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Assignments

 Lab 2 due next Friday (start early)

 HW1 due next week

 HW0

 Make sure you submitted this!
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Extra Credit for Lab Assignment 2

 Complete your normal (single-cycle) implementation first, and 
get it checked off in lab. 

 Then, implement the MIPS core using a microcoded approach 
similar to what we will discuss in class. 

 We are not specifying any particular details of the microcode 
format or the microarchitecture; you can be creative. 

 For the extra credit, the microcoded implementation should 
execute the same programs that your ordinary 
implementation does, and you should demo it by the normal 
lab deadline.

 You will get maximum 4% of course grade

 Document what you have done and demonstrate well
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Readings for Today

 P&P, Revised Appendix C 

 Microarchitecture of the LC-3b

 Appendix A (LC-3b ISA) will be useful in following this

 P&H, Appendix D

 Mapping Control to Hardware

 Optional

 Maurice Wilkes, “The Best Way to Design an Automatic 
Calculating Machine,” Manchester Univ. Computer Inaugural 
Conf., 1951.
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Readings for Next Lecture

 Pipelining

 P&H Chapter 4.5-4.8

 Pipelined LC-3b Microarchitecture

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=18447-lc3b-pipelining.pdf
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Quick Recap of Past Five Lectures

 Basics

 Why Computer Architecture

 Levels of Transformation

 Memory Topics: DRAM Refresh and Memory Performance 
Attacks

 ISA Tradeoffs

 Single-Cycle Microarchitectures

 Multi-Cycle Microarchitectures

 Performance Analysis

 Amdahl’s Law

 Microarchitecture Design Principles
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Microarchitecture Design Principles

 Critical path design

 Find the maximum combinational logic delay and decrease it

 Bread and butter (common case) design

 Spend time and resources on where it matters 

 i.e., improve what the machine is really designed to do

 Common case vs. uncommon case

 Balanced design

 Balance instruction/data flow through hardware components

 Balance the hardware needed to accomplish the work

 How does a single-cycle microarchitecture fare in light of 
these principles?
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Multi-Cycle Microarchitectures

 Goal: Let each instruction take (close to) only as much time 
it really needs

 Idea

 Determine clock cycle time independently of instruction 
processing time

 Each instruction takes as many clock cycles as it needs to take

 Multiple state transitions per instruction

 The states followed by each instruction is different

8



A Multi-Cycle Microarchitecture

A Closer Look
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How Do We Implement This?

 Maurice Wilkes, “The Best Way to Design an Automatic 
Calculating Machine,” Manchester Univ. Computer 
Inaugural Conf., 1951.

 The concept of microcoded/microprogrammed machines

 Realization

 One can implement the “process instruction” step as a finite 
state machine that sequences between states and eventually 
returns back to the “fetch instruction” state

 A state is defined by the control signals asserted in it

 Control signals for the next state determined in current state
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The Instruction Processing Cycle

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result
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A Basic Multi-Cycle Microarchitecture

 Instruction processing cycle divided into “states”

 A stage in the instruction processing cycle can take multiple states

 A multi-cycle microarchitecture sequences from state to 
state to process an instruction 

 The behavior of the machine in a state is completely determined by 
control signals in that state

 The behavior of the entire processor is specified fully by a 
finite state machine

 In a state (clock cycle), control signals control

 How the datapath should process the data

 How to generate the control signals for the next clock cycle
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Microprogrammed Control Terminology

 Control signals associated with the current state

 Microinstruction

 Act of transitioning from one state to another

 Determining the next state and the microinstruction for the 
next state

 Microsequencing

 Control store stores control signals for every possible state

 Store for microinstructions for the entire FSM

 Microsequencer determines which set of control signals will 
be used in the next clock cycle (i.e., next state)
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What Happens In A Clock Cycle?

 The control signals (microinstruction) for the current state 
control

 Processing in the data path

 Generation of control signals (microinstruction) for the next 
cycle

 See Supplemental Figure 1 (next slide)

 Datapath and microsequencer operate concurrently

 Question: why not generate control signals for the current 
cycle in the current cycle?

 This will lengthen the clock cycle

 Why would it lengthen the clock cycle? 

 See Supplemental Figure 2
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A Clock Cycle
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A Bad Clock Cycle!
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A Simple LC-3b Control and Datapath
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What Determines Next-State Control Signals?

