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Reminders 

 Homework 5: Due March 26 

 

 Lab 5: Due April 6 

 Branch prediction and caching (high-level simulation) 
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Cache Performance 

 

 

 

 



Cache Parameters vs. Miss Rate 

 Cache size 

 

 Block size 

 

 Associativity 

 

 Replacement policy 

 Insertion/Placement policy 
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Cache Size 

 Cache size: total data (not including tag) capacity 

  bigger can exploit temporal locality better 

  not ALWAYS better 

 Too large a cache adversely affects hit and miss latency 

  smaller is faster => bigger is slower 

  access time may degrade critical path 

 Too small a cache 

  doesn’t exploit temporal locality well 

  useful data replaced often 

 

 Working set: the whole set of data                                                    
the executing application references  

 Within a time interval  
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Block Size 

 Block size is the data that is associated with an address tag  

  not necessarily the unit of transfer between hierarchies 

 Sub-blocking: A block divided into multiple pieces (each with V bit) 

 Can improve “write” performance 

 

 Too small blocks 

  don’t exploit spatial locality well 

  have larger tag overhead 

 

 Too large blocks 

 too few total # of blocks  less 

temporal locality exploitation 

 waste of cache space and bandwidth/energy  

    if spatial locality is not high 
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Large Blocks: Critical-Word and Subblocking 

 Large cache blocks can take a long time to fill into the cache 

 fill cache line critical word first  

 restart cache access before complete fill 

 

 Large cache blocks can waste bus bandwidth  

 divide a block into subblocks 

 associate separate valid bits for each subblock 

 When is this useful? 
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Associativity 

 How many blocks can map to the same index (or set)? 

 

 Larger associativity 

 lower miss rate, less variation among programs 

 diminishing returns, higher hit latency 

 

 Smaller associativity 

 lower cost 

 lower hit latency 

 Especially important for L1 caches 

 

 Power of 2 associativity? 
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Classification of Cache Misses 

 Compulsory miss  

 first reference to an address (block) always results in a miss 

 subsequent references should hit unless the cache block is 
displaced for the reasons below 

 dominates when locality is poor 

 

 Capacity miss  

 cache is too small to hold everything needed 

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity              

 Conflict miss  

 defined as any miss that is neither a compulsory nor a capacity 
miss  
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How to Reduce Each Miss Type 

 Compulsory 

 Caching cannot help 

 Prefetching 

 Conflict 

 More associativity 

 Other ways to get more associativity without making the 
cache associative 

 Victim cache 

 Hashing 

 Software hints? 

 Capacity 

 Utilize cache space better: keep blocks that will be referenced 

 Software management: divide working set such that each 
“phase” fits in cache 
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Improving Cache “Performance” 

 Remember  

 Average memory access time (AMAT) 

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 

 

 Reducing miss rate 

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted 

 

 Reducing miss latency/cost 

 

 Reducing hit latency 
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Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
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Victim Cache: Reducing Conflict Misses 

 

 

 

 

 
 

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990. 

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks  

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other) 

-- Increases miss latency if accessed serially with L2 
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Hashing and Pseudo-Associativity 

 Hashing: Better “randomizing” index functions   

+ can reduce conflict misses 

 by distributing the accessed memory blocks more evenly to sets 

 Example: stride where stride value equals cache size 

-- More complex to implement: can lengthen critical path 

 

 Pseudo-associativity (Poor Man’s associative cache) 

 Serial lookup: On a miss, use a different index function and 
access cache again 

 Given a direct-mapped array with K cache blocks 

 Implement K/N sets 

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}  
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Skewed Associative Caches (I) 

 Basic 2-way associative cache structure 
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Skewed Associative Caches (II) 

 Skewed associative caches 

 Each bank has a different index function 
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Way 0 Way 1 

   tag          index         byte in block    

f0 

same index 
same set 

same index 
redistributed to  
different sets 
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Skewed Associative Caches (III) 

 Idea: Reduce conflict misses by using different index 
functions for each cache way 

 

 Benefit: indices are randomized 

 Less likely two blocks have same index 

 Reduced conflict misses 

 May be able to reduce associativity 

 

