
18-447  

Computer Architecture 

Lecture 16: SIMD Processing  

(Vector and Array Processors) 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

Spring 2014, 2/24/2014 

 

 

 



Lab 4 Reminder 

 Lab 4a out 

 Branch handling and branch predictors 

 

 Lab 4b out 

 Fine-grained multithreading 

 

 Due March 21st 

 

 You have 4 weeks! 

 Get started very early – Exam and S. Break are on the way 

 Finish Lab 4a first and check off 

 Finish Lab 4b next and check off 

 Do the extra credit 
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Readings for Today 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, Dataflow 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 

 

 Stay tuned for more readings… 
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SIMD Processing: 

Exploiting Regular (Data) Parallelism 

 
 

 

 

 

 



Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Data Parallelism 

 Concurrency arises from performing the same operations 
on different pieces of data 

 Single instruction multiple data (SIMD) 

 E.g., dot product of two vectors 
 

 Contrast with data flow 

 Concurrency arises from executing different operations in parallel (in 
a data driven manner) 

 

 Contrast with thread (“control”) parallelism 

 Concurrency arises from executing different threads of control in 
parallel 

 

 SIMD exploits instruction-level parallelism 

 Multiple “instructions” (more appropriately, operations) are 
concurrent: instructions happen to be the same  
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SIMD Processing 

 Single instruction operates on multiple data elements 

 In time or in space 

 Multiple processing elements  

 

 Time-space duality 

 Array processor: Instruction operates on multiple data 
elements at the same time 

 Vector processor: Instruction operates on multiple data 
elements in consecutive time steps 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 

 VLIW 
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SIMD Array Processing vs. VLIW 

 Array processor 
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Vector Processors 

 A vector is a one-dimensional array of numbers 

 Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 

 C[i] = (A[i] + B[i]) / 2 

 

 A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

 Basic requirements 

 Need to load/store vectors  vector registers (contain vectors) 

 Need to operate on vectors of different lengths  vector length 
register (VLEN) 

 Elements of a vector might be stored apart from each other in 
memory  vector stride register (VSTR) 

 Stride: distance between two elements of a vector 
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Vector Processors (II) 

 A vector instruction performs an operation on each element 
in consecutive cycles 

 Vector functional units are pipelined 

 Each pipeline stage operates on a different data element 

 

 Vector instructions allow deeper pipelines 

 No intra-vector dependencies  no hardware interlocking 

within a vector 

 No control flow within a vector 

 Known stride allows prefetching of vectors into cache/memory 
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Vector Processor Advantages 

+ No dependencies within a vector  

 Pipelining, parallelization work well 

 Can have very deep pipelines, no dependencies!  

 

+ Each instruction generates a lot of work  

 Reduces instruction fetch bandwidth 

 

+ Highly regular memory access pattern  

 Interleaving multiple banks for higher memory bandwidth 

 Prefetching 

 

+ No need to explicitly code loops  

 Fewer branches in the instruction sequence 
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Vector Processor Disadvantages 

-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 

    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 

 

 

 

 

14 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Vector Processor Limitations 

-- Memory (bandwidth) can easily become a bottleneck, 
especially if 

 1. compute/memory operation balance is not maintained 

 2. data is not mapped appropriately to memory banks 
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Vector Processing in More Depth 

 

 

 

 

 

 



Vector Registers 

 Each vector data register holds N M-bit values 

 Vector control registers: VLEN, VSTR, VMASK 

 Maximum VLEN can be N 

 Maximum number of elements stored in a vector register 

 Vector Mask Register (VMASK) 

 Indicates which elements of vector to operate on 

 Set by vector test instructions 

 e.g., VMASK[i] = (V
k
[i] == 0) 
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V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 

 Use deep pipeline (=> fast 
clock) to execute element 
operations 

 Simplifies control of deep 
pipeline because elements in 
vector are independent   
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V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Scalar and vector modes 

