2) Gonoration of Control !	Contraction of the second	· · · · ·	
Signals for			
Cycle N+1			
	Latch 1) Results of	when N	FIS1
	2) Control sign	nois needed fo next-cycle	NH1

A Bad Clock Cycle!

Altonative - A BADONE!	or int i
<u></u>	
	-
O Governing of Control Stands for Cuck M	1
O Goneration of Control Signals for Cycle N D Processing for Datapath for Cycle Ni	
The Processing for Notopoth for cycle N	the state of the s
Step (1) is dependent on Step (0)	
If stop () takes non-zoro time (it does!), clock cycle	norases
unnecessarly	
-> Viclales the "Critical Path Design" principle	
	Fig2]
	1.15 -1

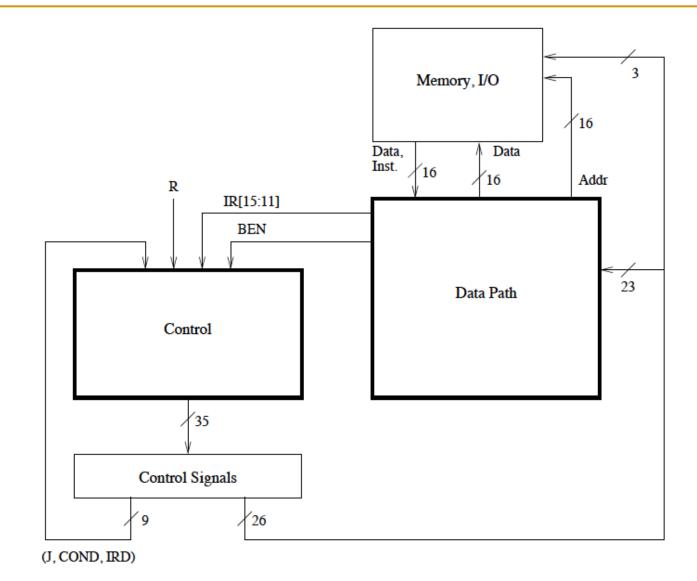
A Simple LC-3b Control and Datapath

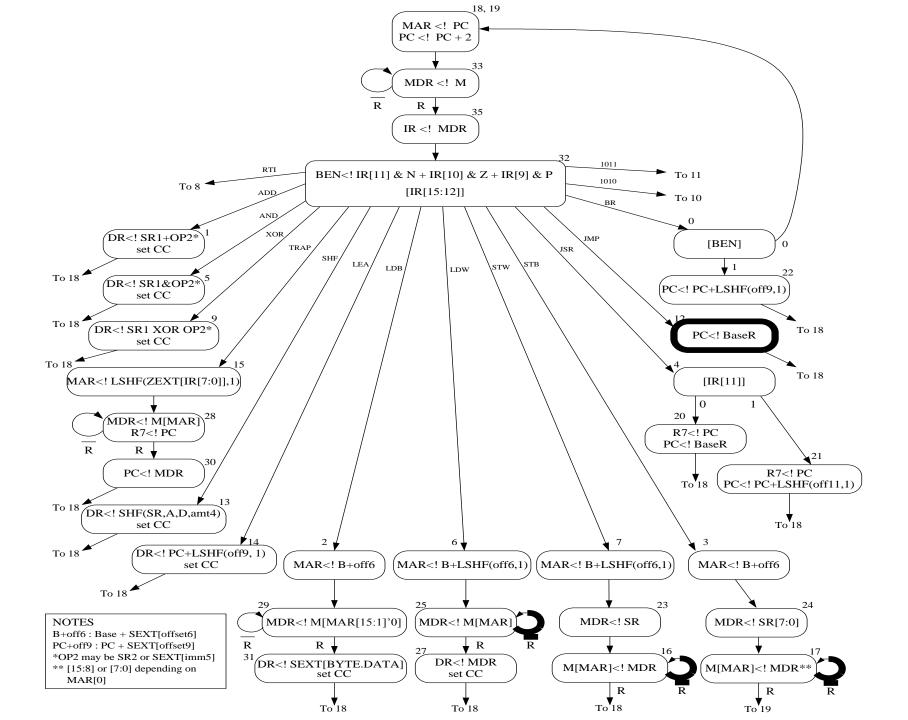
Figure C.1: Microarchitecture of the LC-3b, major components

What Determines Next-State Control Signals?

- What is happening in the current clock cycle
 - □ See the 9 control signals coming from "Control" block
 - What are these for?
- The instruction that is being executed
 IR[15:11] coming from the Data Path
- Whether the condition of a branch is met, if the instruction being processed is a branch
 - BEN bit coming from the datapath
- Whether the memory operation is completing in the current cycle, if one is in progress
 - R bit coming from memory

A Simple LC-3b Control and Datapath



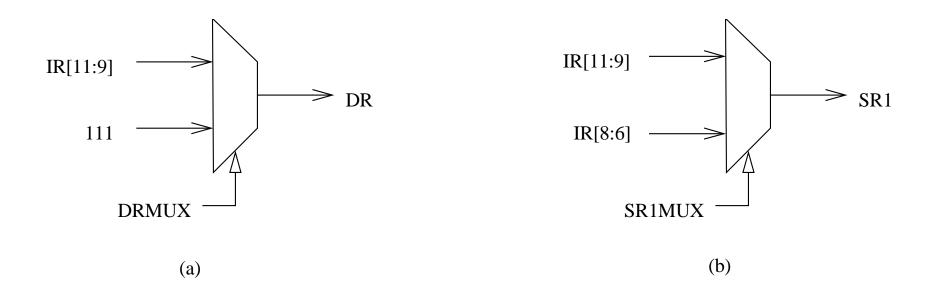

Figure C.1: Microarchitecture of the LC-3b, major components

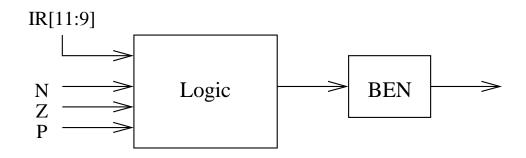
The State Machine for Multi-Cycle Processing

- The behavior of the LC-3b uarch is completely determined by
 - the 35 control signals and
 - additional 7 bits that go into the control logic from the datapath
- 35 control signals completely describe the state of the control structure
- We can completely describe the behavior of the LC-3b as a state machine, i.e. a directed graph of
 - Nodes (one corresponding to each state)
 - Arcs (showing flow from each state to the next state(s))

An LC-3b State Machine

- Patt and Patel, App C, Figure C.2
- Each state must be uniquely specified
 Done by means of *state variables*
- 31 distinct states in this LC-3b state machine
 Encoded with 6 state variables
- Examples
 - State 18,19 correspond to the beginning of the instruction processing cycle
 - □ Fetch phase: state 18, 19 \rightarrow state 33 \rightarrow state 35
 - Decode phase: state 32

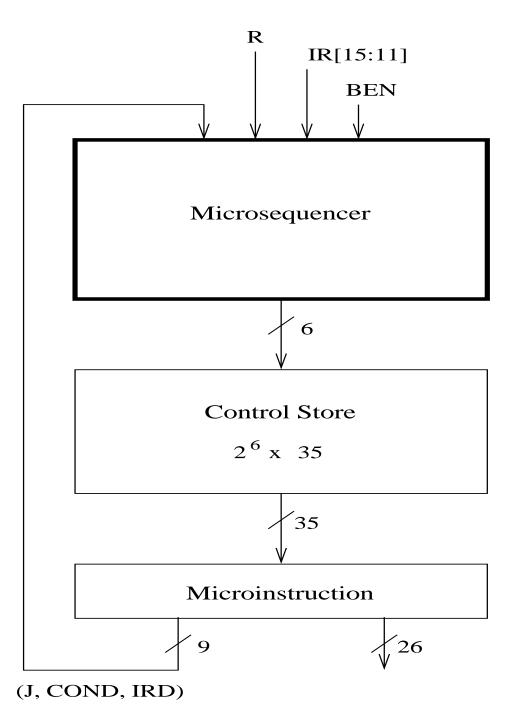

LC-3b State Machine: Some Questions

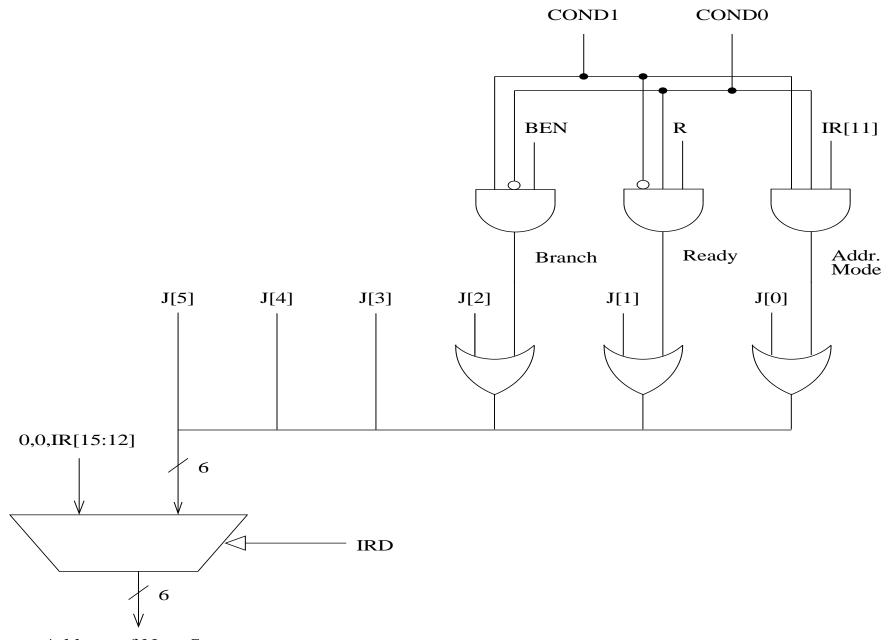

- How many cycles does the fastest instruction take?
- How many cycles does the slowest instruction take?
- Why does the BR take as long as it takes in the FSM?
- What determines the clock cycle?

