
18-447

Computer Architecture

Lecture 6: Multi-Cycle and

Microprogrammed Microarchitectures

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/27/2014

Assignments

 Lab 2 due next Friday (start early)

 HW1 due next week

 HW0

 Make sure you submitted this!

2

Extra Credit for Lab Assignment 2

 Complete your normal (single-cycle) implementation first, and
get it checked off in lab.

 Then, implement the MIPS core using a microcoded approach
similar to what we will discuss in class.

 We are not specifying any particular details of the microcode
format or the microarchitecture; you can be creative.

 For the extra credit, the microcoded implementation should
execute the same programs that your ordinary
implementation does, and you should demo it by the normal
lab deadline.

 You will get maximum 4% of course grade

 Document what you have done and demonstrate well
3

Readings for Today

 P&P, Revised Appendix C

 Microarchitecture of the LC-3b

 Appendix A (LC-3b ISA) will be useful in following this

 P&H, Appendix D

 Mapping Control to Hardware

 Optional

 Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer Inaugural
Conf., 1951.

4

Readings for Next Lecture

 Pipelining

 P&H Chapter 4.5-4.8

 Pipelined LC-3b Microarchitecture

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=18447-lc3b-pipelining.pdf

5

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

Quick Recap of Past Five Lectures

 Basics

 Why Computer Architecture

 Levels of Transformation

 Memory Topics: DRAM Refresh and Memory Performance
Attacks

 ISA Tradeoffs

 Single-Cycle Microarchitectures

 Multi-Cycle Microarchitectures

 Performance Analysis

 Amdahl’s Law

 Microarchitecture Design Principles

6

Microarchitecture Design Principles

 Critical path design

 Find the maximum combinational logic delay and decrease it

 Bread and butter (common case) design

 Spend time and resources on where it matters

 i.e., improve what the machine is really designed to do

 Common case vs. uncommon case

 Balanced design

 Balance instruction/data flow through hardware components

 Balance the hardware needed to accomplish the work

 How does a single-cycle microarchitecture fare in light of
these principles?

7

Multi-Cycle Microarchitectures

 Goal: Let each instruction take (close to) only as much time
it really needs

 Idea

 Determine clock cycle time independently of instruction
processing time

 Each instruction takes as many clock cycles as it needs to take

 Multiple state transitions per instruction

 The states followed by each instruction is different

8

A Multi-Cycle Microarchitecture

A Closer Look

9

How Do We Implement This?

 Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

 The concept of microcoded/microprogrammed machines

 Realization

 One can implement the “process instruction” step as a finite
state machine that sequences between states and eventually
returns back to the “fetch instruction” state

 A state is defined by the control signals asserted in it

 Control signals for the next state determined in current state

10

The Instruction Processing Cycle

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

11

A Basic Multi-Cycle Microarchitecture

 Instruction processing cycle divided into “states”

 A stage in the instruction processing cycle can take multiple states

 A multi-cycle microarchitecture sequences from state to
state to process an instruction

 The behavior of the machine in a state is completely determined by
control signals in that state

 The behavior of the entire processor is specified fully by a
finite state machine

 In a state (clock cycle), control signals control

 How the datapath should process the data

 How to generate the control signals for the next clock cycle

12

Microprogrammed Control Terminology

 Control signals associated with the current state

 Microinstruction

 Act of transitioning from one state to another

 Determining the next state and the microinstruction for the
next state

 Microsequencing

 Control store stores control signals for every possible state

 Store for microinstructions for the entire FSM

 Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

13

What Happens In A Clock Cycle?

 The control signals (microinstruction) for the current state
control

 Processing in the data path

 Generation of control signals (microinstruction) for the next
cycle

 See Supplemental Figure 1 (next slide)

 Datapath and microsequencer operate concurrently

 Question: why not generate control signals for the current
cycle in the current cycle?

 This will lengthen the clock cycle

 Why would it lengthen the clock cycle?

 See Supplemental Figure 2
14

A Clock Cycle

15

A Bad Clock Cycle!

16

A Simple LC-3b Control and Datapath

17

What Determines Next-State Control Signals?

 What is happening in the current clock cycle

 See the 9 control signals coming from “Control” block

 What are these for?

