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X86: Small Semantic Gap: String Operations 
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REP MOVS (DEST SRC) 

How many instructions does this take in ARM and MIPS? 



Small Semantic Gap Examples in VAX  

 FIND FIRST 

 Find the first set bit in a bit field 

 Helps OS resource allocation operations 

 SAVE CONTEXT, LOAD CONTEXT 

 Special context switching instructions 

 INSQUEUE, REMQUEUE 

 Operations on doubly linked list 

 INDEX 

 Array access with bounds checking 

 STRING Operations 

 Compare strings, find substrings, … 

 Cyclic Redundancy Check Instruction 

 EDITPC 

 Implements editing functions to display fixed format output 
 

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78. 
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Small versus Large Semantic Gap 

 CISC vs. RISC 

 Complex instruction set computer  complex instructions  

 Initially motivated by “not good enough” code generation 

 Reduced instruction set computer  simple instructions 

 John Cocke, mid 1970s, IBM 801 

 Goal: enable better compiler control and optimization 

 

 RISC motivated by  

 Memory stalls (no work done in a complex instruction when 
there is a memory stall?) 

 When is this correct? 

 Simplifying the hardware  lower cost, higher frequency 

 Enabling the compiler to optimize the code better 

 Find fine-grained parallelism to reduce stalls 
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How High or Low Can You Go? 

 Very large semantic gap 

 Each instruction specifies the complete set of control signals in 
the machine 

 Compiler generates control signals 

 Open microcode (John Cocke, circa 1970s) 

 Gave way to optimizing compilers 

 

 Very small semantic gap 

 ISA is (almost) the same as high-level language 

 Java machines, LISP machines, object-oriented machines, 
capability-based machines 
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A Note on ISA Evolution 

 ISAs have evolved to reflect/satisfy the concerns of the day 

 

 Examples: 

 Limited on-chip and off-chip memory size 

 Limited compiler optimization technology 

 Limited memory bandwidth 

 Need for specialization in important applications (e.g., MMX) 

 

 Use of translation (in HW and SW) enabled underlying 
implementations to be similar, regardless of the ISA 

 Concept of translation/interpretation interface 

 Contrast it with hardware/software interface 
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Effect of Translation 

 One can translate from one ISA to another ISA to change 
the semantic gap tradeoffs 

 

 Examples 

 Intel’s and AMD’s x86 implementations translate x86 
instructions into programmer-invisible microoperations (simple 
instructions) in hardware 

 Transmeta’s x86 implementations translated x86 instructions 
into “secret” VLIW instructions in software (code morphing 
software) 

 

 Think about the tradeoffs 
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ISA-level Tradeoffs: Instruction Length 

 Fixed length: Length of all instructions the same 

 + Easier to decode single instruction in hardware 

 + Easier to decode multiple instructions concurrently 

 -- Wasted bits in instructions (Why is this bad?) 

 -- Harder-to-extend ISA (how to add new instructions?) 

 Variable length: Length of instructions different 
(determined by opcode and sub-opcode) 

+ Compact encoding (Why is this good?) 

 Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How? 

-- More logic to decode a single instruction 

-- Harder to decode multiple instructions concurrently 
 

 Tradeoffs 
 Code size (memory space, bandwidth, latency) vs. hardware complexity 

 ISA extensibility and expressiveness vs. hardware complexity 

 Performance? Smaller code vs. ease of decode 
8 



ISA-level Tradeoffs: Uniform Decode 

 Uniform decode: Same bits in each instruction correspond 
to the same meaning 

 Opcode is always in the same location 

 Ditto operand specifiers, immediate values, … 

 Many “RISC” ISAs: Alpha, MIPS, SPARC 

+ Easier decode, simpler hardware 

+ Enables parallelism: generate target address before knowing the 
instruction is a branch 

-- Restricts instruction format (fewer instructions?) or wastes space 

 

 Non-uniform decode 

 E.g., opcode can be the 1st-7th byte in x86 

+ More compact and powerful instruction format 

-- More complex decode logic 
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x86 vs. Alpha Instruction Formats 

 x86: 

 

 

 

 

 

 

 Alpha: 
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MIPS Instruction Format 

 R-type, 3 register operands 

 

 

 I-type, 2 register operands and 16-bit immediate operand 

 

 

 J-type, 26-bit immediate operand 

 

 

 Simple Decoding 

 4 bytes per instruction, regardless of format 

 must be 4-byte aligned          (2 lsb of PC must be 2b’00) 

 format and fields easy to extract in hardware 
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R-type 0 
6-bit 

rs 
5-bit 

rt 
5-bit 

rd 
5-bit 

shamt 
5-bit 

funct 
6-bit 

opcode 
6-bit 

rs 
5-bit 

rt 
5-bit 

immediate 
16-bit 

I-type 

opcode 
6-bit 

immediate 
26-bit 

J-type 



ARM 
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A Note on Length and Uniformity 