 Cost: additional latency of hash function 

 

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993. 
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Improving Hit Rate via Software (I) 

 Restructuring data layout 

 Example: If column-major 

 x[i+1,j] follows x[i,j] in memory 

 x[i,j+1] is far away from x[i,j] 

 

 

 

 

 

 This is called loop interchange 

 Other optimizations can also increase hit rate 

 Loop fusion, array merging, … 

 What if multiple arrays? Unknown array size at compile time? 
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Poor code   

for i = 1, rows 

      for j = 1, columns 

            sum = sum + x[i,j] 

Better code    

for j = 1, columns 

      for i = 1, rows 

           sum = sum + x[i,j] 



More on Data Structure Layout 

 Pointer based traversal 
(e.g., of a linked list) 

 Assume a huge linked 
list (1M nodes) and 
unique keys 

 Why does the code on 
the left have poor cache 
hit rate? 

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed! 
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struct Node { 

     struct Node* node; 

     int key; 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access other fields of node 

      } 

      node = nodenext; 

} 

  



How Do We Make This Cache-Friendly? 

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure 

 

 Who should do this? 

 Programmer 

 Compiler  

 Profiling vs. dynamic 

 Hardware? 

 Who can determine what 
is frequently used? 
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struct Node { 

     struct Node* node; 

     int key; 

     struct Node-data* node-data; 

} 

 

struct Node-data { 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access nodenode-data 

      } 

      node = nodenext; 

} 

  



Improving Hit Rate via Software (II) 

 Blocking  

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache 

 Avoids cache conflicts between different chunks of 
computation 

 Essentially: Divide the working set so that each piece fits in 
the cache 

 

 

 But, there are still self-conflicts in a block 

1. there can be conflicts among different arrays 

2. array sizes may be unknown at compile/programming time 
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Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
22 
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Memory Level Parallelism (MLP)  

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98] 

 

 Several techniques to improve MLP (e.g., out-of-order execution) 
 

 MLP varies. Some misses are isolated and some parallel  
 

 How does this affect cache replacement? 

time 

A 
B 

C 

isolated miss parallel miss 



Traditional Cache Replacement Policies 

 Traditional cache replacement policies try to reduce miss 
count 

 

 Implicit assumption: Reducing miss count reduces memory-
related stall time  

 

 Misses with varying cost/MLP breaks this assumption! 

 

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss 

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss 
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Misses to blocks P1, P2, P3, P4 can be parallel 
Misses to blocks S1, S2, and S3 are isolated 

Two replacement algorithms: 
1. Minimizes miss count (Belady’s OPT) 
2. Reduces isolated miss (MLP-Aware) 
 

For a fully associative cache containing 4 blocks 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

An Example 



Fewest Misses = Best Performance 
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P3  P2  P1  P4  

H  H  H  H M           H  H  H  M Hit/Miss 

Misses=4 
Stalls=4 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

  

Time stall 

Belady’s OPT replacement 

M           M           

MLP-Aware replacement 

Hit/Miss 

P3  P2  S1  P4  P3  P2  P1  P4  P3  P2  S2 P4  P3  P2  S3 P4  S1  S2  S3 P1  P3  P2  S3 P4  S1  S2  S3 P4  

H           H           H         

S1  S2  S3 P4  

H  M  M  M H  M  M  M 

Time stall Misses=6
Stalls=2 

Saved 
cycles 

Cache 



MLP-Aware Cache Replacement 

 How do we incorporate MLP into replacement decisions? 

 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” 
ISCA 2006. 

 Required reading for this week 
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Enabling Multiple Outstanding Misses 

 

 

 

 



Handling Multiple Outstanding Accesses  

 Non-blocking or lockup-free caches 

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache 
Organization," ISCA 1981. 

 Question: If the processor can generate multiple cache 
accesses, can the later accesses be handled while a 
previous miss is outstanding? 

 Idea: Keep track of the status/data of misses that are being 
handled in Miss Status Handling Registers (MSHRs) 

 A cache access checks MSHRs to see if a miss to the same 
block is already pending. 