 The instruction that is being executed

 IR[15:11] coming from the Data Path

 Whether the condition of a branch is met, if the instruction
being processed is a branch

 BEN bit coming from the datapath

 Whether the memory operation is completing in the current
cycle, if one is in progress

 R bit coming from memory

18

A Simple LC-3b Control and Datapath

19

The State Machine for Multi-Cycle Processing

 The behavior of the LC-3b uarch is completely determined by

 the 35 control signals and

 additional 7 bits that go into the control logic from the datapath

 35 control signals completely describe the state of the control
structure

 We can completely describe the behavior of the LC-3b as a
state machine, i.e. a directed graph of

 Nodes (one corresponding to each state)

 Arcs (showing flow from each state to the next state(s))

20

An LC-3b State Machine

 Patt and Patel, App C, Figure C.2

 Each state must be uniquely specified

 Done by means of state variables

 31 distinct states in this LC-3b state machine

 Encoded with 6 state variables

 Examples

 State 18,19 correspond to the beginning of the instruction
processing cycle

 Fetch phase: state 18, 19 state 33 state 35

 Decode phase: state 32

21

C.2. THE STATE MACHINE 5

R

PC<! BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<! SR[7:0]

MDR <! M

IR <! MDR

R

DR<! SR1+OP2*
set CC

DR<! SR1&OP2*
set CC

[BEN]

PC<! MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<! PC
MDR<! M[MAR]

set CC

BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<! SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<! B+off6

set CC

To 18

MAR<! B+off6

DR<! MDR
set CC

To 18

MDR<! M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<! PC+LSHF(off9, 1)

14

LDW

MAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)

PC<! PC+LSHF(off9,1)

33

35

DR<! SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<! M[MAR[15:1]’0]

DR<! SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<! SR

To 18

R R

M[MAR]<! MDR

16

23

R R

17

To 19

24

M[MAR]<! MDR**

MAR<! LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<! BaseR

PC<! PC+LSHF(off11,1)

R7<! PC

R7<! PC

13

Figure C.2: A state machine for the LC-3b

LC-3b State Machine: Some Questions

 How many cycles does the fastest instruction take?

 How many cycles does the slowest instruction take?

 Why does the BR take as long as it takes in the FSM?

 What determines the clock cycle?

23

LC-3b Datapath

 Patt and Patel, App C, Figure C.3

 Single-bus datapath design

 At any point only one value can be “gated” on the bus (i.e.,
can be driving the bus)

 Advantage: Low hardware cost: one bus

 Disadvantage: Reduced concurrency – if instruction needs the
bus twice for two different things, these need to happen in
different states

 Control signals (26 of them) determine what happens in the
datapath in one clock cycle

 Patt and Patel, App C, Table C.1

24

C.4. THE CONTROL STRUCTURE 11

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.

LC-3b Datapath: Some Questions

 How does instruction fetch happen in this datapath
according to the state machine?

 What is the difference between gating and loading?

 Is this the smallest hardware you can design?

28

LC-3b Microprogrammed Control Structure

 Patt and Patel, App C, Figure C.4

 Three components:

 Microinstruction, control store, microsequencer

 Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

 Each microinstruction is stored in a unique location in the
control store (a special memory structure)

 Unique location: address of the state corresponding to the
microinstruction

 Remember each state corresponds to one microinstruction

 Microsequencer determines the address of the next
microinstruction (i.e., next state)

29

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

14APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

J LD
.P

C

LD
.B

EN

LD
.IR

LD
.M

D
R

LD
.M

A
R

LD
.R

EG
LD

.C
C

C
on

d

IR
D

G
at

eP
C

G
at

eM
D

R
G

at
eA

LU
G

at
eM

A
R

M
U

X

G
at

eS
H

F
PC

M
U

X
D

R
M

U
X

SR
1M

U
X

A
D

D
R

1M
U

X
A

D
D

R
2M

U
X

M
A

R
M

U
X

010000 (State 16)

010001 (State 17)

010011 (State 19)

010010 (State 18)

010100 (State 20)

010101 (State 21)

010110 (State 22)

010111 (State 23)

011000 (State 24)

011001 (State 25)

011010 (State 26)

011011 (State 27)

011100 (State 28)

011101 (State 29)

011110 (State 30)

011111 (State 31)

100000 (State 32)

100001 (State 33)

100010 (State 34)

100011 (State 35)

100100 (State 36)

100101 (State 37)

100110 (State 38)

100111 (State 39)

101000 (State 40)

101001 (State 41)

101010 (State 42)

101011 (State 43)

101100 (State 44)

101101 (State 45)

101110 (State 46)

101111 (State 47)

110000 (State 48)

110001 (State 49)

110010 (State 50)

110011 (State 51)

110100 (State 52)

110101 (State 53)

