
18-447

Computer Architecture

Lecture 16: SIMD Processing

(Vector and Array Processors)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/24/2014

Lab 4 Reminder

 Lab 4a out

 Branch handling and branch predictors

 Lab 4b out

 Fine-grained multithreading

 Due March 21st

 You have 4 weeks!

 Get started very early – Exam and S. Break are on the way

 Finish Lab 4a first and check off

 Finish Lab 4b next and check off

 Do the extra credit
2

Readings for Today

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

 Stay tuned for more readings…

3

SIMD Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

5

Data Parallelism

 Concurrency arises from performing the same operations
on different pieces of data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in
a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in
parallel

 SIMD exploits instruction-level parallelism

 Multiple “instructions” (more appropriately, operations) are
concurrent: instructions happen to be the same

6

SIMD Processing

 Single instruction operates on multiple data elements

 In time or in space

 Multiple processing elements

 Time-space duality

 Array processor: Instruction operates on multiple data
elements at the same time

 Vector processor: Instruction operates on multiple data
elements in consecutive time steps

7

Array vs. Vector Processors

8

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

 VLIW

9

SIMD Array Processing vs. VLIW

 Array processor

10

Vector Processors

 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

 C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

 Basic requirements

 Need to load/store vectors  vector registers (contain vectors)

 Need to operate on vectors of different lengths  vector length
register (VLEN)

 Elements of a vector might be stored apart from each other in
memory  vector stride register (VSTR)

 Stride: distance between two elements of a vector

11

Vector Processors (II)

 A vector instruction performs an operation on each element
in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies  no hardware interlocking

within a vector

 No control flow within a vector

 Known stride allows prefetching of vectors into cache/memory

12

Vector Processor Advantages

+ No dependencies within a vector

 Pipelining, parallelization work well

 Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

 Reduces instruction fetch bandwidth

+ Highly regular memory access pattern

 Interleaving multiple banks for higher memory bandwidth

 Prefetching

+ No need to explicitly code loops

 Fewer branches in the instruction sequence

13

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

 ++ Vector operations

 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

14 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

 1. compute/memory operation balance is not maintained

 2. data is not mapped appropriately to memory banks

15

Vector Processing in More Depth

Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

 Maximum VLEN can be N

 Maximum number of elements stored in a vector register

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

 e.g., VMASK[i] = (V
k
[i] == 0)

17

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

 Use deep pipeline (=> fast
clock) to execute element
operations

 Simplifies control of deep
pipeline because elements in
vector are independent

18

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

19

Memory Banking
 Memory is divided into banks that can be accessed independently;

banks share address and data buses

 Can start and complete one bank access per cycle

 Can sustain N parallel accesses if they go to different banks

20

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Slide credit: Derek Chiou

Vector Memory System

21

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Bas
e

Stride
Vector Registers

Memory Banks

Address
Generator

Slide credit: Krste Asanovic

Scalar Code Example

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Scalar code (instruction and its latency)

 MOVI R0 = 50 1

 MOVA R1 = A 1

 MOVA R2 = B 1

 MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

 LD R5 = MEM[R2++] 11

 ADD R6 = R4 + R5 4

 SHFR R7 = R6 >> 1 1

 ST MEM[R3++] = R7 11

 DECBNZ --R0, X 2 ;decrement and branch if NZ

 22

304 dynamic instructions

Scalar Code Execution Time

23

 Scalar execution time on an in-order processor with 1 bank

 First two loads in the loop cannot be pipelined: 2*11 cycles

 4 + 50*40 = 2004 cycles

 Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

 First two loads in the loop can be pipelined

 4 + 50*30 = 1504 cycles

 Why 16 banks?

 11 cycle memory access latency

 Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

 A loop is vectorizable if each iteration is independent of any
other

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Vectorized loop:

 MOVI VLEN = 50 1

 MOVI VSTR = 1 1

 VLD V0 = A 11 + VLN - 1

 VLD V1 = B 11 + VLN – 1

 VADD V2 = V0 + V1 4 + VLN - 1

 VSHFR V3 = V2 >> 1 1 + VLN - 1

 VST C = V3 11 + VLN – 1

24

7 dynamic instructions

Basic Vector Code Performance

 Assume no chaining (no vector data forwarding)

 i.e., output of a vector functional unit cannot be used as the
direct input of another

 The entire vector register needs to be ready before any
element of it can be used as part of another operation

 One memory port (one address generator)

 16 memory banks (word-interleaved)

 285 cycles

25

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

26

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

 182 cycles

27

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

Vector Code Performance – Multiple Memory Ports

 Chaining and 2 load ports, 1 store port in each bank

 79 cycles

28

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)

 What if # data elements > # elements in a vector register?

 Need to break loops so that each iteration operates on #
elements in a vector register

 E.g., 527 data elements, 64-element VREGs

 8 iterations where VLEN = 64

 1 iteration where VLEN = 15 (need to change value of VLEN)

 Called vector stripmining

 What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

 Use indirection to combine/pack elements into vector registers

 Called scatter/gather operations

29

Gather/Scatter Operations

30

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

 Gather/scatter operations often implemented in hardware
to handle sparse matrices

 Vector loads and stores use an index vector which is added
to the base register to generate the addresses

31

Index Vector Data Vector Equivalent

 0 3.14 3.14

 2 6.5 0.0

 6 71.2 6.5

 7 2.71 0.0

 0.0

 0.0

 71.2

 2.71

Conditional Operations in a Loop

 What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*b[i]

 goto loop

 Idea: Masked operations

 VMASK register is a bit mask determining which data element
should not be acted upon

 VLD V0 = A

 VLD V1 = B

 VMASK = (V0 != 0)

 VMUL V1 = V0 * V1

 VST B = V1

 Does this look familiar? This is essentially predicated execution.

 32

Another Example with Masking

33

for (i = 0; i < 64; ++i)

 if (a[i] >= b[i]) then c[i] = a[i]

 else c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute loop

1. Compare A, B to get

 VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

34

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

 Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

 Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Some Issues

 Stride and banking

 As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, consecutive
accesses proceed in parallel

 Storage of a matrix

 Row major: Consecutive elements in a row are laid out
consecutively in memory

 Column major: Consecutive elements in a column are laid out
consecutively in memory

 You need to change the stride when accessing a row versus
column

35

36

Array vs. Vector Processors, Revisited

 Array vs. vector processor distinction is a “purist’s”
distinction

 Most “modern” SIMD processors are a combination of both

 They exploit data parallelism in both time and space

37

Remember: Array vs. Vector Processors

38

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

39

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Vector Unit Structure

40

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
 example machine has 32 elements per vector register and 8 lanes

 Complete 24 operations/cycle while issuing 1 short instruction/cycle

41

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

42

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

 Vector/SIMD machines are good at exploiting regular data-
level parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include (vector-like) SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

43

SIMD Operations in Modern ISAs

Intel Pentium MMX Operations

 Idea: One instruction operates on multiple data elements
simultaneously

 Ala array processing (yet much more limited)

 Designed with multimedia (graphics) operations in mind

45

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”

IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride always equal to 1.

MMX Example: Image Overlaying (I)

46

MMX Example: Image Overlaying (II)

47