 If pending,  a new request is not generated 

 If pending and the needed data available, data forwarded to later 
load 

 Requires buffering of outstanding miss requests 
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Non-Blocking Caches (and MLP) 

 Enable cache access when there is a pending miss 

 Enable multiple misses in parallel 

 Memory-level parallelism (MLP) 

 generating and servicing multiple memory accesses in parallel 

 Why generate multiple misses?  

 

 

 

 

 

 Enables latency tolerance: overlaps latency of different misses 

 How to generate multiple misses? 

 Out-of-order execution, multithreading, runahead, prefetching 
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Miss Status Handling Register 

 Also called “miss buffer” 

 Keeps track of 

 Outstanding cache misses 

 Pending load/store accesses that refer to the missing cache 
block 

 Fields of a single MSHR entry 

 Valid bit 

 Cache block address (to match incoming accesses) 

 Control/status bits (prefetch, issued to memory, which 
subblocks have arrived, etc) 

 Data for each subblock 

 For each pending load/store 

 Valid, type, data size, byte in block, destination register or store 
buffer entry address 
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Miss Status Handling Register Entry 
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MSHR Operation 

 On a cache miss: 

 Search MSHRs for a pending access to the same block 

 Found: Allocate a load/store entry in the same MSHR entry 

 Not found: Allocate a new MSHR 

 No free entry: stall 

 

 When a subblock returns from the next level in memory 

 Check which loads/stores waiting for it 

 Forward data to the load/store unit 

 Deallocate load/store entry in the MSHR entry 

 Write subblock in cache or MSHR 

 If last subblock, dellaocate MSHR (after writing the block in 
cache) 
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Non-Blocking Cache Implementation 

 When to access the MSHRs?  

 In parallel with the cache? 

 After cache access is complete? 

 

 MSHRs need not be on the critical path of hit requests 

 Which one below is the common case? 

 Cache miss, MSHR hit 

 Cache hit 
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Enabling High Bandwidth Caches  

(and Memories in General) 

 

 

 

 



Multiple Instructions per Cycle 

 Can generate multiple cache accesses per cycle 

 How do we ensure the cache can handle multiple accesses 
in the same clock cycle?  

 

 Solutions: 

 true multi-porting 

 virtual multi-porting (time sharing a port) 

 multiple cache copies 

 banking (interleaving) 
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Handling Multiple Accesses per Cycle (I) 

 True multiporting 

 Each memory cell has multiple read or write ports 

+ Truly concurrent accesses (no conflicts regardless of address) 

-- Expensive in terms of latency, power, area 

 What about read and write to the same location at the same 
time? 

 Peripheral logic needs to handle this 
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Peripheral Logic for True Multiporting 
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Peripheral Logic for True Multiporting 
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Handling Multiple Accesses per Cycle (I) 

 Virtual multiporting 

 Time-share a single port 

 Each access needs to be (significantly) shorter than clock cycle 

 Used in Alpha 21264 

 Is this scalable? 
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Cache 
Copy 1 

Handling Multiple Accesses per Cycle (II) 

 Multiple cache copies 

 Stores update both caches 

 Loads proceed in parallel 

 

 Used in Alpha 21164 

 

 Scalability? 

 Store operations form a 
bottleneck 

 Area proportional to “ports” 
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Handling Multiple Accesses per Cycle (III) 

 Banking (Interleaving) 

 Bits in address determines which bank an address maps to 

 Address space partitioned into separate banks 

 Which bits to use for “bank address”? 

+ No increase in data store area 

-- Cannot satisfy multiple accesses  

    to the same bank 

-- Crossbar interconnect in input/output 

 

 Bank conflicts 

 Two accesses are to the same bank 

 How can these be reduced? 

 Hardware? Software? 
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General Principle: Interleaving 

 Interleaving (banking) 

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

 

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

 

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 

 Each bank is smaller than the entire memory storage 

 Accesses to different banks can be overlapped 

 

 Issue: How do you map data to different banks? (i.e., how do 
you interleave data across banks?) 
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Further Readings on Caching and MLP 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” 
ISCA 2006. 

 

 Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas 
Session, 1998. 
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