 What is happening in the current clock cycle

 See the 9 control signals coming from “Control” block

 What are these for?

 The instruction that is being executed

 IR[15:11] coming from the Data Path

 Whether the condition of a branch is met, if the instruction 
being processed is a branch

 BEN bit coming from the datapath

 Whether the memory operation is completing in the current 
cycle, if one is in progress

 R bit coming from memory
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A Simple LC-3b Control and Datapath
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The State Machine for Multi-Cycle Processing

 The behavior of the LC-3b uarch is completely determined by

 the 35 control signals and

 additional 7 bits that go into the control logic from the datapath

 35 control signals completely describe the state of the control 
structure

 We can completely describe the behavior of the LC-3b as a 
state machine, i.e. a directed graph of 

 Nodes (one corresponding to each state)

 Arcs (showing flow from each state to the next state(s))
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An LC-3b State Machine

 Patt and Patel, App C, Figure C.2

 Each state must be uniquely specified 

 Done by means of state variables

 31 distinct states in this LC-3b state machine

 Encoded with 6 state variables

 Examples

 State 18,19 correspond to the beginning of the instruction 
processing cycle

 Fetch phase: state 18, 19  state 33  state 35

 Decode phase: state 32
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C.2. THE STATE MACHINE 5
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Figure C.2: A state machine for the LC-3b



LC-3b State Machine: Some Questions

 How many cycles does the fastest instruction take?

 How many cycles does the slowest instruction take?

 Why does the BR take as long as it takes in the FSM? 

 What determines the clock cycle?
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LC-3b Datapath

 Patt and Patel, App C, Figure C.3

 Single-bus datapath design

 At any point only one value can be “gated” on the bus (i.e., 
can be driving the bus)

 Advantage: Low hardware cost: one bus

 Disadvantage: Reduced concurrency – if instruction needs the 
bus twice for two different things, these need to happen in 
different states

 Control signals (26 of them) determine what happens in the 
datapath in one clock cycle

 Patt and Patel, App C, Table C.1
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C.4. THE CONTROL STRUCTURE 11
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.





LC-3b Datapath: Some Questions

 How does instruction fetch happen in this datapath 
according to the state machine?

 What is the difference between gating and loading?

 Is this the smallest hardware you can design?
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LC-3b Microprogrammed Control Structure

 Patt and Patel, App C, Figure C.4

 Three components:

 Microinstruction, control store, microsequencer

 Microinstruction: control signals that control the datapath  
(26 of them) and help determine the next state (9 of them)

 Each microinstruction is stored in a unique location in the 
control store (a special memory structure)

 Unique location: address of the state corresponding to the 
microinstruction

 Remember each state corresponds to one microinstruction

 Microsequencer determines the address of the next 
microinstruction (i.e., next state)
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C.4. THE CONTROL STRUCTURE 9
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Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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IRD

Address of Next State
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J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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LC-3b Microsequencer

 Patt and Patel, App C, Figure C.5

 The purpose of the microsequencer is to determine the 
address of the next microinstruction (i.e., next state)

 Next address depends on 9 control signals
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IRD

Address of Next State
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Mode
Addr.
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the



The Microsequencer: Some Questions

 When is the IRD signal asserted?

 What happens if an illegal instruction is decoded?

 What are condition (COND) bits for?

 How is variable latency memory handled?

 How do you do the state encoding?

 Minimize number of state variables

 Start with the 16-way branch

 Then determine constraint tables and states dependent on COND
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An Exercise in 

Microprogramming
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Handouts

 7 pages of Microprogrammed LC-3b design

 http://www.ece.cmu.edu/~ece447/s14/doku.php?id=techd
ocs

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=lc3b-figures.pdf
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A Simple LC-3b Control and Datapath
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Figure C.2: A state machine for the LC-3b
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J[0]J[1]J[2]

COND0COND1
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R IR[11]BEN

Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
State 18 (010010)
State 33 (100001)
State 35 (100011)
State 32 (100000)
State 6    (000110)
State 25 (011001)
State 27 (011011)

State Machine for LDW Microsequencer
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Figure C.6: Additional logic required to provide control signals

LC-3b to operate correctly with a memory that takes multiple clock cycles to read or

store a value.

Suppose it takes memory five cycles to read a value. That is, once MAR contains

the address to be read and the microinstruction asserts READ, it will take five cycles

before the contents of the specified location in memory are available to be loaded into

MDR. (Note that the microinstruction asserts READ by means of three control signals:

MIO.EN/YES, R.W/RD, and DATA.SIZE/WORD; see Figure C.3.)

