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Shared Resource Interference
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High and Unpredictable
Application Slowdowns
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Need for Predictable Performance

Our Goal: Predictable performance
in the presence of shared resources




Tackling Different Parts of the
Shared Memory Hierarchy
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Predictability in the Presence of
Memory Bandwidth Interference
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Predictability in the Presence of Memory
Bandwidth Interference (HPCA 2013)

1. Estimate Slowdown

2. Control Slowdown



Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown
—Key Observations

2. Control Slowdown



Slowdown: Definition

Performance Alone

Slowdown =
Performance shared



Key Observation 1

For a memory bound application,

Performance « Memory request service rate
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Key Observation 2

Request Service Rate ... (RSR,,..) Of an
application can be estimated by giving the
application highest priority at the memory
controller

Highest priority = Little interference
(almost as if the application were run alone)
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Key Observation 2

1. Run alone
Request Buffer State
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2. Run with another application
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Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Request Service Rate aione (RSR alone)

Slowdown = .
Request Service Rate shared (RSR shared)



Key Observation 3
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Memory phase slowdown dominates overall slowdown
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Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAlone
RS RShared

Slowdown = (1-a) +



Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

—Implementation

2. Control Slowdown
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Interval Based Operation

Interval
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Measuring RSR, . .4 and a

* Request Service Rate ¢ .4 (RSR¢ . eq)
— Per-core counter to track number of requests serviced
— At the end of each interval, measure

RSRshared = Number of Requests Served

Interval Length

* Memory Phase Fraction ()
— Count number of stall cycles at the core
— Compute fraction of cycles stalled for memory



Estimating Request Service Rate 5. (RSRyqne)

* Divide each interval into shorter epochs

Goa): Estimate RSR ..
e At the begmmngo each epocﬁ

UGl AESR A RO R Ehe RRRE AR
highasthpriority in accessing memory

e At the end of an interval, for each application,
estimate

RSR . Number of Requests During High Priority Epochs
lone =

Number of Cycles Application Given High Priority
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Inaccuracy in Estimating RSR

Alone

* When an application has highest prio'ﬁ High Priority
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Accounting for Interference in
RSR, 00 EStimation

e Solution: Determine and remove interference
cycles from ARSR calculation

Number of Requests During High Priority Epochs

ARSR =

Number of Cycles Application Given High Priority {Interference Cycle

* Acycleis an interference cycle if

— a request from the highest priority application is
waiting in the request buffer and

— another application’s request was issued previously



Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

—MISE Model: Putting it All Together

2. Control Slowdown
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MISE Operation: Putting it All Together

Interval
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Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

—Evaluating the Model
2. Control Slowdown
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Previous Work on

Slowdown Estimation

* Previous work on slowdown estimation

<_STEM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07} —
— FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

— Per-thread Cycle Accounting [Du Bois et al., HIPEAC ‘13]

e Basic ldea: -
/leﬁcult

Slowdown @Time AlongD

Stall Time shared

\ Easy

Count number of cycles application receives interference




Two Major Advantages of MISE Over STFM

 Advantage 1:

— STFM estimates alone performance while an
application is receiving interference - Difficult

— MISE estimates alone performance while giving an
application the highest priority = Easier

 Advantage 2:

— STFM does not take into account compute phase for
non-memory-bound applications

— MISE accounts for compute phase = Better accuracy
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Methodology

* Configuration of our simulated system
— 4 cores
— 1 channel, 8 banks/channel
— DDR3 1066 DRAM
— 512 KB private cache/core

 Workloads
— SPEC CPU2006
— 300 multi programmed workloads



Quantitative Comparison
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Comparison to STFM

Average error of MISE: 8.2%
Average error of STEM. 29.4%

Y4

(across 300 workloads)
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Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

2. Control Slowdown
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Possible Use Cases

* Bounding application slowdowns [HPCA "14]

VM migration and admission control schemes
[VEE ’15]

* Fair billing schemes in a commodity cloud



Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

2. Control Slowdown
—Providing Soft Slowdown Guarantees
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MISE-QoS: Providing

“Soft” Slowdown Guarantees

e Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

e Basic ldea

— Allocate just enough bandwidth to QoS-critical
application

— Assign remaining bandwidth to other applications
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Methodology

Each application (25 applications in total)
considered the QoS-critical application

Run with 12 sets of co-runners of different memory
Intensities

Total of 300 multi programmed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism
— Always prioritize QoS-critical application
[lyer et al., SIGMETRICS 2007]

— Other applications’ requests scheduled in FR-FCFS order
[Zuravleff and Robinson, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload

MISE is effective in
1. meeting the slowdown bound for the QoS-critical

application
2. improving performance of non-QoS-critical
applications
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Effectiveness of MISE in Enforcing QoS

Across 3000 data points

Predicted Predicted
Met Not Met

QoS Bound

Met

QoS Bound
Not Met

MISE-QoS correctly predicts whether or not the bound is
met for 95.7% of workloads
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Performance of