LC-3b Datapath

- Patt and Patel, App C, Figure C.3
- Single-bus datapath design
 - At any point only one value can be "gated" on the bus (i.e., can be driving the bus)
 - Advantage: Low hardware cost: one bus
 - Disadvantage: Reduced concurrency if instruction needs the bus twice for two different things, these need to happen in different states
- Control signals (26 of them) determine what happens in the datapath in one clock cycle
 - □ Patt and Patel, App C, Table C.1

Signal Name	Signal Values	
LD.MAR/1:	NO, LOAD	
LD.MDR/1:	NO, LOAD	
LD.IR/1:	NO, LOAD	
LD.BEN/1:	NO, LOAD	
LD.REG/1:	NO, LOAD	
LD.CC/1:	NO, LOAD	
LD.PC/1:	NO, LOAD	
	,	
GatePC/1:	NO, YES NO, YES	
GateMDR/1:		
GateALU/1:	NO, YES	
GateMARMUX/1:	NO, YES	
GateSHF/1:	NO, YES	
PCMUX/2:	PC+2	;select pc+2
	BUS	select value from bus
	ADDER	select output of address adder
		1
DRMUX/1:	11.9	;destination IR[11:9]
	R7	destination R7
		,
SR1MUX/1:	11.9	;source IR[11:9]
	8.6	source IR[8:6]
		,
ADDR1MUX/1:	PC, BaseR	
	10,2000	
ADDR2MUX/2:	ZERO	;select the value zero
	offset6	[select SEXT[IR[5:0]]
	PCoffset9	select SEXT[IR[8:0]]
	PCoffset11	select SEXT[IR[10:0]]
		,
MARMUX/1:	7.0	;select LSHF(ZEXT[IR[7:0]],1)
	ADDER	select output of address adder
		,select output of autors autor
ALUK/2:	ADD, AND, X	OR. PASSA
	,,	
MIO.EN/1:	NO, YES	
R.W/1:	RD, WR	
DATA.SIZE/1:	BYTE, WORL)
LSHF1/1:	NO, YES	
	,	


Table C.1: Data path control signals

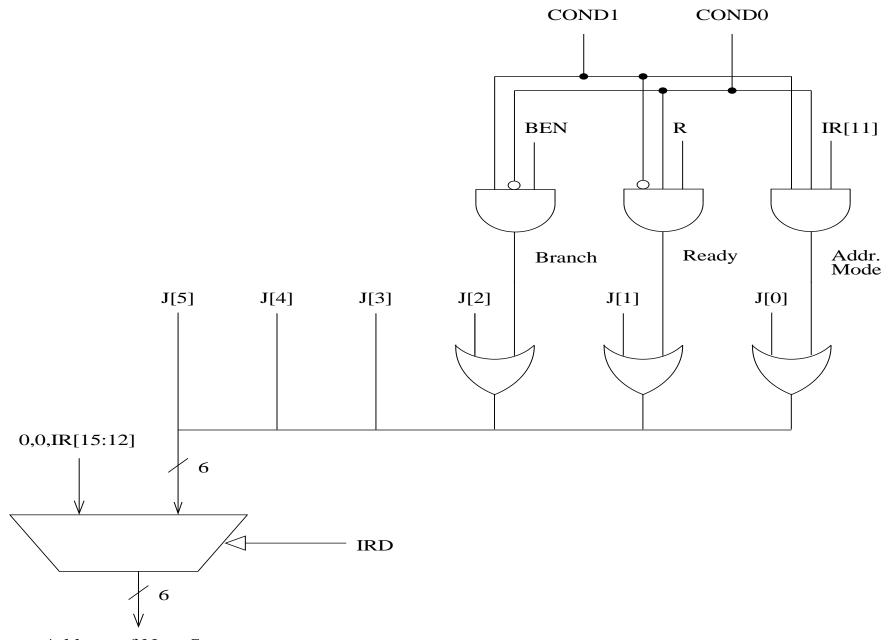

LC-3b Datapath: Some Questions

- How does instruction fetch happen in this datapath according to the state machine?
- What is the difference between gating and loading?
- Is this the smallest hardware you can design?

LC-3b Microprogrammed Control Structure

- Patt and Patel, App C, Figure C.4
- Three components:
 - Microinstruction, control store, microsequencer
- Microinstruction: control signals that control the datapath (26 of them) and help determine the next state (9 of them)
- Each microinstruction is stored in a *unique location* in the control store (a special memory structure)
- Unique location: address of the state corresponding to the microinstruction
 - Remember each state corresponds to one microinstruction
- Microsequencer determines the address of the next microinstruction (i.e., next state)

Address of Next State


en e	~ ~ ~	14 00 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Galer C	Contraction of the second	Manut Alexand	
					· · · · · ·		
							000000 (State 0)
							000001 (State 1)
							000010 (State 2)
		+ $+$ $+$ $+$	+ $+$ $+$ $+$				
							000011 (State 3)
							000100 (State 4)
							000101 (State 5)
		+ + +	+ $+$ $+$ $+$				
							000110 (State 6)
							000111 (State 7)
							001000 (State 8)
			+ $+$ $+$ $+$				
							001001 (State 9)
							001010 (State 10)
							001011 (State 11)
							001100 (State 12)
							001101 (State 13)
							001110 (State 14)
			+ $+$ $+$ $+$				
							001111 (State 15)
							010000 (State 16)
							010001 (State 17)
			+ $+$ $+$ $+$				
		+ $+$ $+$	+ $+$ $+$ $+$				010010 (State 18)
	· · · ·						010011 (State 19)
							010100 (State 20)
			+ $+$ $+$ $+$				
			+ $+$ $+$ $+$				010101 (State 21)
							010110 (State 22)
							010111 (State 23)
	-		+ $+$ $+$ $+$				011000 (State 24)
			+ $+$ $+$ $+$				
							011001 (State 25)
							011010 (State 26)
							011011 (State 27)
			+ + + +				
							011100 (State 28)
							011101 (State 29)
							011110 (State 30)
							011111 (State 31)
							100000 (State 32)
							100001 (State 33)
					_		100010 (State 34)
		+ + +	+ $+$ $+$ $+$				
							100011 (State 35)
							100100 (State 36)
							100101 (State 37)
	· · · · ·	+ + +	+ $+$ $+$ $+$			-+++++	
							100110 (State 38)
							100111 (State 39)
							101000 (State 40)
	1 I I I I						
	, , , , , , , , , , , , , , , , , , , 	+ $+$ $+$ $+$	+ $+$ $+$ $+$				101001 (State 41)
							101010 (State 42)
							101011 (State 43)
	· · · · +						
			+ $+$ $+$ $+$				101100 (State 44)
	· · · ·						101101 (State 45)
							101110 (State 46)
	-	+ + +	+ $+$ $+$ $+$				
	_ _	+ $+$ $+$	+ $+$ $+$ $+$				101111 (State 47)
							110000 (State 48)
							110001 (State 49)
	, , , , , , , , , , , , , , , , , , , 	+ $+$ $+$	+ $+$ $+$ $+$	++++			110010 (State 50)
							110011 (State 51)
							110100 (State 52)
	1 I I I						
		+ $+$ $+$	+ $+$ $+$ $+$				110101 (State 53)
					· '		110110 (State 54)
							110111 (State 55)
			+++				111000 (State 56)
		+ + +	+ $+$ $+$ $+$		_		
		+ $+$ $+$	+ $+$ $+$ $+$				111001 (State 57)
							111010 (State 58)
							111011 (State 59)
	-	+ + +	+ $+$ $+$ $+$	++++			
		+ $+$ $+$	+ $+$ $+$ $+$				111100 (State 60)
							111101 (State 61)
							111110 (State 62)
	· · · · · ·						111111 (State 63)
							111111 (State 63)

LC-3b Microsequencer

- Patt and Patel, App C, Figure C.5
- The purpose of the microsequencer is to determine the address of the next microinstruction (i.e., next state)
- Next address depends on 9 control signals

Signal Name	Signal Values		
J/6: COND/2:	COND ₀ COND ₁ COND ₂ COND ₃	;Unconditional ;Memory Ready ;Branch ;Addressing Mode	
IRD/1:	NO, YES		