 8 64-element vector 
registers 

 64 bits per element 

 16 memory banks 

 8 64-bit scalar registers 

 8 24-bit address registers 
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Memory Banking 
 Memory is divided into banks that can be accessed independently; 

banks share address and data buses 

 Can start and complete one bank access per cycle 

 Can sustain N parallel accesses if they go to different banks 
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Bank 

0 

Bank 

1 

MDR MAR 

Bank 

2 

Bank 

15 

MDR MAR MDR MAR MDR MAR 

Data bus 

Address bus 

CPU 

Slide credit: Derek Chiou 



Vector Memory System 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Bas
e 

Stride 
Vector Registers 

Memory Banks 

Address 
Generator 

Slide credit: Krste Asanovic 



Scalar Code Example 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 

 Scalar code (instruction and its latency) 

     MOVI R0 = 50   1 

     MOVA R1 = A   1 

     MOVA R2 = B   1 

     MOVA R3 = C   1 

X:  LD R4 = MEM[R1++]  11  ;autoincrement addressing 

     LD R5 = MEM[R2++]  11 

     ADD R6 = R4 + R5  4 

     SHFR R7 = R6 >> 1  1 

     ST MEM[R3++] = R7   11 

     DECBNZ --R0, X  2   ;decrement and branch if NZ 
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304 dynamic instructions 



Scalar Code Execution Time 
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 Scalar execution time on an in-order processor with 1 bank 

 First two loads in the loop cannot be pipelined: 2*11 cycles 

 4 + 50*40 = 2004 cycles 

 

 Scalar execution time on an in-order processor with 16 
banks (word-interleaved: consecutive words are stored in 
consecutive banks) 

 First two loads in the loop can be pipelined 

 4 + 50*30 = 1504 cycles 

 

 Why 16 banks? 

 11 cycle memory access latency 

 Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency 

 



Vectorizable Loops 

 A loop is vectorizable if each iteration is independent of any 
other 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 Vectorized loop: 

  MOVI VLEN = 50   1 

  MOVI VSTR = 1   1 

  VLD V0 = A    11 + VLN - 1 

  VLD V1 = B    11 + VLN – 1 

  VADD V2 = V0 + V1   4 + VLN - 1 

  VSHFR V3 = V2 >> 1   1 + VLN - 1 

  VST C = V3    11 + VLN – 1 
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7 dynamic instructions 



Basic Vector Code Performance 

 Assume no chaining (no vector data forwarding) 

 i.e., output of a vector functional unit cannot be used as the 
direct input of another  

 The entire vector register needs to be ready before any 
element of it can be used as part of another operation 

 One memory port (one address generator) 

 16 memory banks (word-interleaved) 

 

 

 

 

 

 285 cycles 
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 
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Memory 

V
1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 

Slide credit: Krste Asanovic 



Vector Code Performance - Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 

 

 

 

 

 

 

 

 

 

 182 cycles 
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  

pipelined. WHY? 

VLD and VST cannot be  

pipelined. WHY? 

Strict assumption: 

Each memory bank  

has a single port  

(memory bandwidth 

bottleneck) 



Vector Code Performance – Multiple Memory Ports 

 Chaining and 2 load ports, 1 store port in each bank 

 

 

 

 

 

 

 

 

 

 

 79 cycles 
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I) 

 What if # data elements > # elements in a vector register? 

 Need to break loops so that each iteration operates on # 
elements in a vector register 

 E.g., 527 data elements, 64-element VREGs 

 8 iterations where VLEN = 64 

 1 iteration where VLEN = 15 (need to change value of VLEN) 

 Called vector stripmining 

 

 What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector) 

 Use indirection to combine/pack elements into vector registers 

 Called scatter/gather operations 
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Gather/Scatter Operations 

 

30 

Want to vectorize loops with indirect accesses: 

for (i=0; i<N; i++) 

    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 

LV vD, rD       # Load indices in D vector 

LVI vC, rC, vD  # Load indirect from rC base 

LV vB, rB       # Load B vector 

ADDV.D vA,vB,vC # Do add 

SV vA, rA       # Store result 

 