 Uniform decode usually goes with fixed length  

 

 In a variable length ISA, uniform decode can be a property 
of instructions of the same length  

 It is hard to think of it as a property of instructions of different 
lengths 
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A Note on RISC vs. CISC 

 Usually, … 

 

 RISC 

 Simple instructions 

 Fixed length 

 Uniform decode 

 Few addressing modes 

 

 CISC 

 Complex instructions 

 Variable length 

 Non-uniform decode 

 Many addressing modes 
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ISA-level Tradeoffs: Number of Registers 

 Affects: 

 Number of bits used for encoding register address 

 Number of values kept in fast storage (register file) 

 (uarch) Size, access time, power consumption of register file 

 

 Large number of registers: 

+ Enables better register allocation (and optimizations) by 
compiler  fewer saves/restores 

-- Larger instruction size 

-- Larger register file size 
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ISA-level Tradeoffs: Addressing Modes 

 Addressing mode specifies how to obtain an operand of an 
instruction 

 Register 

 Immediate 

 Memory (displacement, register indirect, indexed, absolute, 
memory indirect, autoincrement, autodecrement, …) 

 

 More modes:  

+ help better support programming constructs (arrays, pointer-
based accesses) 

-- make it harder for the architect to design  

-- too many choices for the compiler?  

 Many ways to do the same thing complicates compiler design 

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981 
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x86 vs. Alpha Instruction Formats 

 x86: 

 

 

 

 

 

 

 Alpha: 
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x86 

register 

absolute 

register 

indirect 

register +  

displacement 



x86 
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indexed 

(base + 

index) 

scaled 

(base + 

index*4) 



X86 SIB-D Addressing Mode 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 

Also, see Section 3.7.3 and 3.7.5 



X86 Manual: Suggested Uses of Addressing Modes 

21 

x86 Manual Vol. 1, page 3-22  -- see course resources on website 

Also, see Section 3.7.3 and 3.7.5 



X86 Manual: Suggested Uses of Addressing Modes 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 

Also, see Section 3.7.3 and 3.7.5 



Other Example ISA-level Tradeoffs 

 Condition codes vs. not 

 VLIW vs. single instruction 

 Precise vs. imprecise exceptions 

 Virtual memory vs. not 

 Unaligned access vs. not 

 Hardware interlocks vs. software-guaranteed interlocking 

 Software vs. hardware managed page fault handling 

 Cache coherence (hardware vs. software) 

 … 
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Back to Programmer vs. (Micro)architect 

 Many ISA features designed to aid programmers 

 But, complicate the hardware designer’s job 

 

 Virtual memory 

 vs. overlay programming  

 Should the programmer be concerned about the size of code 
blocks fitting physical memory? 

 Addressing modes 

 Unaligned memory access 

 Compile/programmer needs to align data 
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MIPS: Aligned Access 

 

 

 LW/SW alignment restriction: 4-byte word-alignment 

 not designed to fetch memory bytes not within a word boundary 

 not designed to rotate unaligned bytes into registers 

 Provide separate opcodes for the “infrequent” case 

 

 

 

 

 

 LWL/LWR is slower  

 Note LWL and LWR still fetch within word boundary 
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byte-3 byte-2 byte-1 byte-0 

byte-7 byte-6 byte-5 byte-4 

MSB LSB 

A B C D 

byte-6 byte-5 byte-4 D 

byte-6 byte-5 byte-4 byte-3 

LWL  rd 6(r0)  

 
LWR  rd 3(r0)  

 



X86: Unaligned Access 

 LD/ST instructions automatically align data that spans a 
“word” boundary 

 Programmer/compiler does not need to worry about where 
data is stored (whether or not in a word-aligned location) 
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X86: Unaligned Access 
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What About ARM? 

 https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf 

 Section A2.8 
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http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=arm-instructionset.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=arm-instructionset.pdf


Aligned vs. Unaligned Access 

 Pros of having no restrictions on alignment 

 

 

 

 Cons of having no restrictions on alignment 

 

 

 

 Filling in the above: an exercise for you… 
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Implementing the ISA: 

Microarchitecture Basics 
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How Does a Machine Process Instructions?  

 What does processing an instruction mean? 