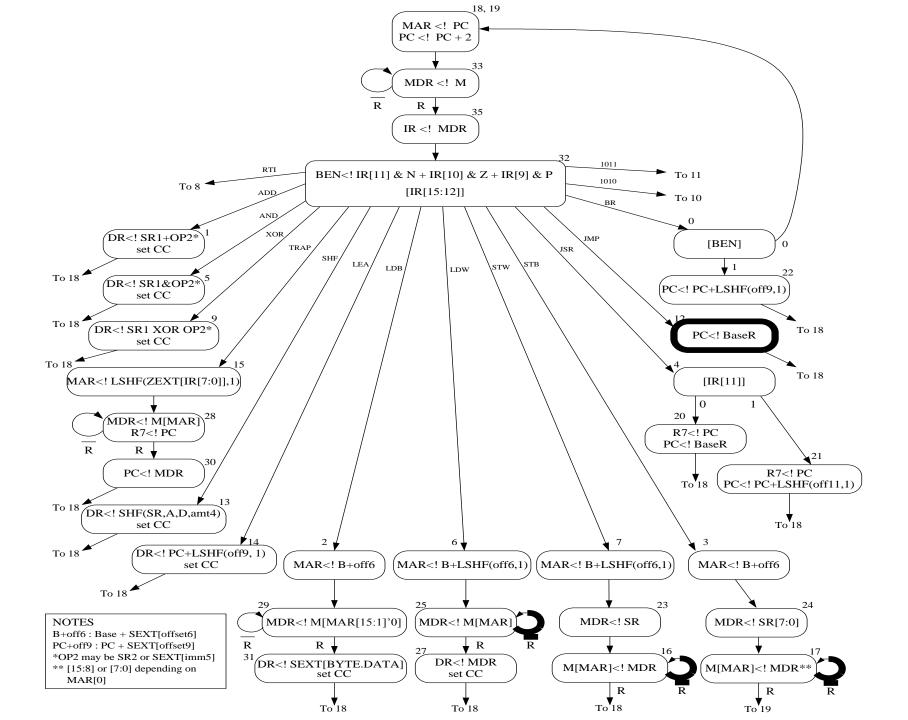
Table C.2: Microsequencer control signals

Address of Next State

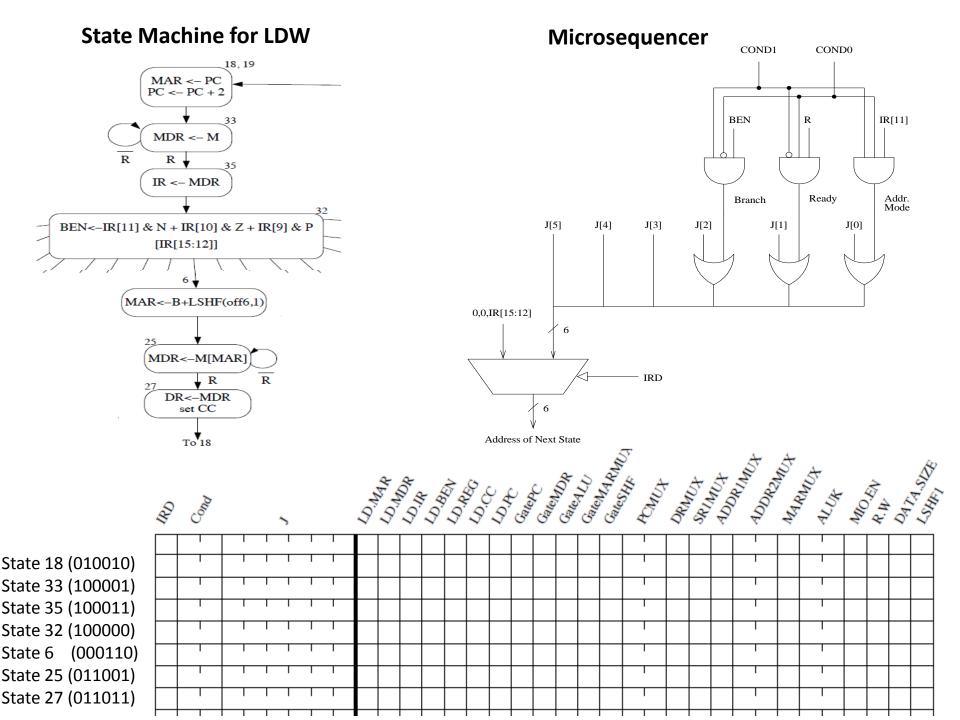
The Microsequencer: Some Questions

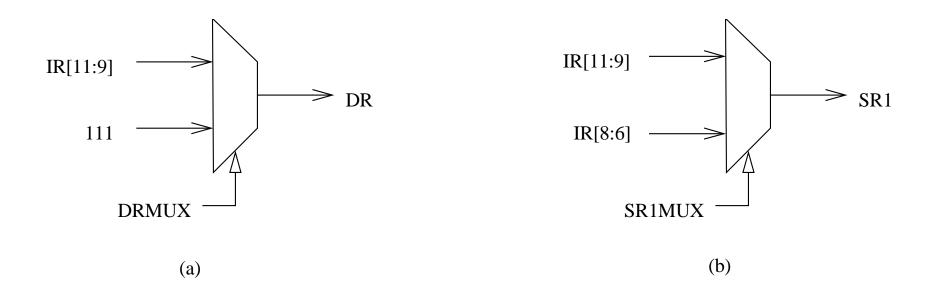
- When is the IRD signal asserted?
- What happens if an illegal instruction is decoded?
- What are condition (COND) bits for?
- How is variable latency memory handled?
- How do you do the state encoding?
 - Minimize number of state variables
 - Start with the 16-way branch
 - Then determine constraint tables and states dependent on COND

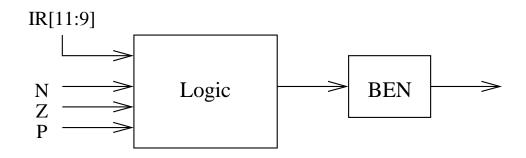
An Exercise in Microprogramming

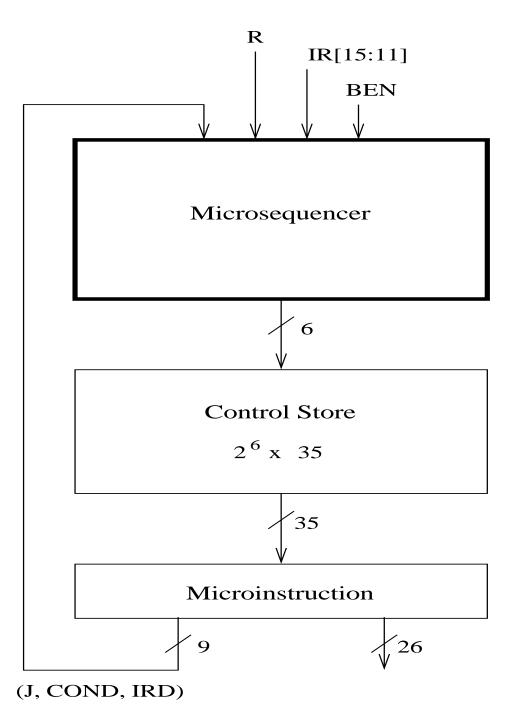

Handouts

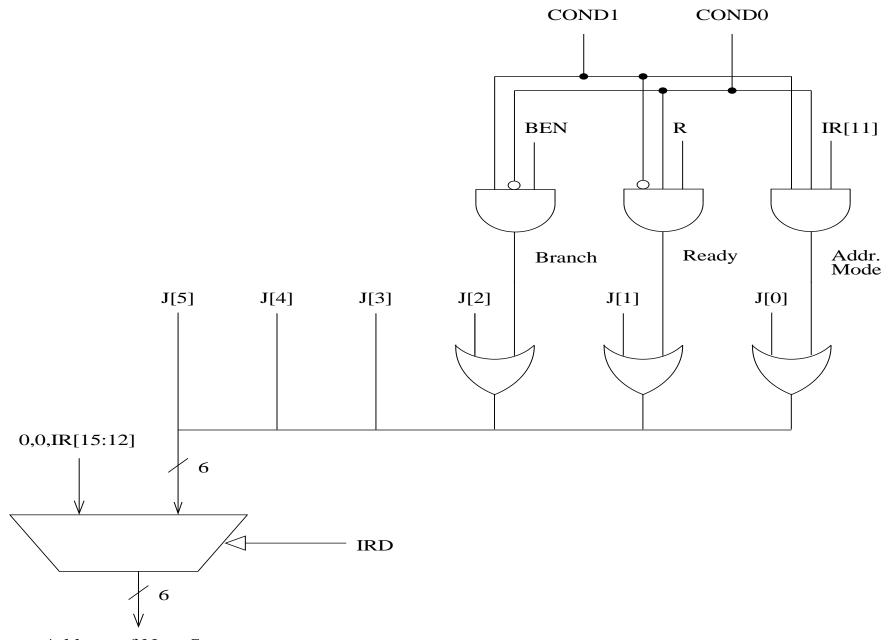
- 7 pages of Microprogrammed LC-3b design
- http://www.ece.cmu.edu/~ece447/s14/doku.php?id=techd ocs
- http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m edia=lc3b-figures.pdf