Non-QoS-Critical Applications
1 PN

o 0.8 - ® AlwaysPrioritize
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When slowdown bound is 10/3
MISE-QoS improves system performance by 10%
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Summary: Predictability in the Presence
of Memory Bandwidth Interference

* Uncontrolled memory interference slows down
applications unpredictably

e Goal: Estimate and control slowdowns
e Key contribution

— MISE: An accurate slowdown estimation model
— Average error of MISE: 8.2%

 Key ldea

— Request Service Rate is a proxy for performance

* Leverage slowdown estimates to control
slowdowns; Many more applications exist
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Shared Cache Interference
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Revisiting Request Service Rates

Memory
Core Core Core ACCE‘SS Rate
H H ﬂ Shared
Cache
Core Core Core Core
Service Rate

Request service and access rates tightly coupled




Estimating Cache and Memory Slowdowns
Through Cache Access Rates
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The Application Slowdown Model
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Cache Access Rate Alone
Slowdown =

Cache Access Rate shared



Real System Studies:
Cache Access Rate vs. Slowdown
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Challenge

How to estimate alone cache access rate?

. Cache
Core Core
Access Rate

Core Core

Core Core Core Sh a red - M 3 | N
- ::I Cache <:I Memory
Core Core Core Core

Priority

Core Core

Core n Auxiliary
Tag Store




Auxiliary Tag Store

Cache
Access Rate

Main
- <:I Cache <:I Memory
Core

Priority

Still in auxiliary
1 tag store

Auxiliary tag store tracks such contention misses
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Revisiting Request Service Rate Alone

e Revisiting alone memory request service rate

Alone Request Service Rate of an Application =
# Requests During High Priority Epochs
# High Priority Cycles - # Interference Cycles

Cycles serving contention misses are not
high priority cycles



Cache Access Rate Alone

Alone Cache Access Rate of an Application =
# Requests During High Priority Epochs

# High Priority Cycles - #Interference Cycles<#Cache Contentlon Cycle

Cache Contention Cycles: Cycles spent serving contention misses

Cache Contention Cycles = # Contention Misses x

/;era e Memory Service Time

From auxiliary tag store

, , o Measured when given
when given high priority

high priority



Application Slowdown Model (ASM)
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Cache Access Rate Alone
Slowdown =

Cache Access Rate shared



Previous Work on Slowdown

Estimation

 Previous work on slowdown estimation
— STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO “07]

T (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘1
er-thread Cycle Accounting [Du Bois et al., HiIPEAC “13]

* Basic ldea: Difficult
xecution T@Y
Slowdown = . .
Execution Time sm{A
Easy

Count number of cycles application receives interference



Slowdown Estimation

Error (in %)

Model Accuracy Results

FST W PTCA W ASM

Average error of ASM’s slowdown estimates: 10%

Average m
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Leveraging Slowdown Estimates
for Performance Optimization

* How do we leverage slowdown estimates
from our model?

* To achieve high performance
— Slowdown-aware cache allocation
— Slowdown-aware bandwidth allocation

* To achieve performance predictability?



Cache Capacity Partitioning

Goal: Partition the shared cache among
applications to mitigate contention
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Cache Capacity Partitioning

Way Way Way Way

(0 1 2 3
Set 1 .
Set 2 Main

Set3 Memory

Core : Set N

Previous way partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns
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ASM-Cache: Slowdown-aware
Cache Way Partitioning

* Key Requirement: Slowdown estimates for all
possible way partitions

 Extend ASM to estimate slowdown for all
possible cache way allocations

* Key Idea: Allocate each way to the application
whose slowdown reduces the most



Fairness

Performance and Fairness Results
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Significant fairness benefits across different systems
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Memory Bandwidth Partitioning

Cache
Access Rate

Goal: Partition the main memory bandwidth
among applications to mitigate contention
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ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

* Key Idea: Allocate high priority proportional to
an application’s slowdown

Slowdown.
2 Slowdown,
j

High Priority Fraction, =

* Application i’s requests given highest priority
at the memory controller for its fraction



Fairness

ASM-Mem:
Fairness and Performance Results
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Coordinated Resource
Allocation Schemes

6capacity-h
bandwidth allocation
1 e e

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache




Fairness and Performance Results

16-core system
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Significant fairness benefits across different channel counts
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Other Possible Applications

VM migration and admission control schemes
[VEE ’15]

* Fair billing schemes in a commodity cloud

* Bounding application slowdowns



Summary: Predictability in the Presence
of Shared Cache Interference

* Key ldeas:
— Cache access rate is a proxy for performance

— Auxiliary tag stores and high priority can be combined
to estimate slowdowns

* Key Result: Slowdown estimation error - ~10%

 Some Applications:
— Slowdown-aware cache partitioning
— Slowdown-aware memory bandwidth partitioning
— Many more possible
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Future Work: Coordinated Resource
Management for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

e Large search space of potential cache capacity
and memory bandwidth allocations

* Multiple possible combinations of cache/
memory allocations for each application
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