
18-447

Computer Architecture

Lecture 4: ISA Tradeoffs (Continued) and

Single-Cycle Microarchitectures

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/22/2014

X86: Small Semantic Gap: String Operations

2

REP MOVS (DEST SRC)

How many instructions does this take in ARM and MIPS?

Small Semantic Gap Examples in VAX

 FIND FIRST

 Find the first set bit in a bit field

 Helps OS resource allocation operations

 SAVE CONTEXT, LOAD CONTEXT

 Special context switching instructions

 INSQUEUE, REMQUEUE

 Operations on doubly linked list

 INDEX

 Array access with bounds checking

 STRING Operations

 Compare strings, find substrings, …

 Cyclic Redundancy Check Instruction

 EDITPC

 Implements editing functions to display fixed format output

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

3

Small versus Large Semantic Gap

 CISC vs. RISC

 Complex instruction set computer  complex instructions

 Initially motivated by “not good enough” code generation

 Reduced instruction set computer  simple instructions

 John Cocke, mid 1970s, IBM 801

 Goal: enable better compiler control and optimization

 RISC motivated by

 Memory stalls (no work done in a complex instruction when
there is a memory stall?)

 When is this correct?

 Simplifying the hardware  lower cost, higher frequency

 Enabling the compiler to optimize the code better

 Find fine-grained parallelism to reduce stalls

 4

How High or Low Can You Go?

 Very large semantic gap

 Each instruction specifies the complete set of control signals in
the machine

 Compiler generates control signals

 Open microcode (John Cocke, circa 1970s)

 Gave way to optimizing compilers

 Very small semantic gap

 ISA is (almost) the same as high-level language

 Java machines, LISP machines, object-oriented machines,
capability-based machines

5

A Note on ISA Evolution

 ISAs have evolved to reflect/satisfy the concerns of the day

 Examples:

 Limited on-chip and off-chip memory size

 Limited compiler optimization technology

 Limited memory bandwidth

 Need for specialization in important applications (e.g., MMX)

 Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

 Concept of translation/interpretation interface

 Contrast it with hardware/software interface

6

Effect of Translation

 One can translate from one ISA to another ISA to change
the semantic gap tradeoffs

 Examples

 Intel’s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

 Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

 Think about the tradeoffs

7

ISA-level Tradeoffs: Instruction Length

 Fixed length: Length of all instructions the same

 + Easier to decode single instruction in hardware

 + Easier to decode multiple instructions concurrently

 -- Wasted bits in instructions (Why is this bad?)

 -- Harder-to-extend ISA (how to add new instructions?)

 Variable length: Length of instructions different
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)

 Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction

-- Harder to decode multiple instructions concurrently

 Tradeoffs
 Code size (memory space, bandwidth, latency) vs. hardware complexity

 ISA extensibility and expressiveness vs. hardware complexity

 Performance? Smaller code vs. ease of decode
8

ISA-level Tradeoffs: Uniform Decode

 Uniform decode: Same bits in each instruction correspond
to the same meaning

 Opcode is always in the same location

 Ditto operand specifiers, immediate values, …

 Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

 Non-uniform decode

 E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format

-- More complex decode logic

9

x86 vs. Alpha Instruction Formats

 x86:

 Alpha:

10

MIPS Instruction Format

 R-type, 3 register operands

 I-type, 2 register operands and 16-bit immediate operand

 J-type, 26-bit immediate operand

 Simple Decoding

 4 bytes per instruction, regardless of format

 must be 4-byte aligned (2 lsb of PC must be 2b’00)

 format and fields easy to extract in hardware

11

R-type 0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

opcode
6-bit

immediate
26-bit

J-type

ARM

12

A Note on Length and Uniformity

 Uniform decode usually goes with fixed length

 In a variable length ISA, uniform decode can be a property
of instructions of the same length

 It is hard to think of it as a property of instructions of different
lengths

13

A Note on RISC vs. CISC

 Usually, …

 RISC

 Simple instructions

 Fixed length

 Uniform decode

 Few addressing modes

 CISC

 Complex instructions

 Variable length

 Non-uniform decode

 Many addressing modes

14

ISA-level Tradeoffs: Number of Registers

 Affects:

 Number of bits used for encoding register address

 Number of values kept in fast storage (register file)

 (uarch) Size, access time, power consumption of register file

 Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler  fewer saves/restores

-- Larger instruction size

-- Larger register file size

15

ISA-level Tradeoffs: Addressing Modes

 Addressing mode specifies how to obtain an operand of an
instruction

 Register

 Immediate

 Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, …)

 More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design

-- too many choices for the compiler?