A Simple LC-3b Control and Datapath

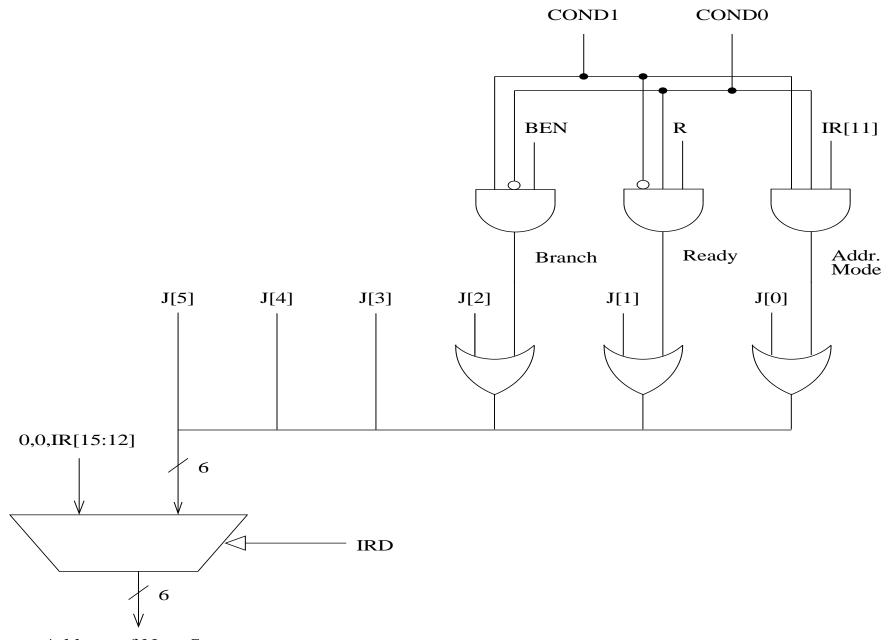



Figure C.1: Microarchitecture of the LC-3b, major components





Signal Name	Signal Values				
LD.MAR/1:	NO, LOAD				
LD.MDR/1:	NO, LOAD				
LD.IR/1:	NO, LOAD				
LD.BEN/1:	NO, LOAD				
LD.REG/1:	NO, LOAD				
LD.CC/1:	NO, LOAD				
LD.PC/1:	NO, LOAD				
	,				
GatePC/1:	NO, YES NO, YES				
GateMDR/1:					
GateALU/1:	NO, YES				
GateMARMUX/1:	NO, YES				
GateSHF/1:	NO, YES				
PCMUX/2:	PC+2	;select pc+2			
	BUS	select value from bus			
	ADDER	select output of address adder			
		1			
DRMUX/1:	11.9	;destination IR[11:9]			
	R7	destination R7			
		,			
SR1MUX/1:	11.9	;source IR[11:9]			
	8.6	source IR[8:6]			
		,			
ADDR1MUX/1:	PC, BaseR				
	10,2000				
ADDR2MUX/2:	ZERO	;select the value zero			
	offset6	[select SEXT[IR[5:0]]			
	PCoffset9	select SEXT[IR[8:0]]			
	PCoffset11	select SEXT[IR[10:0]]			
		,			
MARMUX/1:	7.0	;select LSHF(ZEXT[IR[7:0]],1)			
	ADDER	select output of address adder			
		,select output of autors autor			
ALUK/2:	ADD, AND, XOR, PASSA				
	,,				
MIO.EN/1:	NO, YES				
R.W/1:	RD, WR				
DATA.SIZE/1:	BYTE, WORD				
LSHF1/1:	NO, YES				
	,				


Table C.1: Data path control signals

Address of Next State

en e	~ ~ ~	14 00 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Galer C	Contraction of the second	Manut Alexand	
					· · · · · ·		
							000000 (State 0)
							000001 (State 1)
							000010 (State 2)
		+ $+$ $+$ $+$	+ $+$ $+$ $+$				
							000011 (State 3)
							000100 (State 4)
							000101 (State 5)
		+ + +	+ $+$ $+$ $+$				
							000110 (State 6)
							000111 (State 7)
							001000 (State 8)
			+ $+$ $+$ $+$				
							001001 (State 9)
							001010 (State 10)
							001011 (State 11)
							001100 (State 12)
							001101 (State 13)
							001110 (State 14)
			+ $+$ $+$ $+$				
							001111 (State 15)
							010000 (State 16)
							010001 (State 17)
			+ $+$ $+$ $+$				
		+ $+$ $+$	+ $+$ $+$ $+$				010010 (State 18)
	· · · ·						010011 (State 19)
							010100 (State 20)
			+ $+$ $+$ $+$				
			+ $+$ $+$ $+$				010101 (State 21)
							010110 (State 22)
							010111 (State 23)
	-		+ $+$ $+$ $+$				011000 (State 24)
			+ $+$ $+$ $+$				
							011001 (State 25)
							011010 (State 26)
							011011 (State 27)
			+ + + +				
							011100 (State 28)
							011101 (State 29)
							011110 (State 30)
							011111 (State 31)
							100000 (State 32)
							100001 (State 33)
					_		100010 (State 34)
		+ + +	+ $+$ $+$ $+$				
							100011 (State 35)
							100100 (State 36)
							100101 (State 37)
	· · · · ·	+ + +	+ $+$ $+$ $+$			-+++++	
							100110 (State 38)
							100111 (State 39)
							101000 (State 40)
	1 I I I I						
	, , , , , , , , , , , , , , , , , , , 	+ $+$ $+$ $+$	+ $+$ $+$ $+$				101001 (State 41)
							101010 (State 42)
							101011 (State 43)
	· · · · +						
			+ $+$ $+$ $+$				101100 (State 44)
	· · · ·						101101 (State 45)
							101110 (State 46)
	-	+ + +	+ $+$ $+$ $+$				
	_ _	+ $+$ $+$	+ $+$ $+$ $+$				101111 (State 47)
							110000 (State 48)
							110001 (State 49)
	, , , , , , , , , , , , , , , , , , , 	+ $+$ $+$	+ $+$ $+$ $+$	++++			110010 (State 50)
							110011 (State 51)
							110100 (State 52)
	1 I I I						
		+ $+$ $+$	+ $+$ $+$ $+$				110101 (State 53)
					· '		110110 (State 54)
							110111 (State 55)
			+++				111000 (State 56)
		+ + +	+ $+$ $+$ $+$		_		
		+ $+$ $+$	+ $+$ $+$ $+$				111001 (State 57)
							111010 (State 58)
							111011 (State 59)
	-	+ + +	+ $+$ $+$ $+$	++++			
		+ $+$ $+$	+ $+$ $+$ $+$				111100 (State 60)
							111101 (State 61)
							111110 (State 62)
	· · · · · ·						111111 (State 63)
							111111 (State 63)

Address of Next State

End of the Exercise in Microprogramming

Homework 2

 You will write the microcode for the entire LC-3b as specified in Appendix C

Lab 2 Extra Credit

- Microprogrammed ARM implementation
- Exercise your creativity!

The Microsequencer: Some Questions

- When is the IRD signal asserted?
- What happens if an illegal instruction is decoded?
- What are condition (COND) bits for?
- How is variable latency memory handled?
- How do you do the state encoding?
 - Minimize number of state variables
 - Start with the 16-way branch
 - Then determine constraint tables and states dependent on COND

The Control Store: Some Questions

What control signals can be stored in the control store?

VS.

- What control signals have to be generated in hardwired logic?
 - i.e., what signal cannot be available without processing in the datapath?

Variable-Latency Memory

- The ready signal (R) enables memory read/write to execute correctly
 - Example: transition from state 33 to state 35 is controlled by the R bit asserted by memory when memory data is available
- Could we have done this in a single-cycle microarchitecture?

The Microsequencer: Advanced Questions

- What happens if the machine is interrupted?
- What if an instruction generates an exception?
- How can you implement a complex instruction using this control structure?
 - Think REP MOVS

The Power of Abstraction

- The concept of a control store of microinstructions enables the hardware designer with a new abstraction: microprogramming
- The designer can translate any desired operation to a sequence microinstructions
- All the designer needs to provide is
 - The sequence of microinstructions needed to implement the desired operation
 - The ability for the control logic to correctly sequence through the microinstructions
 - Any additional datapath control signals needed (no need if the operation can be "translated" into existing control signals)

Let's Do Some More Microprogramming

- Implement REP MOVS in the LC-3b microarchitecture
- What changes, if any, do you make to the
 - state machine?
 - datapath?
 - control store?
 - microsequencer?
- Show all changes and microinstructions
- Coming up in Homework 3?

Aside: Alignment Correction in Memory

- Remember unaligned accesses
- LC-3b has byte load and byte store instructions that move data not aligned at the word-address boundary
 - Convenience to the programmer/compiler
- How does the hardware ensure this works correctly?
 - □ Take a look at state 29 for LDB
 - States 24 and 17 for STB
 - Additional logic to handle unaligned accesses

Aside: Memory Mapped I/O

- Address control logic determines whether the specified address of LDx and STx are to memory or I/O devices
- Correspondingly enables memory or I/O devices and sets up muxes
- Another instance where the final control signals (e.g., MEM.EN or INMUX/2) cannot be stored in the control store
 - Dependent on address

Advantages of Microprogrammed Control

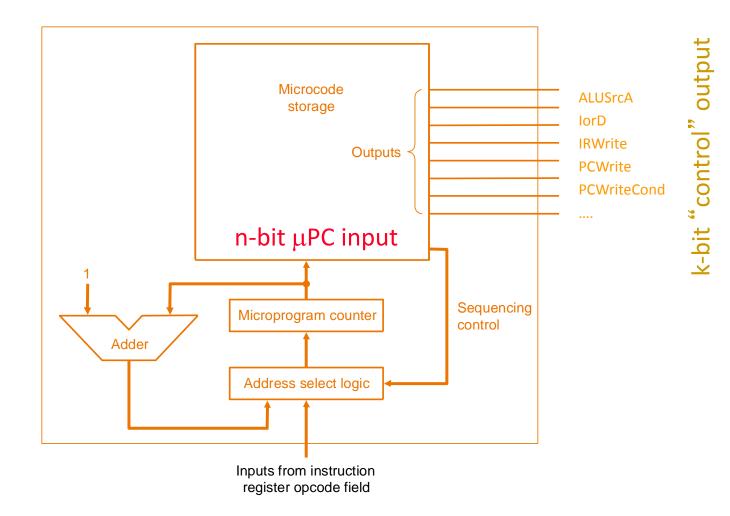
- Allows a very simple design to do powerful computation by controlling the datapath (using a sequencer)
 - High-level ISA translated into microcode (sequence of microinstructions)
 - Microcode (ucode) enables a minimal datapath to emulate an ISA
 - Microinstructions can be thought of a user-invisible ISA