110110 (State 54)

110111 (State 55)

111000 (State 56)

111001 (State 57)

111010 (State 58)

111011 (State 59)

111100 (State 60)

111101 (State 61)

111110 (State 62)

111111 (State 63)

001000 (State 8)

001001 (State 9)

001010 (State 10)

001011 (State 11)

001100 (State 12)

001101 (State 13)

001110 (State 14)

001111 (State 15)

000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

A
LU

K

M
IO

.E
N

R
.W

LS
H

F1

D
A

TA
.S

IZ
E

Figure C.7: Specification of the control store

LC-3b Microsequencer

 Patt and Patel, App C, Figure C.5

 The purpose of the microsequencer is to determine the
address of the next microinstruction (i.e., next state)

 Next address depends on 9 control signals

33

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

The Microsequencer: Some Questions

 When is the IRD signal asserted?

 What happens if an illegal instruction is decoded?

 What are condition (COND) bits for?

 How is variable latency memory handled?

 How do you do the state encoding?

 Minimize number of state variables

 Start with the 16-way branch

 Then determine constraint tables and states dependent on COND

35

An Exercise in

Microprogramming

36

Handouts

 7 pages of Microprogrammed LC-3b design

 http://www.ece.cmu.edu/~ece447/s14/doku.php?id=techd
ocs

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=lc3b-figures.pdf

37

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=lc3b-figures.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=lc3b-figures.pdf

A Simple LC-3b Control and Datapath

38

C.2. THE STATE MACHINE 5

R

PC<! BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<! SR[7:0]

MDR <! M

IR <! MDR

R

DR<! SR1+OP2*
set CC

DR<! SR1&OP2*
set CC

[BEN]

PC<! MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<! PC
MDR<! M[MAR]

set CC

BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<! SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<! B+off6

set CC

To 18

MAR<! B+off6

DR<! MDR
set CC

To 18

MDR<! M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<! PC+LSHF(off9, 1)

14

LDW

MAR<! B+LSHF(off6,1) MAR<! B+LSHF(off6,1)

PC<! PC+LSHF(off9,1)

33

35

DR<! SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<! M[MAR[15:1]’0]

DR<! SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<! SR

To 18

R R

M[MAR]<! MDR

16

23

R R

17

To 19

24

M[MAR]<! MDR**

MAR<! LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <! PC
PC <! PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<! BaseR

PC<! PC+LSHF(off11,1)

R7<! PC

R7<! PC

13

Figure C.2: A state machine for the LC-3b

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
State 18 (010010)
State 33 (100001)
State 35 (100011)
State 32 (100000)
State 6 (000110)
State 25 (011001)
State 27 (011011)

State Machine for LDW Microsequencer

C.4. THE CONTROL STRUCTURE 11

DR

IR[11:9]

111

DRMUX

(a)

SR1

SR1MUX

IR[11:9]

IR[8:6]

(b)

Logic BEN

P
Z
N

IR[11:9]

(c)

Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

14APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

J LD
.P

C

LD
.B

EN

LD
.IR

LD
.M

D
R

LD
.M

A
R

LD
.R

EG
LD

.C
C

C
on

d

IR
D

G
at

eP
C

G
at

eM
D

R
G

at
eA

LU
G

at
eM

A
R

M
U

X

G
at

eS
H

F
PC

M
U

X
D

R
M

U
X

SR
1M

U
X

A
D

D
R

1M
U

X
A

D
D

R
2M

U
X

M
A

R
M

U
X

010000 (State 16)

010001 (State 17)

010011 (State 19)

010010 (State 18)

010100 (State 20)

010101 (State 21)

010110 (State 22)

010111 (State 23)

011000 (State 24)

011001 (State 25)

011010 (State 26)

011011 (State 27)

011100 (State 28)

011101 (State 29)

011110 (State 30)

011111 (State 31)

100000 (State 32)

100001 (State 33)

100010 (State 34)

100011 (State 35)

100100 (State 36)

100101 (State 37)

100110 (State 38)

100111 (State 39)

101000 (State 40)

101001 (State 41)

101010 (State 42)

101011 (State 43)

101100 (State 44)

101101 (State 45)

101110 (State 46)

101111 (State 47)

110000 (State 48)

110001 (State 49)

110010 (State 50)

110011 (State 51)

110100 (State 52)

110101 (State 53)

110110 (State 54)

110111 (State 55)

111000 (State 56)

111001 (State 57)

111010 (State 58)

111011 (State 59)

111100 (State 60)