 Remember the von Neumann model 

 

A = Architectural (programmer visible) state before an 
instruction is processed 

 

Process instruction 

 

A’ = Architectural (programmer visible) state after an 
instruction is processed 

 

 Processing an instruction: Transforming A to A’ according to 
the ISA specification of the instruction 
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The “Process instruction” Step 

  ISA specifies abstractly what A’ should be, given an 
instruction and A 

 It defines an abstract finite state machine where 

 State = programmer-visible state  

 Next-state logic = instruction execution specification 

 From ISA point of view, there are no “intermediate states” 
between A and A’ during instruction execution 

 One state transition per instruction 
 

 Microarchitecture implements how A is transformed to A’ 

 There are many choices in implementation  

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction 

 Choice 1: A  A’ (transform A to A’ in a single clock cycle) 

 Choice 2: A  A+MS1  A+MS2  A+MS3  A’ (take multiple clock 

cycles to transform A to A’) 
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A Very Basic Instruction Processing Engine 

 Each instruction takes a single clock cycle to execute 

 Only combinational logic is used to implement instruction 
execution  

 No intermediate, programmer-invisible state updates 

 

A = Architectural (programmer visible) state  

at the beginning of a clock cycle 

 

Process instruction in one clock cycle 

 

A’ = Architectural (programmer visible) state  

at the end of a clock cycle 
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A Very Basic Instruction Processing Engine 

 Single-cycle machine 

 

 

 

 

 

 

 

 

 What is the clock cycle time determined by? 

 What is the critical path of the combinational logic 
determined by? 
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ANext A Sequential 
Logic  
(State) 

Combinational 
Logic 



Remember: Programmer Visible (Architectural) State 
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M[0] 

M[1] 

M[2] 

M[3] 

M[4] 

M[N-1] 
Memory 

array of storage locations 
indexed by an address 

Program Counter 
memory address 
of the current instruction 

Registers 

-  given special names in the ISA 
     (as opposed to addresses) 
-  general vs. special purpose 
 

Instructions (and programs) specify how to transform 
             the values of programmer visible state 



Single-cycle vs. Multi-cycle Machines 

 Single-cycle machines 

 Each instruction takes a single clock cycle 

 All state updates made at the end of an instruction’s execution 

 Big disadvantage: The slowest instruction determines cycle time  

long clock cycle time 
 

 Multi-cycle machines  

 Instruction processing broken into multiple cycles/stages 

 State updates can be made during an instruction’s execution 

 Architectural state updates made only at the end of an instruction’s 
execution 

 Advantage over single-cycle: The slowest “stage” determines cycle time 
 

 Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level 
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Instruction Processing “Cycle” 

 Instructions are processed under the direction of a “control 
unit” step by step.  

 Instruction cycle: Sequence of steps to process an instruction 

 Fundamentally, there are six phases: 
 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Not all instructions require all six stages (see P&P Ch. 4) 
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Instruction Processing “Cycle” vs. Machine Clock Cycle 

 Single-cycle machine:  

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 

 Multi-cycle machine:  

 All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete 

 In fact, each phase can take multiple clock cycles to complete 
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Instruction Processing Viewed Another Way 
 Instructions transform Data (AS) to Data’ (AS’) 

 This transformation is done by functional units  
 Units that “operate” on data 

 These units need to be told what to do to the data 
 

 An instruction processing engine consists of two components 

 Datapath: Consists of hardware elements that deal with and 
transform data signals 

 functional units that operate on data 

 hardware structures (e.g. wires and muxes) that enable the flow of 
data into the functional units and registers 

 storage units that store data (e.g., registers) 

 Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data 
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Single-cycle vs. Multi-cycle: Control & Data 

 Single-cycle machine: 

 Control signals are generated in the same clock cycle as data 
signals are operated on 

 Everything related to an instruction happens in one clock cycle 

 

 Multi-cycle machine: 

 Control signals needed in the next cycle can be generated in 
the previous cycle 

 Latency of control processing can be overlapped with latency 
of datapath operation 

 

 We will see the difference clearly in microprogrammed 
multi-cycle microarchitecture 
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Many Ways of Datapath and Control Design 

 There are many ways of designing the data path and 
control logic 

 

 Single-cycle, multi-cycle, pipelined datapath and control 

 Single-bus vs. multi-bus datapaths 

 See your homework 2 question 

 Hardwired/combinational vs. microcoded/microprogrammed 
control 

 Control signals generated by combinational logic versus 

 Control signals stored in a memory structure 

 

 Control signals and structure depend on the datapath 
design 
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Flash-Forward: Performance Analysis 

 Execution time of an instruction 

 {CPI}  x  {clock cycle time}  
 

 Execution time of a program 

 Sum over all instructions [{CPI}  x  {clock cycle time}] 

 {# of instructions}  x  {Average CPI}  x  {clock cycle time} 

 

 Single cycle microarchitecture performance  

 CPI = 1 

 Clock cycle time = long 

 Multi-cycle microarchitecture performance 

 CPI = different for each instruction 

 Average CPI  hopefully small 

 Clock cycle time = short 
42 

Now, we have  

two degrees of freedom 

to optimize independently 