Recall our discussion in Section C.2 of the function of state 33, which accesses

an instruction from memory during the fetch phase of each instruction cycle. For the

LC-3b to operate correctly, state 33 must execute five times before moving on to state

35. That is, until MDR contains valid data from the memory location specified by the

contents of MAR, we want state 33 to continue to re-execute. After five clock cycles,

the memory has completed the “read,” resulting in valid data in MDR, so the processor

can move on to state 35. What if the microarchitecture did not wait for the memory to

complete the read operation before moving on to state 35? Since the contents of MDR

would still be garbage, the microarchitecture would put garbage into IR in state 35.

The ready signal (R) enables the memory read to execute correctly. Since the mem-

ory knows it needs five clock cycles to complete the read, it asserts a ready signal

(R) throughout the fifth clock cycle. Figure C.2 shows that the next state is 33 (i.e.,

100001) if the memory read will not complete in the current clock cycle and state 35

(i.e., 100011) if it will. As we have seen, it is the job of the microsequencer (Figure

C.5) to produce the next state address.
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Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the
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Figure C.5: The microsequencer of the LC-3b base machine

unused opcodes, the microarchitecture would execute a sequence of microinstructions,

starting at state 10 or state 11, depending on which illegal opcode was being decoded.

In both cases, the sequence of microinstructions would respond to the fact that an

instruction with an illegal opcode had been fetched.

Several signals necessary to control the data path and the microsequencer are not

among those listed in Tables C.1 and C.2. They are DR, SR1, BEN, and R. Figure C.6

shows the additional logic needed to generate DR, SR1, and BEN.

The remaining signal, R, is a signal generated by the memory in order to allow the



End of the Exercise in 

Microprogramming

48



Homework 2

 You will write the microcode for the entire LC-3b as 
specified in Appendix C
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Lab 2 Extra Credit

 Microprogrammed ARM implementation

 Exercise your creativity!
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The Microsequencer: Some Questions

 When is the IRD signal asserted?

 What happens if an illegal instruction is decoded?

 What are condition (COND) bits for?

 How is variable latency memory handled?

 How do you do the state encoding?

 Minimize number of state variables

 Start with the 16-way branch

 Then determine constraint tables and states dependent on COND
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The Control Store: Some Questions

 What control signals can be stored in the control store?

vs.

 What control signals have to be generated in hardwired 
logic?

 i.e., what signal cannot be available without processing in the 
datapath?
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Variable-Latency Memory

 The ready signal (R) enables memory read/write to execute 
correctly

 Example: transition from state 33 to state 35 is controlled by 
the R bit asserted by memory when memory data is available

 Could we have done this in a single-cycle 
microarchitecture?
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The Microsequencer: Advanced Questions

 What happens if the machine is interrupted?

 What if an instruction generates an exception?

 How can you implement a complex instruction using this 
control structure?

 Think REP MOVS
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The Power of Abstraction

 The concept of a control store of microinstructions enables 
the hardware designer with a new abstraction: 
microprogramming

 The designer can translate any desired operation to a 
sequence microinstructions

 All the designer needs to provide is 

 The sequence of microinstructions needed to implement the 
desired operation

 The ability for the control logic to correctly sequence through 
the microinstructions

 Any additional datapath control signals needed (no need if the 
operation can be “translated” into existing control signals)
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Let’s Do Some More Microprogramming

 Implement REP MOVS in the LC-3b microarchitecture

 What changes, if any, do you make to the 

 state machine?

 datapath?

 control store?

 microsequencer?

 Show all changes and microinstructions

 Coming up in Homework 3?
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Aside: Alignment Correction in Memory

 Remember unaligned accesses

 LC-3b has byte load and byte store instructions that move 
data not aligned at the word-address boundary

 Convenience to the programmer/compiler

 How does the hardware ensure this works correctly?