111101 (State 61)

111110 (State 62)

111111 (State 63)

001000 (State 8)

001001 (State 9)

001010 (State 10)

001011 (State 11)

001100 (State 12)

001101 (State 13)

001110 (State 14)

001111 (State 15)

000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

A
LU

K

M
IO

.E
N

R
.W

LS
H

F1

D
A

TA
.S

IZ
E

Figure C.7: Specification of the control store

10APPENDIX C. THE MICROARCHITECTURE OF THE LC-3B, BASIC MACHINE

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the

End of the Exercise in

Microprogramming

48

Homework 2

 You will write the microcode for the entire LC-3b as
specified in Appendix C

49

Lab 2 Extra Credit

 Microprogrammed ARM implementation

 Exercise your creativity!

50

The Microsequencer: Some Questions

 When is the IRD signal asserted?

 What happens if an illegal instruction is decoded?

 What are condition (COND) bits for?

 How is variable latency memory handled?

 How do you do the state encoding?

 Minimize number of state variables

 Start with the 16-way branch

 Then determine constraint tables and states dependent on COND

51

The Control Store: Some Questions

 What control signals can be stored in the control store?

vs.

 What control signals have to be generated in hardwired
logic?

 i.e., what signal cannot be available without processing in the
datapath?

52

Variable-Latency Memory

 The ready signal (R) enables memory read/write to execute
correctly

 Example: transition from state 33 to state 35 is controlled by
the R bit asserted by memory when memory data is available

 Could we have done this in a single-cycle
microarchitecture?

53

The Microsequencer: Advanced Questions

 What happens if the machine is interrupted?

 What if an instruction generates an exception?

 How can you implement a complex instruction using this
control structure?

 Think REP MOVS

54

The Power of Abstraction

 The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

 The designer can translate any desired operation to a
sequence microinstructions

 All the designer needs to provide is

 The sequence of microinstructions needed to implement the
desired operation

 The ability for the control logic to correctly sequence through
the microinstructions

 Any additional datapath control signals needed (no need if the
operation can be “translated” into existing control signals)

55

Let’s Do Some More Microprogramming

 Implement REP MOVS in the LC-3b microarchitecture

 What changes, if any, do you make to the

 state machine?

 datapath?

 control store?

 microsequencer?

 Show all changes and microinstructions

 Coming up in Homework 3?

56

Aside: Alignment Correction in Memory

 Remember unaligned accesses

 LC-3b has byte load and byte store instructions that move
data not aligned at the word-address boundary

 Convenience to the programmer/compiler

 How does the hardware ensure this works correctly?

 Take a look at state 29 for LDB

 States 24 and 17 for STB

 Additional logic to handle unaligned accesses

57

Aside: Memory Mapped I/O

 Address control logic determines whether the specified
address of LDx and STx are to memory or I/O devices

 Correspondingly enables memory or I/O devices and sets
up muxes

 Another instance where the final control signals (e.g.,
MEM.EN or INMUX/2) cannot be stored in the control store

 Dependent on address

58

Advantages of Microprogrammed Control

 Allows a very simple design to do powerful computation by
controlling the datapath (using a sequencer)
 High-level ISA translated into microcode (sequence of microinstructions)

 Microcode (ucode) enables a minimal datapath to emulate an ISA

 Microinstructions can be thought of a user-invisible ISA

 Enables easy extensibility of the ISA
 Can support a new instruction by changing the ucode

 Can support complex instructions as a sequence of simple microinstructions

 If I can sequence an arbitrary instruction then I can sequence
an arbitrary “program” as a microprogram sequence
 will need some new state (e.g. loop counters) in the microcode for sequencing

more elaborate programs

59

Update of Machine Behavior

 The ability to update/patch microcode in the field (after a
processor is shipped) enables

 Ability to add new instructions without changing the processor!

 Ability to “fix” buggy hardware implementations

 Examples

 IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot

 IBM System z: Similar to 370/145.

 Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

 B1700 microcode can be updated while the processor is running

 User-microprogrammable machine!

60

Horizontal Microcode

61

Microprogram counter

Address select logic

Adder

1

Input

Datapath

control

outputs

Microcode

storage

Inputs from instruction

register opcode field

Outputs

Sequencing

control

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

ALUSrcA

IorD

IRWrite

PCWrite

PCWriteCond

….

n-bit mPC input

k-
b

it
 “

co
n

tr
o

l”
o

u
tp

u
t

Control Store: 2n k bit (not including sequencing)

Vertical Microcode

62

Microprogram counter

Address select logic

Adder

1

Input

Datapath

control

outputs

Microcode

storage

Inputs from instruction

register opcode field

Outputs

Sequencing

control

“PC PC+4”

“PC ALUOut”

“PC PC[31:28],IR[25:0],2’b00”

“IR MEM[PC]”

“A RF[IR[25:21]]”

“B RF[IR[20:16]]”

…………. …….

