18-447

Computer Architecture
Lecture 31: Predictable Performance

Lavanya Subramanian
Carnegie Mellon University
Spring 2015, 4/15/2015

Shared Resource Interference

H Core Core
H Core Core
H Core Core

High and Unpredictable
Application Slowdowns

6_

Slowdown
o o N (69 AN (@] (@)}

Slowdown
o — N w AN Ul

B B

leslie3d (core 0 gcc (core 1) leslie3d (core 0 mcf (core 1)

2. A ighpé patioatmopestmmtanes dieyectod s
on wdtiahezbdsmatioa intertaraimgewith

Need for Predictable Performance

Our Goal: Predictable performance
in the presence of shared resources

Tackling Different Parts of the
Shared Memory Hierarchy

H Core Core
H Core Core
H Core Core

Predictability in the Presence of
Memory Bandwidth Interference

DEEE

Main
Memory

Predictability in the Presence of Memory
Bandwidth Interference (HPCA 2013)

1. Estimate Slowdown

2. Control Slowdown

Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown
—Key Observations

2. Control Slowdown

Slowdown: Definition

Performance Alone

Slowdown =
Performance shared

Key Observation 1

For a memory bound application,

Performance « Memory request service rate

===omnetpp

7 Difficult

2 03 04 05 06 07 08 09 1

Normalized Request Service Rate

10

Key Observation 2

Request Service Rate ... (RSR,,..) Of an
application can be estimated by giving the
application highest priority at the memory
controller

Highest priority = Little interference
(almost as if the application were run alone)

11

Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

2. Run with another application

Request Buffer State

Main
Memory

Time units Service order

Time'units

Service order

Main
Memory

<€
I

3 2 1

3. Run with another application: highest prioqity

Time units ! Service order

Request Buffer State

Main
Memory

<€

Main
Memory

3 ‘ 2 1

Main
Memory

12

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Request Service Rate aione (RSR alone)

Slowdown = .
Request Service Rate shared (RSR shared)

Key Observation 3

. . C te Ph
* Memory-bound application B Compute Phase

Memory Phase

]
interference Hime
|

interference

—>time

Memory phase slowdown dominates overall slowdown

14

Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAlone
RS RShared

Slowdown = (1-a) +

Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

—Implementation

2. Control Slowdown

16

Interval Based Operation

Interval

A

Interval

A

(

) | EN

= Measure RSRq, . cq/
m Estimate RSR

Alone

Y
———————————————> {7 | €

A

a | = Measure RSR¢, . eqr &
= Estimate RSR,,,
v v
Estimate Estimate
slowdown slowdown

17

Measuring RSR, . .4 and a

* Request Service Rate ¢ .4 (RSR¢ . eq)
— Per-core counter to track number of requests serviced
— At the end of each interval, measure

RSRshared = Number of Requests Served

Interval Length

* Memory Phase Fraction ()
— Count number of stall cycles at the core
— Compute fraction of cycles stalled for memory

Estimating Request Service Rate 5. (RSRyqne)

* Divide each interval into shorter epochs

Goa): Estimate RSR ..
e At the begmmngo each epocﬁ

UGl AESR A RO R Ehe RRRE AR
highasthpriority in accessing memory

e At the end of an interval, for each application,
estimate

RSR . Number of Requests During High Priority Epochs
lone =

Number of Cycles Application Given High Priority

19

Inaccuracy in Estimating RSR

Alone

* When an application has highest prio'ﬁ High Priority

RequesSiliffexperiences soneejtisrferentgsvice order

State

Request Buffer

State

Request Buffer

State

Main
Memory

Main
Memory

Main
Memory

‘ 3

Time units
<

2 ‘ 1

Service order

Main
Memory

‘ | l 2 ‘ 1

Time units

Service order

Main
Memory

<
‘ 3 l 2 ‘ 1
D

Interference Cycles

Main
Memory

20

Accounting for Interference in
RSR, 00 EStimation

e Solution: Determine and remove interference
cycles from ARSR calculation

Number of Requests During High Priority Epochs

ARSR =

Number of Cycles Application Given High Priority {Interference Cycle

* Acycleis an interference cycle if

— a request from the highest priority application is
waiting in the request buffer and

— another application’s request was issued previously

Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

—MISE Model: Putting it All Together

2. Control Slowdown

22

MISE Operation: Putting it All Together

Interval

A

Interval

A

(

>

= Measure RSRq, . cq/
m Estimate RSR

Alone

Y
—_—m > time

A

194 m Measure RSR¢, . ,eqr &
= Estimate RSR,,,
\ v
Estimate Estimate
slowdown

slowdown
23

Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

—Evaluating the Model
2. Control Slowdown

24

Previous Work on

Slowdown Estimation

* Previous work on slowdown estimation

<_STEM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07} —
— FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