 Take a look at state 29 for LDB

 States 24 and 17 for STB

 Additional logic to handle unaligned accesses
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Aside: Memory Mapped I/O

 Address control logic determines whether the specified 
address of LDx and STx are to memory or I/O devices

 Correspondingly enables memory or I/O devices and sets 
up muxes

 Another instance where the final control signals (e.g., 
MEM.EN or INMUX/2) cannot be stored in the control store

 Dependent on address
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Advantages of Microprogrammed Control

 Allows a very simple design to do powerful computation by 
controlling the datapath (using a sequencer)
 High-level ISA translated into microcode (sequence of microinstructions)

 Microcode (ucode) enables a minimal datapath to emulate an ISA

 Microinstructions can be thought of a user-invisible ISA

 Enables easy extensibility of the ISA
 Can support a new instruction by changing the ucode

 Can support complex instructions as a sequence of simple microinstructions

 If I can sequence an arbitrary instruction then I can sequence 
an arbitrary “program” as a microprogram sequence
 will need some new state (e.g. loop counters) in the microcode for sequencing 

more elaborate programs
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Update of Machine Behavior

 The ability to update/patch microcode in the field (after a 
processor is shipped) enables 

 Ability to add new instructions without changing the processor!

 Ability to “fix” buggy hardware implementations

 Examples

 IBM 370 Model 145: microcode stored in main memory, can be 
updated after a reboot

 IBM System z: Similar to 370/145.

 Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM 
JR&D, May/Jul 2004.

 B1700 microcode can be updated while the processor is running

 User-microprogrammable machine!

60



Horizontal Microcode
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Vertical Microcode
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Nanocode and Millicode

 Nanocode: a level below traditional mcode

 mprogrammed control for sub-systems (e.g., a complicated floating-
point module) that acts as a slave in a mcontrolled datapath

 Millicode: a level above traditional mcode

 ISA-level subroutines that can be called by the mcontroller to handle 
complicated operations and system functions

 E.g., Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM 
JR&D, May/Jul 2004.

 In both cases, we avoid complicating the main mcontroller 

 You can think of these as “microcode” at different levels of 
abstraction
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Nanocode Concept Illustrated
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Multi-Cycle vs. Single-Cycle uArch

 Advantages

 Disadvantages

 You should be very familiar with this right now
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Microprogrammed vs. Hardwired Control

 Advantages

 Disadvantages

 You should be very familiar with this right now
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Can We Do Better?

 What limitations do you see with the multi-cycle design?

 Limited concurrency

 Some hardware resources are idle during different phases of 
instruction processing cycle

 “Fetch” logic is idle when an instruction is being “decoded” or 
“executed”

 Most of the datapath is idle when a memory access is 
happening
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Can We Use the Idle Hardware to Improve Concurrency?

 Goal: Concurrency  throughput (more “work” completed 

in one cycle)

 Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction

 E.g., when an instruction is being decoded, fetch the next 
instruction

 E.g., when an instruction is being executed, decode another 
instruction

 E.g., when an instruction is accessing data memory (ld/st), 
execute the next instruction

 E.g., when an instruction is writing its result into the register 
file, access data memory for the next instruction
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Pipelining: Basic Idea

 More systematically:

 Pipeline the execution of multiple instructions

 Analogy: “Assembly line processing” of instructions

 Idea:

 Divide the instruction processing cycle into distinct “stages” of 
processing

 Ensure there are enough hardware resources to process one 
instruction in each stage

 Process a different instruction in each stage

 Instructions consecutive in program order are processed in 
consecutive stages

 Benefit: Increases instruction processing throughput (1/CPI)

 Downside: Start thinking about this…
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Example: Execution of Four Independent ADDs

 Multi-cycle: 4 cycles per instruction

 Pipelined: 4 cycles per 4 instructions (steady state)
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The Laundry Analogy 

 “place one dirty load of clothes in the washer”

 “when the washer is finished, place the wet load in the dryer”

 “when the dryer is finished, take out the dry load and fold”

 “when folding is finished, ask your roommate (??) to put the clothes 
away”
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- steps to do a load are sequentially dependent
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- different steps do not share resources
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Pipelining Multiple Loads of Laundry
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Pipelining Multiple Loads of Laundry: In Practice
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Pipelining Multiple Loads of Laundry: In Practice
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An Ideal Pipeline

 Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing)

 Repetition of identical operations

 The same operation is repeated on a large number of different 
inputs

 Repetition of independent operations

 No dependencies between repeated operations

 Uniformly partitionable suboperations

 Processing can be evenly divided into uniform-latency 
suboperations (that do not share resources)

 Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?
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Ideal Pipelining
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More Realistic Pipeline: Throughput

 Nonpipelined version with delay T 

BW = 1/(T+S) where S = latch delay

 k-stage pipelined version

BWk-stage = 1 / (T/k +S )