ROM

A
LU

SrcA

Io
rD

IR
W

rite

P
C

W
rite

P
C

W
riteC

o
n

d

…
.

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

If done right (i.e., m<<n, and m<<k), two ROMs together

(2nm+2mk bit) should be smaller than horizontal microcode ROM (2nk bit)

m-bit input

k-bit output

n-bit mPC input

1-bit signal means do this RT
(or combination of RTs)

Nanocode and Millicode

 Nanocode: a level below traditional mcode

 mprogrammed control for sub-systems (e.g., a complicated floating-
point module) that acts as a slave in a mcontrolled datapath

 Millicode: a level above traditional mcode

 ISA-level subroutines that can be called by the mcontroller to handle
complicated operations and system functions

 E.g., Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

 In both cases, we avoid complicating the main mcontroller

 You can think of these as “microcode” at different levels of
abstraction

63

Nanocode Concept Illustrated

64

ROM

mPC

arithmetic
datapath

a “mcoded” FPU implementation

ROM

mPC

processor
datapath

a “mcoded” processor implementation

We refer to this
as “nanocode”
when a mcoded
subsystem is embedded
in a mcoded system

Multi-Cycle vs. Single-Cycle uArch

 Advantages

 Disadvantages

 You should be very familiar with this right now

65

Microprogrammed vs. Hardwired Control

 Advantages

 Disadvantages

 You should be very familiar with this right now

66

Can We Do Better?

 What limitations do you see with the multi-cycle design?

 Limited concurrency

 Some hardware resources are idle during different phases of
instruction processing cycle

 “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

 Most of the datapath is idle when a memory access is
happening

67

Can We Use the Idle Hardware to Improve Concurrency?

 Goal: Concurrency throughput (more “work” completed

in one cycle)

 Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction

 E.g., when an instruction is being decoded, fetch the next
instruction

 E.g., when an instruction is being executed, decode another
instruction

 E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

 E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

68

Pipelining: Basic Idea

 More systematically:

 Pipeline the execution of multiple instructions

 Analogy: “Assembly line processing” of instructions

 Idea:

 Divide the instruction processing cycle into distinct “stages” of
processing

 Ensure there are enough hardware resources to process one
instruction in each stage

 Process a different instruction in each stage

 Instructions consecutive in program order are processed in
consecutive stages

 Benefit: Increases instruction processing throughput (1/CPI)

 Downside: Start thinking about this…
69

Example: Execution of Four Independent ADDs

 Multi-cycle: 4 cycles per instruction

 Pipelined: 4 cycles per 4 instructions (steady state)

70

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

The Laundry Analogy

 “place one dirty load of clothes in the washer”

 “when the washer is finished, place the wet load in the dryer”

 “when the dryer is finished, take out the dry load and fold”

 “when folding is finished, ask your roommate (??) to put the clothes
away”

71

- steps to do a load are sequentially dependent
- no dependence between different loads
- different steps do not share resources

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

72

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

- latency per load is the same
- throughput increased by 4

- 4 loads of laundry in parallel
- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

73

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

the slowest step decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

74

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

A

B

A

B

Throughput restored (2 loads per hour) using 2 dryers

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

An Ideal Pipeline

 Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

 Repetition of identical operations

 The same operation is repeated on a large number of different
inputs

 Repetition of independent operations

 No dependencies between repeated operations

 Uniformly partitionable suboperations

 Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

 Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?
75

Ideal Pipelining

76

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

More Realistic Pipeline: Throughput

 Nonpipelined version with delay T

BW = 1/(T+S) where S = latch delay

 k-stage pipelined version

BWk-stage = 1 / (T/k +S)

BWmax = 1 / (1 gate delay + S)

77

T ps

T/k
ps

T/k
ps

More Realistic Pipeline: Cost

 Nonpipelined version with combinational cost G

Cost = G+L where L = latch cost

 k-stage pipelined version

Costk-stage = G + Lk

78

G gates

G/k G/k

Pipelining Instruction Processing

79

Remember: The Instruction Processing Cycle

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

80

1. Instruction fetch (IF)
2. Instruction decode and

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Remember the Single-Cycle Uarch

81

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

T BW=~(1/T)

Dividing Into Stages

82

200ps

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?