Gather/Scatter Operations 

 Gather/scatter operations often implemented in hardware 
to handle sparse matrices  

 Vector loads and stores use an index vector which is added 
to the base register to generate the addresses 
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Index Vector  Data Vector  Equivalent 

 

        0           3.14         3.14 

        2          6.5             0.0 

        6        71.2            6.5 

        7          2.71             0.0 

          0.0 

           0.0 

           71.2 

          2.71   



Conditional Operations in a Loop 

 What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)? 
loop:  if (a[i] != 0) then b[i]=a[i]*b[i] 

   goto loop 

 

 Idea: Masked operations  

 VMASK register is a bit mask determining which data element 
should not be acted upon 

  VLD V0 = A 

  VLD V1 = B 

  VMASK = (V0 != 0) 

  VMUL V1 = V0 * V1 

  VST B = V1 

 Does this look familiar? This is essentially predicated execution. 
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Another Example with Masking 
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for (i = 0; i < 64; ++i) 

 if (a[i] >= b[i]) then c[i] = a[i] 

 else c[i] = b[i] 

A B VMASK     

1 2    0                  

2 2    1 

3 2    1 

4 10    0 

-5 -4    0 

0 -3    1 

6 5    1 

-7 -8    1 

Steps to execute loop 

 

1. Compare A, B to get  

 VMASK 

 

2. Masked store of  A into C 

 

3. Complement VMASK 

 

4. Masked store of B into C 



Masked Vector Instructions 
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C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

      Density-Time Implementation 

– scan mask vector and only execute 
elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

     Simple Implementation 

– execute all N operations, turn off 
result writeback according to mask 

Slide credit: Krste Asanovic 



Some Issues 

 Stride and banking 

 As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, consecutive 
accesses proceed in parallel 

 

 Storage of a matrix 

 Row major: Consecutive elements in a row are laid out 
consecutively in memory 

 Column major: Consecutive elements in a column are laid out 
consecutively in memory 

 You need to change the stride when accessing a row versus 
column 
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Array vs. Vector Processors, Revisited 

 Array vs. vector processor distinction is a “purist’s” 
distinction 

 

 Most “modern” SIMD processors are a combination of both 

 They exploit data parallelism in both time and space 
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Remember: Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



Vector Instruction Execution 
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ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 



Vector Unit Structure 
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Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 

Slide credit: Krste Asanovic 



Vector Instruction Level Parallelism 

Can overlap execution of multiple vector instructions 
 example machine has 32 elements per vector register and 8 lanes 

 Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Slide credit: Krste Asanovic 



Automatic Code Vectorization 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a compile-time reordering of 
operation sequencing 
 requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
 

Slide credit: Krste Asanovic 



Vector/SIMD Processing Summary 

 Vector/SIMD machines are good at exploiting regular data-
level parallelism 

 Same operation performed on many data elements 

 Improve performance, simplify design (no intra-vector 
dependencies) 

 

 Performance improvement limited by vectorizability of code 

 Scalar operations limit vector machine performance 

 Amdahl’s Law 

 CRAY-1 was the fastest SCALAR machine at its time! 

 

 Many existing ISAs include (vector-like) SIMD operations 

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD 
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SIMD Operations in Modern ISAs 

 

 

 

 

 

 



Intel Pentium MMX Operations 

 Idea: One instruction operates on multiple data elements 
simultaneously 

 Ala array processing (yet much more limited) 

 Designed with multimedia (graphics) operations in mind 
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Peleg and Weiser, “MMX Technology 

Extension to the Intel Architecture,” 

IEEE Micro, 1996. 

No VLEN register 

Opcode determines data type: 

8 8-bit bytes 

4 16-bit words 

2 32-bit doublewords 

1 64-bit quadword 

 

Stride always equal to 1. 

 



MMX Example: Image Overlaying (I) 
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MMX Example: Image Overlaying (II) 
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