Enables easy extensibility of the ISA

- Can support a new instruction by changing the ucode
- Can support complex instructions as a sequence of simple microinstructions

If I can sequence an arbitrary instruction then I can sequence an arbitrary "program" as a microprogram sequence

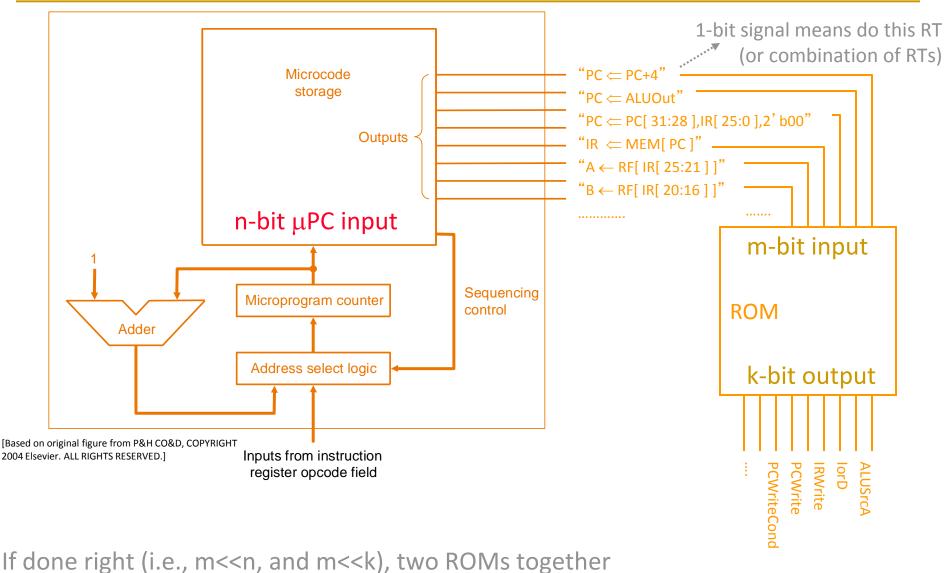
 will need some new state (e.g. loop counters) in the microcode for sequencing more elaborate programs


Update of Machine Behavior

- The ability to update/patch microcode in the field (after a processor is shipped) enables
 - □ Ability to add new instructions without changing the processor!
 - Ability to "fix" buggy hardware implementations

Examples

- IBM 370 Model 145: microcode stored in main memory, can be updated after a reboot
- □ IBM System z: Similar to 370/145.
 - Heller and Farrell, "Millicode in an IBM zSeries processor," IBM JR&D, May/Jul 2004.
- B1700 microcode can be updated while the processor is running
 - User-microprogrammable machine!

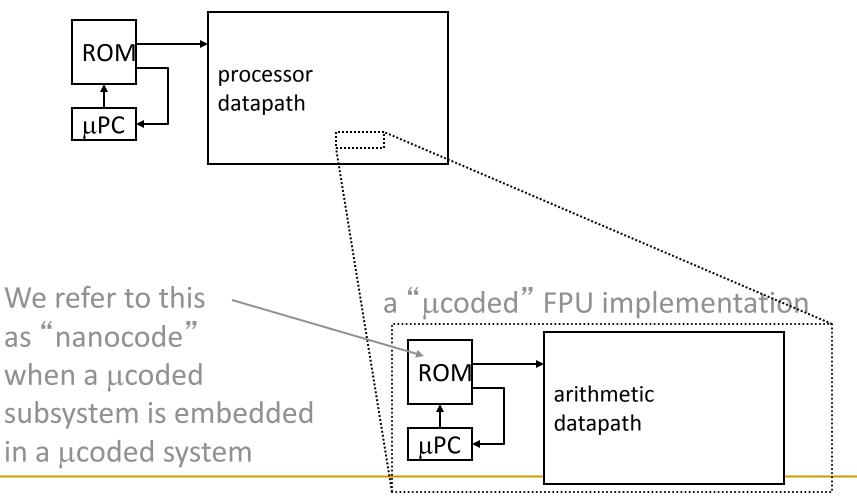

Horizontal Microcode

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Control Store: $2^n \times k$ bit (not including sequencing)

Vertical Microcode

 $(2^{n}\times m + 2^{m}\times k + it)$ should be smaller than herizontal microsode PON


 $(2^n \times m + 2^m \times k \text{ bit})$ should be smaller than horizontal microcode ROM ($2^n \times k \text{ bit}$)

Nanocode and Millicode

- Nanocode: a level below traditional μcode
 - μprogrammed control for sub-systems (e.g., a complicated floatingpoint module) that acts as a slave in a µcontrolled datapath
- *Millicode*: a level above traditional μcode
 - ISA-level subroutines that can be called by the µcontroller to handle complicated operations and system functions
 - E.g., Heller and Farrell, "Millicode in an IBM zSeries processor," IBM JR&D, May/Jul 2004.
- In both cases, we avoid complicating the main µcontroller
- You can think of these as "microcode" at different levels of abstraction

Nanocode Concept Illustrated

a "µcoded" processor implementation

Multi-Cycle vs. Single-Cycle uArch

- Advantages
- Disadvantages
- You should be very familiar with this right now

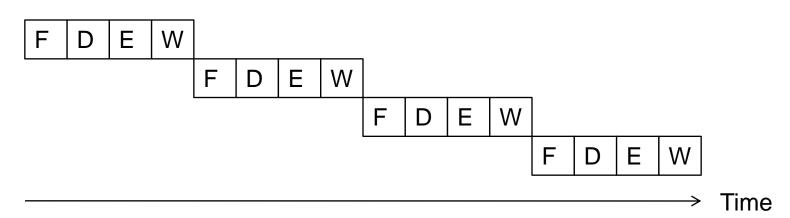
Microprogrammed vs. Hardwired Control

- Advantages
- Disadvantages
- You should be very familiar with this right now

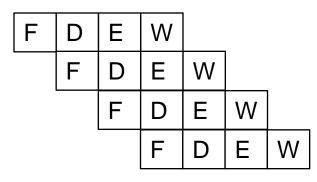
Can We Do Better?

- What limitations do you see with the multi-cycle design?
- Limited concurrency
 - Some hardware resources are idle during different phases of instruction processing cycle
 - "Fetch" logic is idle when an instruction is being "decoded" or "executed"
 - Most of the datapath is idle when a memory access is happening

Can We Use the Idle Hardware to Improve Concurrency?

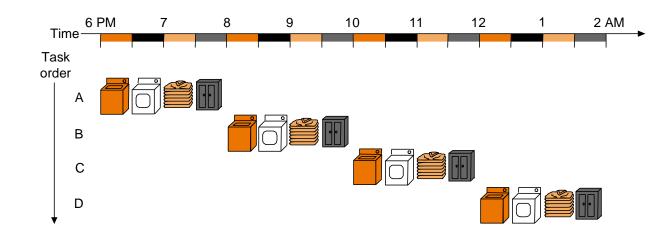

- Goal: Concurrency → throughput (more "work" completed in one cycle)
- Idea: When an instruction is using some resources in its processing phase, process other instructions on idle resources not needed by that instruction
 - E.g., when an instruction is being decoded, fetch the next instruction
 - E.g., when an instruction is being executed, decode another instruction
 - E.g., when an instruction is accessing data memory (ld/st), execute the next instruction
 - E.g., when an instruction is writing its result into the register file, access data memory for the next instruction

Pipelining: Basic Idea

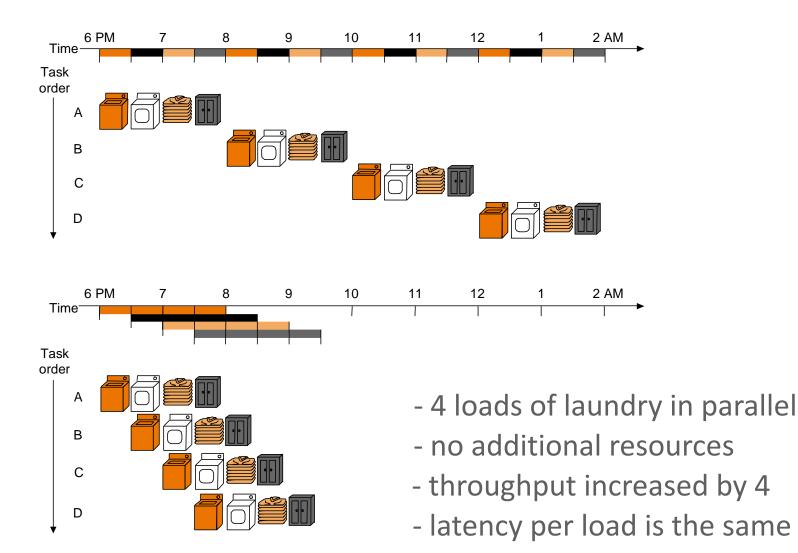

- More systematically:
 - Pipeline the execution of multiple instructions
 - Analogy: "Assembly line processing" of instructions
- Idea:
 - Divide the instruction processing cycle into distinct "stages" of processing
 - Ensure there are enough hardware resources to process one instruction in each stage
 - Process a different instruction in each stage
 - Instructions consecutive in program order are processed in consecutive stages
- Benefit: Increases instruction processing throughput (1/CPI)
- Downside: Start thinking about this...