100ps 200ps 200ps 100ps

RF
write

ignore
for now

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Instruction Pipeline Throughput

83

Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program

execution

order

(in instructions)

Instruction

fetch
Reg ALU

Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program

execution

order

(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

800ps

800ps

800ps

200ps200ps200ps200ps200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicated by the ideal model. Why?

Enabling Pipelined Processing: Pipeline Registers

84
T

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Data

memory

Address

No resource is used by more than 1 stage!
IR

D

P
C

F

P
C

D
+4

P
C

E+
4

n
P

C
M

A
E

B
E

Im
m

E

A
o

u
t M

B
M

M
D

R
W

A
o

u
t W

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

T/k
ps

T/k
ps

Pipelined Operation Example

85

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
tio

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Execution

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write
register

Address

97108/Patterson

Figure 06.15

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write
register

Address

97108/Patterson

Figure 06.15

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

All instruction classes must follow the same path and timing
through the pipeline stages. Any performance impact?

Pipelined Operation Example

86

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Illustrating Pipeline Operation: Operation View

87

MEM

EX

ID

IFInst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EXIF ID

IF ID

Inst0 ID

IFInst1

EX

ID

IFInst2

MEM

EX

ID

IFInst3

WB

WBMEM

EX

WB

Illustrating Pipeline Operation: Resource View

88

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

Control Points in a Pipeline

89

PC

Instruction
memory

Address

In
s
tr

u
c
ti
o
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU

control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift

left 2

ALU

result

ALU

Zero

Add

0

1

M
u
x

0

1

M
u
x

Identical set of control points as the single-cycle datapath!!

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Control Signals in a Pipeline

 For a given instruction

 same control signals as single-cycle, but

 control signals required at different cycles, depending on stage

 decode once using the same logic as single-cycle and buffer control
signals until consumed

 or carry relevant “instruction word/field” down the pipeline and
decode locally within each stage (still same logic)

Which one is better?
90

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Pipelined Control Signals

91

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

An Ideal Pipeline

 Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

 Repetition of identical operations

 The same operation is repeated on a large number of different
inputs

 Repetition of independent operations

 No dependencies between repeated operations

 Uniformly partitionable suboperations

 Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

 Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?
92

Instruction Pipeline: Not An Ideal Pipeline
 Identical operations ... NOT!

 different instructions do not need all stages

- Forcing different instructions to go through the same multi-function pipe

 external fragmentation (some pipe stages idle for some instructions)

 Uniform suboperations ... NOT!

 difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work

 internal fragmentation (some pipe stages are too-fast but take the
same clock cycle time)

 Independent operations ... NOT!

 instructions are not independent of each other
- Need to detect and resolve inter-instruction dependencies to ensure the
pipeline operates correctly

 Pipeline is not always moving (it stalls)
93

Issues in Pipeline Design

 Balancing work in pipeline stages

 How many stages and what is done in each stage

 Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

 Handling dependences

 Data

 Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

 Handling exceptions, interrupts

 Advanced: Improving pipeline throughput

 Minimizing stalls
94

Causes of Pipeline Stalls

 Resource contention

 Dependences (between instructions)

 Data

 Control

 Long-latency (multi-cycle) operations

95

Dependences and Their Types

 Also called “dependency” or less desirably “hazard”

 Dependencies dictate ordering requirements between
instructions

 Two types

 Data dependence

 Control dependence

 Resource contention is sometimes called resource
dependence

 However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

96

Handling Resource Contention

 Happens when instructions in two pipeline stages need the
same resource

 Solution 1: Eliminate the cause of contention

 Duplicate the resource or increase its throughput

 E.g., use separate instruction and data memories (caches)

 E.g., use multiple ports for memory structures

 Solution 2: Detect the resource contention and stall one of
the contending stages

 Which stage do you stall?

 Example: What if you had a single read and write port for the
register file?

97

Data Dependences

 Types of data dependences

 Flow dependence (true data dependence – read after write)

 Output dependence (write after write)

 Anti dependence (write after read)

 Which ones cause stalls in a pipelined machine?

 For all of them, we need to ensure semantics of the program
are correct

 Flow dependences always need to be obeyed because they
constitute true dependence on a value

 Anti and output dependences exist due to limited number of
architectural registers

 They are dependence on a name, not a value

 We will later see what we can do about them

98

Data Dependence Types

99

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

100