 Many ways to do the same thing complicates compiler design

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981

 16

x86 vs. Alpha Instruction Formats

 x86:

 Alpha:

17

18

x86

register

absolute

register

indirect

register +

displacement

x86

19

indexed

(base +

index)

scaled

(base +

index*4)

X86 SIB-D Addressing Mode

20

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

21

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

22

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

Other Example ISA-level Tradeoffs

 Condition codes vs. not

 VLIW vs. single instruction

 Precise vs. imprecise exceptions

 Virtual memory vs. not

 Unaligned access vs. not

 Hardware interlocks vs. software-guaranteed interlocking

 Software vs. hardware managed page fault handling

 Cache coherence (hardware vs. software)

 …

23

Back to Programmer vs. (Micro)architect

 Many ISA features designed to aid programmers

 But, complicate the hardware designer’s job

 Virtual memory

 vs. overlay programming

 Should the programmer be concerned about the size of code
blocks fitting physical memory?

 Addressing modes

 Unaligned memory access

 Compile/programmer needs to align data

24

MIPS: Aligned Access

 LW/SW alignment restriction: 4-byte word-alignment

 not designed to fetch memory bytes not within a word boundary

 not designed to rotate unaligned bytes into registers

 Provide separate opcodes for the “infrequent” case

 LWL/LWR is slower

 Note LWL and LWR still fetch within word boundary

 25

byte-3 byte-2 byte-1 byte-0

byte-7 byte-6 byte-5 byte-4

MSB LSB

A B C D

byte-6 byte-5 byte-4 D

byte-6 byte-5 byte-4 byte-3

LWL rd 6(r0) 

LWR rd 3(r0) 

X86: Unaligned Access

 LD/ST instructions automatically align data that spans a
“word” boundary

 Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

26

X86: Unaligned Access

27

What About ARM?

 https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf

 Section A2.8

28

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=arm-instructionset.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=arm-instructionset.pdf

Aligned vs. Unaligned Access

 Pros of having no restrictions on alignment

 Cons of having no restrictions on alignment

 Filling in the above: an exercise for you…

29

Implementing the ISA:

Microarchitecture Basics

30

How Does a Machine Process Instructions?

 What does processing an instruction mean?

 Remember the von Neumann model

A = Architectural (programmer visible) state before an
instruction is processed

Process instruction

A’ = Architectural (programmer visible) state after an
instruction is processed

 Processing an instruction: Transforming A to A’ according to
the ISA specification of the instruction

31

The “Process instruction” Step

  ISA specifies abstractly what A’ should be, given an
instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: A  A’ (transform A to A’ in a single clock cycle)

 Choice 2: A  A+MS1  A+MS2  A+MS3  A’ (take multiple clock

cycles to transform A to A’)

32

A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction
execution

 No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state

at the beginning of a clock cycle

Process instruction in one clock cycle

A’ = Architectural (programmer visible) state

at the end of a clock cycle

33

A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic
determined by?

34

ANext A Sequential
Logic
(State)

Combinational
Logic

Remember: Programmer Visible (Architectural) State

35

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers

- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time 

long clock cycle time

 Multi-cycle machines

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

36

Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control
unit” step by step.

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six phases:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six stages (see P&P Ch. 4)
37

Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine:

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Multi-cycle machine:

 All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete

38

Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

39

Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as data
signals are operated on

 Everything related to an instruction happens in one clock cycle

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in
the previous cycle

 Latency of control processing can be overlapped with latency
of datapath operation

 We will see the difference clearly in microprogrammed
multi-cycle microarchitecture

40

Many Ways of Datapath and Control Design

 There are many ways of designing the data path and
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 See your homework 2 question

 Hardwired/combinational vs. microcoded/microprogrammed
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath
design

 41

Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI  hopefully small

 Clock cycle time = short
42

Now, we have

two degrees of freedom

to optimize independently