Example: Execution of Four Independent ADDs

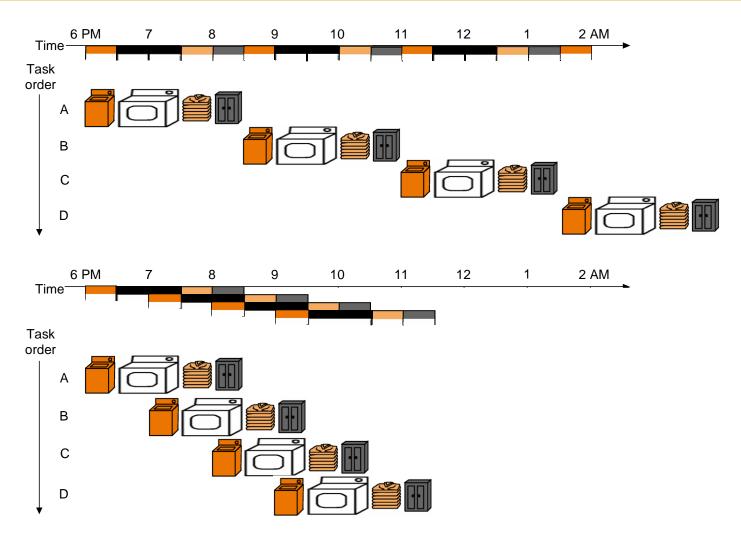
Multi-cycle: 4 cycles per instruction



Pipelined: 4 cycles per 4 instructions (steady state)

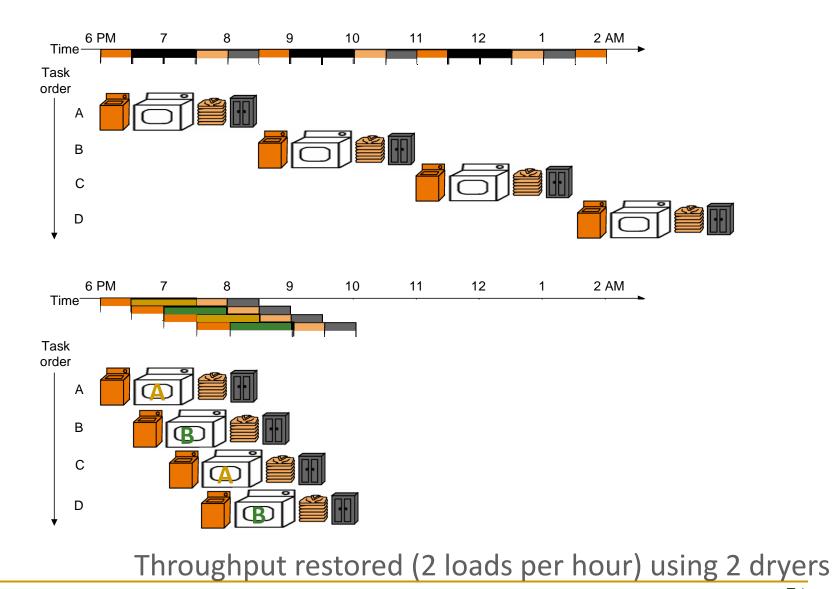

Time

The Laundry Analogy



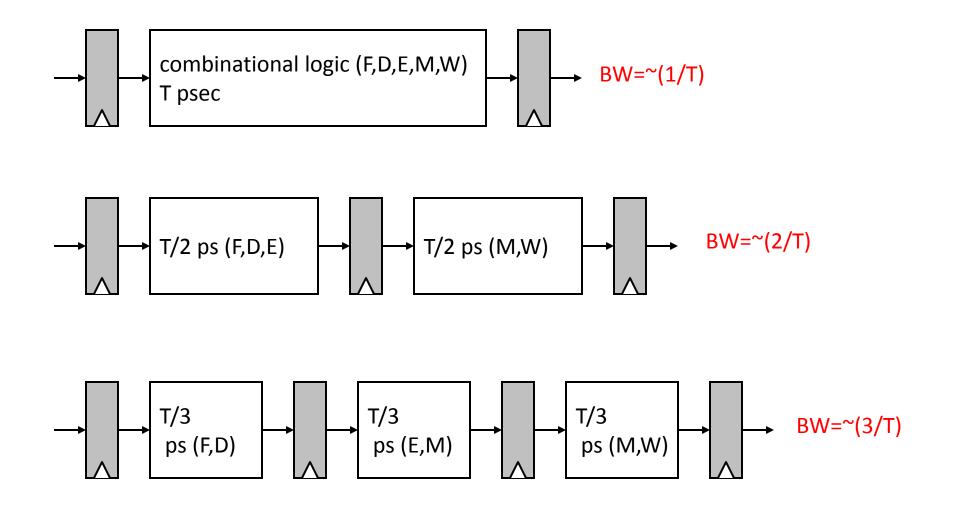
- "place one dirty load of clothes in the washer"
- "when the washer is finished, place the wet load in the dryer"
- "when the dryer is finished, take out the dry load and fold"
- "when folding is finished, ask your roommate (??) to put the clothes away"
 - steps to do a load are sequentially dependent
 - no dependence between different loads
 - different steps do not share resources

Pipelining Multiple Loads of Laundry



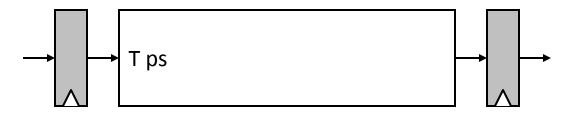
Pipelining Multiple Loads of Laundry: In Practice

the slowest step decides throughput

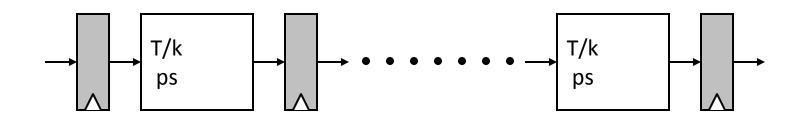

Pipelining Multiple Loads of Laundry: In Practice

An Ideal Pipeline

- Goal: Increase throughput with little increase in cost (hardware cost, in case of instruction processing)
- Repetition of identical operations
 - The same operation is repeated on a large number of different inputs
- Repetition of independent operations
 - No dependencies between repeated operations
- Uniformly partitionable suboperations
 - Processing can be evenly divided into uniform-latency suboperations (that do not share resources)
- Fitting examples: automobile assembly line, doing laundry
 What about the instruction processing "cycle"?