BWmax = 1 / (1 gate delay + S )
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More Realistic Pipeline: Cost

 Nonpipelined version with combinational cost G 

Cost = G+L where L = latch cost

 k-stage pipelined version

Costk-stage = G + Lk 
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Pipelining Instruction Processing
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Remember: The Instruction Processing Cycle

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

80

1. Instruction fetch (IF)
2. Instruction decode and 

register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB) 



Remember the Single-Cycle Uarch
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Dividing Into Stages
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Instruction Pipeline Throughput
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Enabling Pipelined Processing: Pipeline Registers
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Pipelined Operation Example
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All instruction classes must follow the same path and timing 
through the pipeline stages. Any performance impact?



Pipelined Operation Example
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Illustrating Pipeline Operation: Operation View
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Illustrating Pipeline Operation: Resource View
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Control Points in a Pipeline
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Based on original figure from [P&H CO&D, 
COPYRIGHT 2004 Elsevier. ALL RIGHTS 
RESERVED.]



Control Signals in a Pipeline

 For a given instruction

 same control signals as single-cycle, but

 control signals required at different cycles, depending on stage

 decode once using the same logic as single-cycle and buffer control 
signals until consumed

 or carry relevant “instruction word/field” down the pipeline and 
decode locally within each stage (still same logic)

Which one is better?
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Pipelined Control Signals
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An Ideal Pipeline

 Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing)

 Repetition of identical operations

 The same operation is repeated on a large number of different 
inputs

 Repetition of independent operations

 No dependencies between repeated operations

 Uniformly partitionable suboperations

 Processing an be evenly divided into uniform-latency 
suboperations (that do not share resources)

 Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?
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Instruction Pipeline: Not An Ideal Pipeline
 Identical operations ... NOT! 

 different instructions do not need all stages

- Forcing different instructions to go through the same multi-function pipe

 external fragmentation (some pipe stages idle for some instructions)

 Uniform suboperations ...  NOT! 

 difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work

 internal fragmentation (some pipe stages are too-fast but take the 
same clock cycle time)

 Independent operations ... NOT!

 instructions are not independent of each other
- Need to detect and resolve inter-instruction dependencies to ensure the  
pipeline operates correctly

 Pipeline is not always moving (it stalls)
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Issues in Pipeline Design

 Balancing work in pipeline stages

 How many stages and what is done in each stage

 Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow

 Handling dependences 

 Data

 Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

 Handling exceptions, interrupts

 Advanced: Improving pipeline throughput

 Minimizing stalls
94



Causes of Pipeline Stalls

 Resource contention

 Dependences (between instructions)

 Data

 Control

 Long-latency (multi-cycle) operations
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Dependences and Their Types

 Also called “dependency” or less desirably “hazard”

 Dependencies dictate ordering requirements between 
instructions

 Two types

 Data dependence

 Control dependence

 Resource contention is sometimes called resource 
dependence

 However, this is not fundamental to (dictated by) program 
semantics, so we will treat it separately
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Handling Resource Contention

 Happens when instructions in two pipeline stages need the 
same resource

 Solution 1: Eliminate the cause of contention

 Duplicate the resource or increase its throughput

 E.g., use separate instruction and data memories (caches)

 E.g., use multiple ports for memory structures

 Solution 2: Detect the resource contention and stall one of 
the contending stages

 Which stage do you stall?

 Example: What if you had a single read and write port for the 
register file?
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Data Dependences

 Types of data dependences

 Flow dependence (true data dependence – read after write)

 Output dependence (write after write)

 Anti dependence (write after read)

 Which ones cause stalls in a pipelined machine?

 For all of them, we need to ensure semantics of the program 
are correct

 Flow dependences always need to be obeyed because they 
constitute true dependence on a value

 Anti and output dependences exist due to limited number of 
architectural registers 

 They are dependence on a name, not a value

 We will later see what we can do about them
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Data Dependence Types
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Flow dependence
r3  r1 op  r2 Read-after-Write
r5  r3 op  r4 (RAW)

Anti dependence
r3  r1 op  r2 Write-after-Read
r1  r4 op  r5 (WAR)

Output-dependence
r3  r1 op  r2 Write-after-Write
r5  r3 op  r4 (WAW)
r3  r6 op  r7



How to Handle Data Dependences

 Anti and output dependences are easier to handle 

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences
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