— Per-thread Cycle Accounting [Du Bois et al., HIPEAC ‘13]

e Basic ldea: -
/leﬁcult

Slowdown @Time AlongD

Stall Time shared

\ Easy

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

 Advantage 1:

— STFM estimates alone performance while an
application is receiving interference - Difficult

— MISE estimates alone performance while giving an
application the highest priority = Easier

 Advantage 2:

— STFM does not take into account compute phase for
non-memory-bound applications

— MISE accounts for compute phase = Better accuracy

26

Methodology

* Configuration of our simulated system
— 4 cores
— 1 channel, 8 banks/channel
— DDR3 1066 DRAM
— 512 KB private cache/core

 Workloads
— SPEC CPU2006
— 300 multi programmed workloads

Quantitative Comparison

SPEC CPU 2006 application
leslie3d

D

w

Slowdown
\

2
2)

=
Ul

[EEY

0 20 40 60 80 100
Million Cycles

28

Comparison to STFM

Average error of MISE: 8.2%
Average error of STEM. 29.4%

Y4

(across 300 workloads)

AN

Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

2. Control Slowdown

30

Possible Use Cases

* Bounding application slowdowns [HPCA "14]

VM migration and admission control schemes
[VEE ’15]

* Fair billing schemes in a commodity cloud

Predictability in the Presence of
Memory Bandwidth Interference

1. Estimate Slowdown

2. Control Slowdown
—Providing Soft Slowdown Guarantees

32

MISE-QoS: Providing

“Soft” Slowdown Guarantees

e Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

e Basic ldea

— Allocate just enough bandwidth to QoS-critical
application

— Assign remaining bandwidth to other applications

33

Methodology

Each application (25 applications in total)
considered the QoS-critical application

Run with 12 sets of co-runners of different memory
Intensities

Total of 300 multi programmed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism
— Always prioritize QoS-critical application
[lyer et al., SIGMETRICS 2007]

— Other applications’ requests scheduled in FR-FCFS order
[Zuravleff and Robinson, US Patent 1997, Rixner+, ISCA 2000]

34

A Look at One Workload

MISE is effective in
1. meeting the slowdown bound for the QoS-critical

application
2. improving performance of non-QoS-critical
applications

35

Effectiveness of MISE in Enforcing QoS

Across 3000 data points

Predicted Predicted
Met Not Met

QoS Bound

Met

QoS Bound
Not Met

MISE-QoS correctly predicts whether or not the bound is
met for 95.7% of workloads

36

Performance of

Non-QoS-Critical Applications
1 PN

o 0.8 - ® AlwaysPrioritize
= % u MISE-Q0S-10/1
g g’ = MISE-QoS-10/3
(%.E 0.4 - m MISE-Qo0S-10/5

5 = MISE-Q0S-10/7

B 0.2 - = MISE-Q0S-10/9

0 _

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

37

Summary: Predictability in the Presence
of Memory Bandwidth Interference

* Uncontrolled memory interference slows down
applications unpredictably

e Goal: Estimate and control slowdowns
e Key contribution

— MISE: An accurate slowdown estimation model
— Average error of MISE: 8.2%

 Key ldea

— Request Service Rate is a proxy for performance

* Leverage slowdown estimates to control
slowdowns; Many more applications exist

38

Core

Core

Core

Core

Core

Core

Core

Core

Taking Into Account
Shared Cache Interference

Core H
Core
Core
Core

Revisiting Request Service Rates

Memory
Core Core Core ACCE‘SS Rate
H H ﬂ Shared
Cache
Core Core Core Core
Service Rate

Request service and access rates tightly coupled

Estimating Cache and Memory Slowdowns
Through Cache Access Rates

ore ore ore ore ACCESS Ra te
HEEHES swres [v
<:| Memory

Cache
Core Core Core Core
H H H

The Application Slowdown Model

ore ore ore ore ACCESS Ra te
HEEHES swres [v
<:| Memory

Cache
Core Core Core Core

Cache Access Rate Alone
Slowdown =

Cache Access Rate shared

Real System Studies:
Cache Access Rate vs. Slowdown

2.2

2
$18
O

=,
; 1-6

S 1.4
1.2
1 ¥
1 1.2 14 16 1.8 2 2.2
Cache Access Rate Ratio

=¢-astar
|bm

bzip2

43

Challenge

How to estimate alone cache access rate?