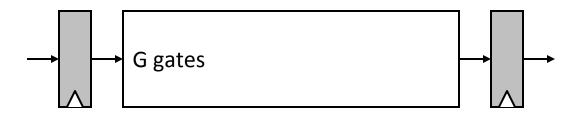

Ideal Pipelining

More Realistic Pipeline: Throughput

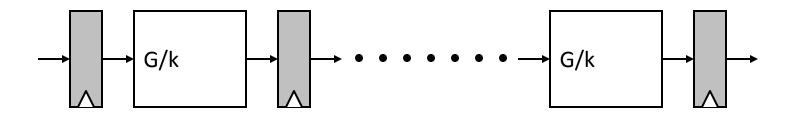

Nonpipelined version with delay T
DV(1 ((T + C)) where C = lateh delay

BW = 1/(T+S) where S = latch delay

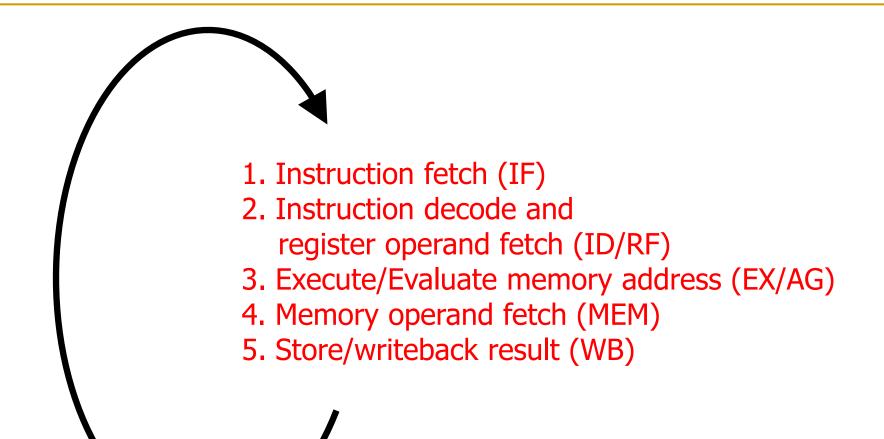
k-stage pipelined version


 $BW_{k-stage} = 1 / (T/k + S)$ $BW_{max} = 1 / (1 \text{ gate delay} + S)$

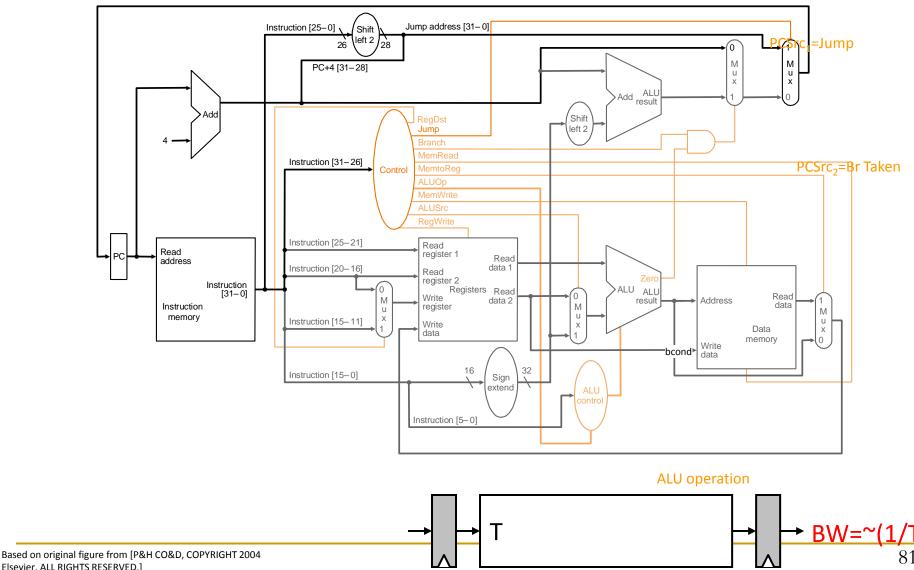
More Realistic Pipeline: Cost


Nonpipelined version with combinational cost G

Cost = G+L where L = latch cost

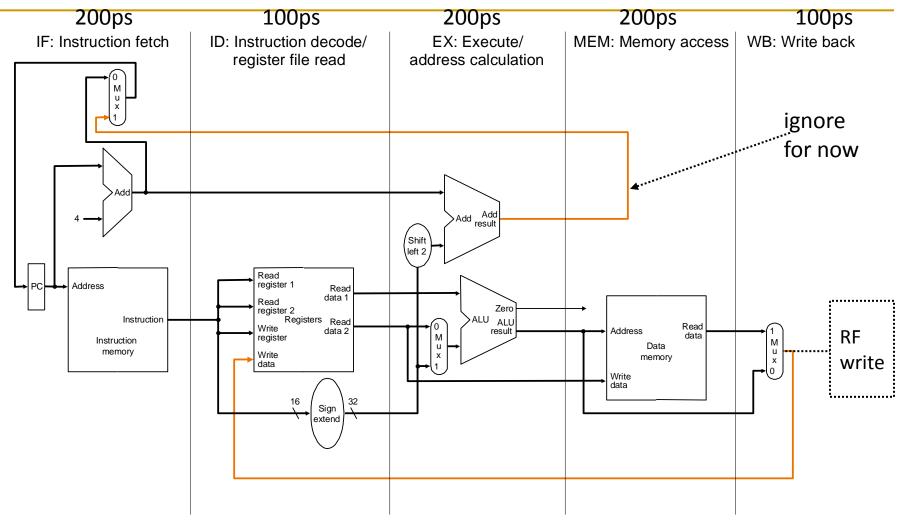

k-stage pipelined version

 $Cost_{k-stage} = G + Lk$



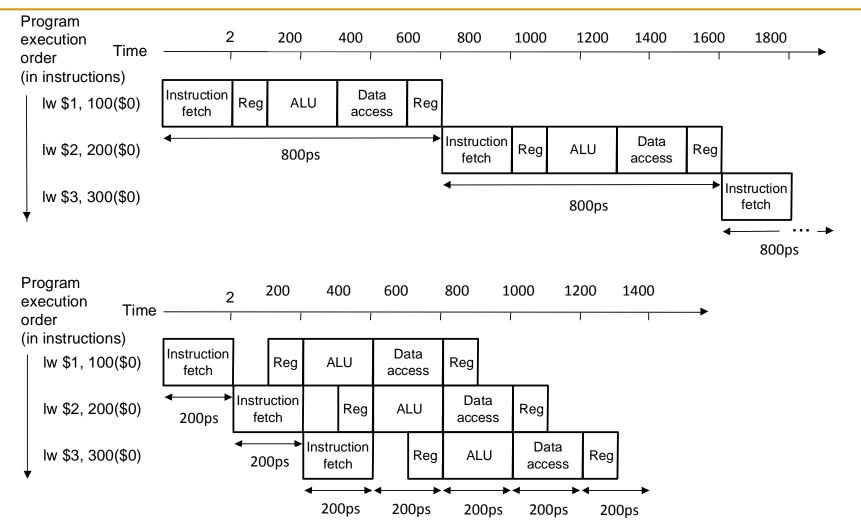
Pipelining Instruction Processing

Remember: The Instruction Processing Cycle

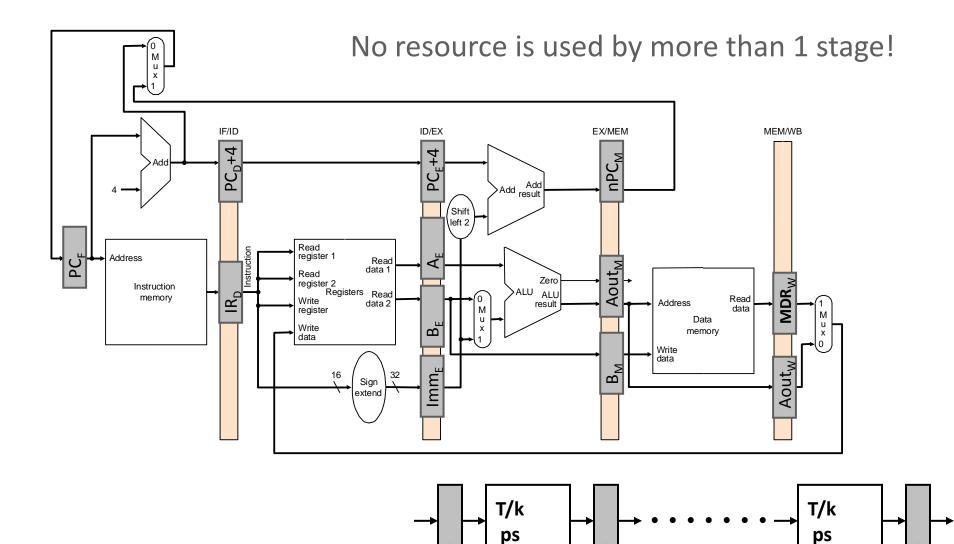


Remember the Single-Cycle Uarch

Elsevier. ALL RIGHTS RESERVED.]

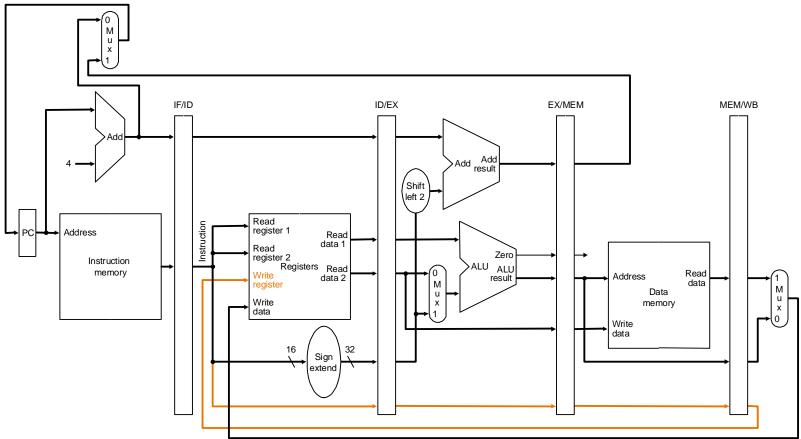

Dividing Into Stages

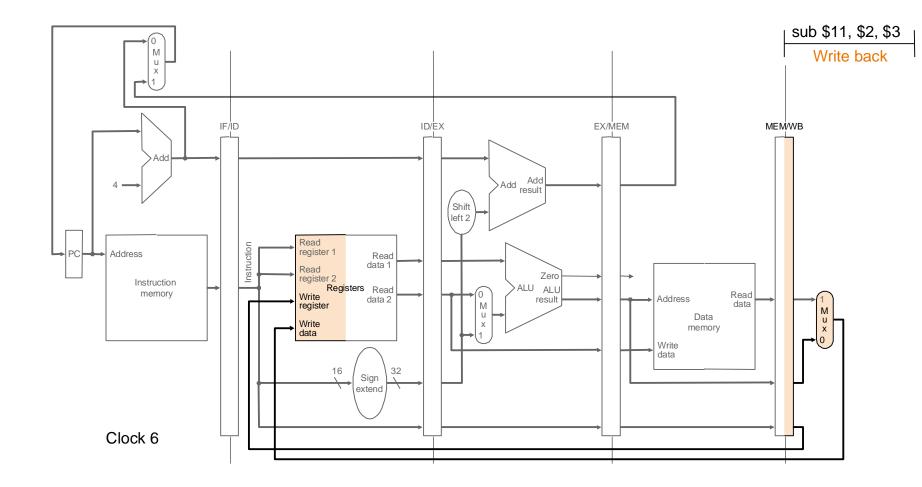
Is this the correct partitioning?


Why not 4 or 6 stages? Why not different boundaries?

Instruction Pipeline Throughput

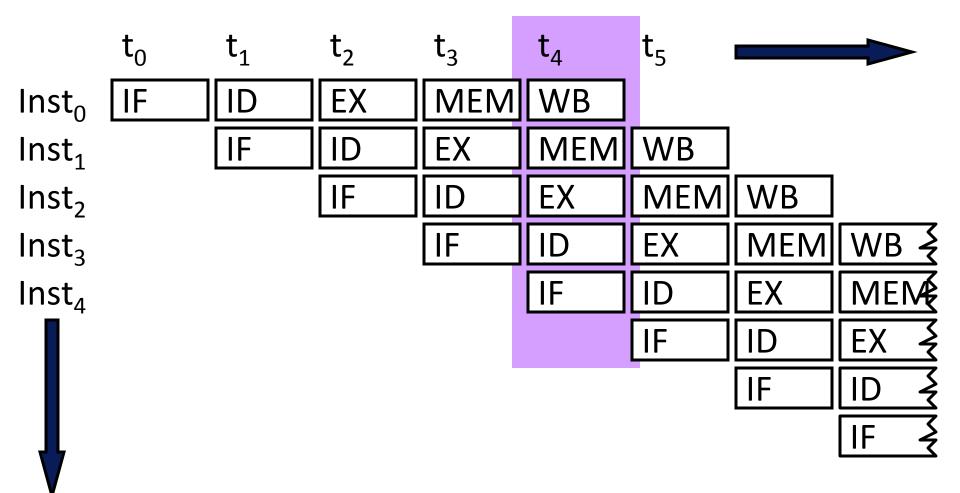
5-stage speedup is 4, not 5 as predicated by the ideal model. Why?


