
18-447

Computer Architecture

Lecture 21: Advanced Caching and

Memory-Level Parallelism

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/24/2014

Reminders

 Homework 5: Due March 26

 Lab 5: Due April 6

 Branch prediction and caching (high-level simulation)

2

Cache Performance

Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy

4

Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data
the executing application references

 Within a time interval

 5

hit rate

cache size

“working set”

 size

Block Size

 Block size is the data that is associated with an address tag

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks  less

temporal locality exploitation

 waste of cache space and bandwidth/energy

 if spatial locality is not high
6

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?

7

tag subblock v subblock v subblock v d d d

Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?

 8

associativity

hit rate

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 dominates when locality is poor

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a capacity
miss

9

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each
“phase” fits in cache

10

Improving Cache “Performance”

 Remember

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency

11

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
12

Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same
set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2

13

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

 14

Skewed Associative Caches (I)

 Basic 2-way associative cache structure

15

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function

16

Way 0 Way 1

 tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

17

Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
18

Poor code

for i = 1, rows

 for j = 1, columns

 sum = sum + x[i,j]

Better code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

More on Data Structure Layout

 Pointer based traversal
(e.g., of a linked list)

 Assume a huge linked
list (1M nodes) and
unique keys

 Why does the code on
the left have poor cache
hit rate?

 “Other fields” occupy
most of the cache line
even though rarely
accessed!

 19

struct Node {

 struct Node* node;

 int key;

 char [256] name;

 char [256] school;

}

while (node) {

 if (nodekey == input-key) {

 // access other fields of node

 }

 node = nodenext;

}

How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

 Who should do this?

 Programmer

 Compiler

 Profiling vs. dynamic

 Hardware?

 Who can determine what
is frequently used?

20

struct Node {

 struct Node* node;

 int key;

 struct Node-data* node-data;

}

struct Node-data {

 char [256] name;

 char [256] school;

}

while (node) {

 if (nodekey == input-key) {

 // access nodenode-data

 }

 node = nodenext;

}

Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of
computation

 Essentially: Divide the working set so that each piece fits in
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

21

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
22

23

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

24

25

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

26

P3 P2 P1 P4

H H H H M H H H M Hit/Miss

Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week

27

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses

 Non-blocking or lockup-free caches

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

 Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?

 Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRs)

 A cache access checks MSHRs to see if a miss to the same
block is already pending.

 If pending, a new request is not generated

 If pending and the needed data available, data forwarded to later
load

 Requires buffering of outstanding miss requests

29

Non-Blocking Caches (and MLP)

 Enable cache access when there is a pending miss

 Enable multiple misses in parallel

 Memory-level parallelism (MLP)

 generating and servicing multiple memory accesses in parallel

 Why generate multiple misses?

 Enables latency tolerance: overlaps latency of different misses

 How to generate multiple misses?

 Out-of-order execution, multithreading, runahead, prefetching

30

time

A
C

B

isolated miss parallel miss

Miss Status Handling Register

 Also called “miss buffer”

 Keeps track of

 Outstanding cache misses

 Pending load/store accesses that refer to the missing cache
block

 Fields of a single MSHR entry

 Valid bit

 Cache block address (to match incoming accesses)

 Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

 Data for each subblock

 For each pending load/store

 Valid, type, data size, byte in block, destination register or store
buffer entry address

31

Miss Status Handling Register Entry

32

MSHR Operation

 On a cache miss:

 Search MSHRs for a pending access to the same block

 Found: Allocate a load/store entry in the same MSHR entry

 Not found: Allocate a new MSHR

 No free entry: stall

 When a subblock returns from the next level in memory

 Check which loads/stores waiting for it

 Forward data to the load/store unit

 Deallocate load/store entry in the MSHR entry

 Write subblock in cache or MSHR

 If last subblock, dellaocate MSHR (after writing the block in
cache)

33

Non-Blocking Cache Implementation

 When to access the MSHRs?

 In parallel with the cache?

 After cache access is complete?

 MSHRs need not be on the critical path of hit requests

 Which one below is the common case?

 Cache miss, MSHR hit

 Cache hit

34

Enabling High Bandwidth Caches

(and Memories in General)

Multiple Instructions per Cycle

 Can generate multiple cache accesses per cycle

 How do we ensure the cache can handle multiple accesses
in the same clock cycle?

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)

36

Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same
time?

 Peripheral logic needs to handle this

37

Peripheral Logic for True Multiporting

38

Peripheral Logic for True Multiporting

39

Handling Multiple Accesses per Cycle (I)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?

40

Cache
Copy 1

Handling Multiple Accesses per Cycle (II)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations form a
bottleneck

 Area proportional to “ports”

41

Port 1

Load

Store

Port 1

Data

Cache
Copy 2 Port 2

Load

Port 2

Data

Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Bits in address determines which bank an address maps to

 Address space partitioned into separate banks

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses

 to the same bank

-- Crossbar interconnect in input/output

 Bank conflicts

 Two accesses are to the same bank

 How can these be reduced?

 Hardware? Software?

42

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 Issue: How do you map data to different banks? (i.e., how do
you interleave data across banks?)

43

Further Readings on Caching and MLP

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas
Session, 1998.

44