. Cache
Core Core
Access Rate

Core Core

Core Core Core Sh a red - M 3 | N
- ::I Cache <:I Memory
Core Core Core Core

Priority

Core Core

Core n Auxiliary
Tag Store

Auxiliary Tag Store

Cache
Access Rate

Main
- <:I Cache <:I Memory
Core

Priority

Still in auxiliary
1 tag store

Auxiliary tag store tracks such contention misses

45

Revisiting Request Service Rate Alone

e Revisiting alone memory request service rate

Alone Request Service Rate of an Application =
Requests During High Priority Epochs
High Priority Cycles - # Interference Cycles

Cycles serving contention misses are not
high priority cycles

Cache Access Rate Alone

Alone Cache Access Rate of an Application =
Requests During High Priority Epochs

High Priority Cycles - #Interference Cycles<#Cache Contentlon Cycle

Cache Contention Cycles: Cycles spent serving contention misses

Cache Contention Cycles = # Contention Misses x

/;era e Memory Service Time

From auxiliary tag store

, , o Measured when given
when given high priority

high priority

Application Slowdown Model (ASM)

ore ore ore ore ACCESS Ra te
HEEHES swres [v
<:| Memory

Cache
Core Core Core Core

Cache Access Rate Alone
Slowdown =

Cache Access Rate shared

Previous Work on Slowdown

Estimation

 Previous work on slowdown estimation
— STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO “07]

T (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘1
er-thread Cycle Accounting [Du Bois et al., HiIPEAC “13]

* Basic ldea: Difficult
xecution T@Y
Slowdown = . .
Execution Time sm{A
Easy

Count number of cycles application receives interference

Slowdown Estimation

Error (in %)

Model Accuracy Results

FST W PTCA W ASM

Average error of ASM’s slowdown estimates: 10%

Average m

50

Leveraging Slowdown Estimates
for Performance Optimization

* How do we leverage slowdown estimates
from our model?

* To achieve high performance
— Slowdown-aware cache allocation
— Slowdown-aware bandwidth allocation

* To achieve performance predictability?

Cache Capacity Partitioning

Goal: Partition the shared cache among
applications to mitigate contention

52

Cache Capacity Partitioning

Way Way Way Way

(0 1 2 3
Set 1 .
Set 2 Main

Set3 Memory

Core : Set N

Previous way partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

53

ASM-Cache: Slowdown-aware
Cache Way Partitioning

* Key Requirement: Slowdown estimates for all
possible way partitions

 Extend ASM to estimate slowdown for all
possible cache way allocations

* Key Idea: Allocate each way to the application
whose slowdown reduces the most

Fairness

Performance and Fairness Results

15 0.8

3 ©06 -
£ 10 2
0 (]
0 § 0.4 - M NoPart
o o
3 5 o UCP
S a 0.2
-~ B ASM-Cache

0 - 0 -

4 8 16 4 8 16
Number of Cores Number of Cores

Significant fairness benefits across different systems

55

Memory Bandwidth Partitioning

Cache
Access Rate

Goal: Partition the main memory bandwidth
among applications to mitigate contention

56

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

* Key Idea: Allocate high priority proportional to
an application’s slowdown

Slowdown.
2 Slowdown,
j

High Priority Fraction, =

* Application i’s requests given highest priority
at the memory controller for its fraction

Fairness

ASM-Mem:
Fairness and Performance Results

20 0.8
£ 15 806
o g ™ FRFCFS
210 = 04
o L TCM
; S
35 a 0.2 M PARBS

0 - 0 - B ASM-Mem
4 8 16 4 8 16
Number of Cores Number of Cores

Significant fairness benefits across different systems

58

Coordinated Resource
Allocation Schemes

6capacity-h
bandwidth allocation
1 e e

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

16-core system

11 0.35
B -
10 0.3 FRFCFS-NoPart
—]
g 9 3 0.25 FRFCFS+UCP
§ B o é 0.2 B TCM+UCP
€. £ ® PARBS+UCP
g 7 L 0.15
3 o ™ ASM-Cache-Mem
é 6 a 0.1
5 0.05
4 0
1 2 1 2
Number of Channels Number of Channels

Significant fairness benefits across different channel counts

60

Other Possible Applications

VM migration and admission control schemes
[VEE ’15]

* Fair billing schemes in a commodity cloud

* Bounding application slowdowns

Summary: Predictability in the Presence
of Shared Cache Interference

* Key ldeas:
— Cache access rate is a proxy for performance

— Auxiliary tag stores and high priority can be combined
to estimate slowdowns

* Key Result: Slowdown estimation error - ~10%

 Some Applications:
— Slowdown-aware cache partitioning
— Slowdown-aware memory bandwidth partitioning
— Many more possible

62

Future Work: Coordinated Resource
Management for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

e Large search space of potential cache capacity
and memory bandwidth allocations

* Multiple possible combinations of cache/
memory allocations for each application

18-447

Computer Architecture
Lecture 31: Predictable Performance

Lavanya Subramanian
Carnegie Mellon University
Spring 2015, 4/15/2015