Enabling Pipelined Processing: Pipeline Registers


Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

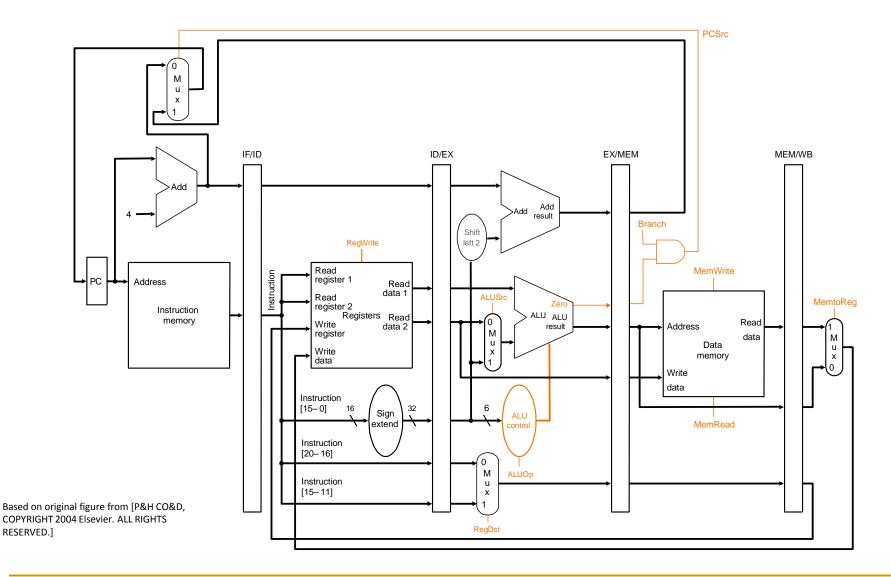
Pipelined Operation Example

All instruction classes must follow the same path and timing through the pipeline stages. Any performance impact?



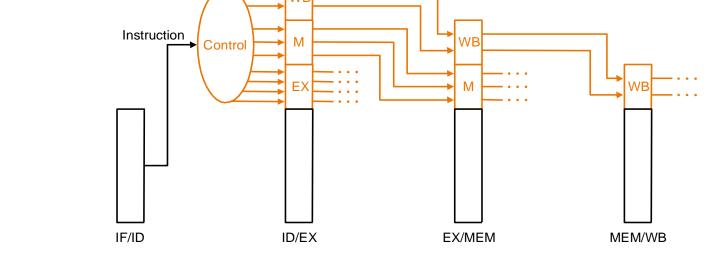
Pipelined Operation Example

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]


Illustrating Pipeline Operation: Operation View

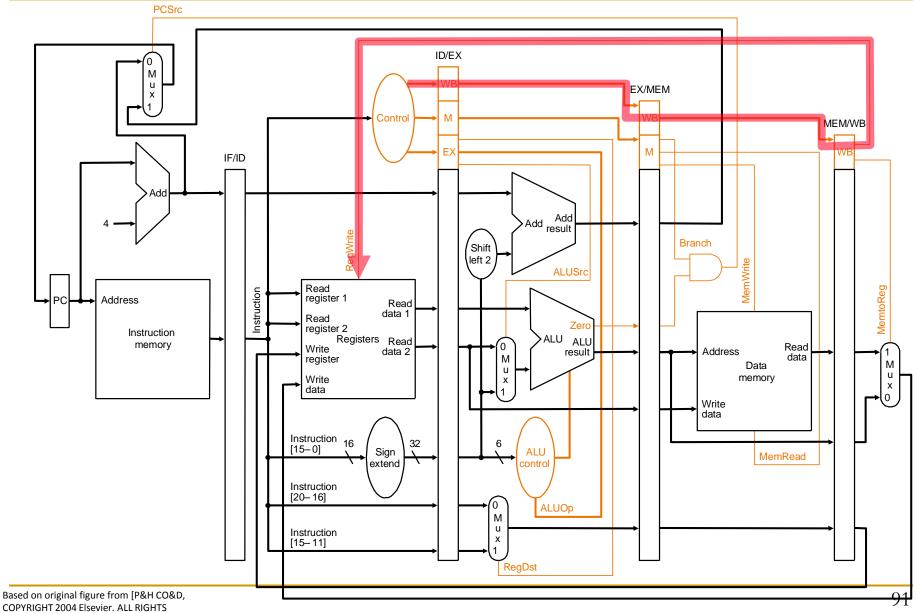
Illustrating Pipeline Operation: Resource View

	t _o	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀
IF	I _o	I ₁	I ₂	l ₃	I ₄	I ₅	I ₆	۱ ₇	I ₈	l ₉	I_{10}
ID		I ₀	I ₁	l ₂	I ₃	I ₄	I ₅	I ₆	I ₇	I ₈	l ₉
EX			I ₀	I ₁	I ₂	I ₃	I ₄	I ₅	I ₆	I ₇	I ₈
MEM				I ₀	I ₁	I ₂	l ₃	I ₄	I ₅	I ₆	۱ ₇
WB					I ₀	I ₁	I ₂	I ₃	I ₄	I ₅	I ₆


Control Points in a Pipeline

Identical set of control points as the single-cycle datapath!!⁸⁹

Control Signals in a Pipeline


- For a given instruction
 - same control signals as single-cycle, but
 - control signals required at different cycles, depending on stage
 - ⇒ decode once using the same logic as single-cycle and buffer control signals until consumed

⇒ or carry relevant "instruction word/field" down the pipeline and decode locally within each stage (still same logic)

Which one is better?

Pipelined Control Signals

RESERVED.1

An Ideal Pipeline

- Goal: Increase throughput with little increase in cost (hardware cost, in case of instruction processing)
- Repetition of identical operations
 - The same operation is repeated on a large number of different inputs
- Repetition of independent operations
 - No dependencies between repeated operations
- Uniformly partitionable suboperations
 - Processing an be evenly divided into uniform-latency suboperations (that do not share resources)
- Fitting examples: automobile assembly line, doing laundry
 What about the instruction processing "cycle"?

Instruction Pipeline: Not An Ideal Pipeline

- Identical operations ... NOT!
 - \Rightarrow different instructions do not need all stages
 - Forcing different instructions to go through the same multi-function pipe
 - \rightarrow external fragmentation (some pipe stages idle for some instructions)
- Uniform suboperations ... NOT!
 - \Rightarrow difficult to balance the different pipeline stages
 - Not all pipeline stages do the same amount of work
 - → internal fragmentation (some pipe stages are too-fast but take the same clock cycle time)
- Independent operations ... NOT!
 - \Rightarrow instructions are not independent of each other

- Need to detect and resolve inter-instruction dependencies to ensure the pipeline operates correctly

 \rightarrow Pipeline is not always moving (it stalls)

Issues in Pipeline Design

- Balancing work in pipeline stages
 - How many stages and what is done in each stage
- Keeping the pipeline correct, moving, and full in the presence of events that disrupt pipeline flow
 - Handling dependences
 - Data
 - Control
 - Handling resource contention
 - Handling long-latency (multi-cycle) operations
- Handling exceptions, interrupts
- Advanced: Improving pipeline throughput
 - Minimizing stalls

Causes of Pipeline Stalls

- Resource contention
- Dependences (between instructions)
 - Data
 - Control
- Long-latency (multi-cycle) operations

Dependences and Their Types

- Also called "dependency" or *less desirably* "hazard"
- Dependencies dictate ordering requirements between instructions
- Two types
 - Data dependence
 - Control dependence
- Resource contention is sometimes called resource dependence
 - However, this is not fundamental to (dictated by) program semantics, so we will treat it separately

Handling Resource Contention

- Happens when instructions in two pipeline stages need the same resource
- Solution 1: Eliminate the cause of contention
 - Duplicate the resource or increase its throughput
 - E.g., use separate instruction and data memories (caches)
 - E.g., use multiple ports for memory structures
- Solution 2: Detect the resource contention and stall one of the contending stages
 - Which stage do you stall?
 - Example: What if you had a single read and write port for the register file?

Data Dependences

- Types of data dependences
 - □ Flow dependence (true data dependence read after write)
 - Output dependence (write after write)
 - Anti dependence (write after read)
- Which ones cause stalls in a pipelined machine?
 - For all of them, we need to ensure semantics of the program are correct
 - Flow dependences always need to be obeyed because they constitute true dependence on a value
 - Anti and output dependences exist due to limited number of architectural registers
 - They are dependence on a name, not a value
 - We will later see what we can do about them

Data Dependence Types

Flow dependence

Anti dependence

Read-after-Write (RAW)

Write-after-Read (WAR)

Output-dependence

$$\begin{array}{cccc} \mathbf{r}_3 & \leftarrow \mathbf{r}_1 \text{ op } \mathbf{r}_2 \\ \mathbf{r}_5 & \leftarrow \mathbf{r}_3 \text{ op } \mathbf{r}_4 \\ \mathbf{r}_3 & \leftarrow \mathbf{r}_6 \text{ op } \mathbf{r}_7 \end{array}$$

Write-after-Write (WAW)

How to Handle Data Dependences

- Anti and output dependences are easier to handle
 write to the destination in one stage and in program order
- Flow dependences are more interesting
- Five fundamental ways of handling flow dependences