
CMU 18-447 – Introduction to Computer Architecture – Spring 2015 1/5

Lab 6: Simulating Caches and Branch Prediction
Assigned: Wed., 3/18; Due: Fri., 4/3 (Midnight)

Instructor: Onur Mutlu
TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie Kim, Clement Loh

1. Introduction

In this lab, you will implement a timing simulator (written in C) to model instruction/data caches
and a branch predictor. Unlike the RTL that you have developed in previous labs, a timing simulator
is not a direct or synthesizable implementation of the processor. Rather, it is a higher-level abstracted
model designed to allow quick exploration. Operating at a higher level allows the designer to quickly
see how design choices (e.g., caches or branch predictors) would impact performance.

We will give you the base simulator (it has been developed to match the processor that we have
implemented in previous labs). We will also fully specify the behavior of the caches and the branch
predictor. Your job is to extend the simulator so that it implements the caches and branch predictor
as specified.

2. Timing Simulator

Unlike in previous labs, where we built our pipeline in Verilog, we are not constrained to logic-level
implementation in a C-based timing simulator. Our only goal is to compute the number of cycles a
program execution would take on the simulated processor. Because of this, many simplifications are
possible. We do not actually need to model control logic and datapath details in each block of the
processor; we only need to write code for each stage that performs the relatively high-level function of
that pipeline stage (read the register file, access memory, etc.). In general, the simulator’s algorithms
and structures do not need to exactly match the processor’s algorithms and structures, as long as the
result is the same. While we no longer have a low-level implementation, and thus cannot determine
the critical path (or other cost metrics that we care about, such as area taken on a silicon chip, or
power consumed during operation), we know how well the processor would perform.

3. Microarchitectural Specifications

Your goal is to implement the timing simulator so that it models a MIPS machine with (i) instruc-
tion/data caches, and (ii) a branch predictor. In the following, we will fully specify the microarchi-
tecture of the MIPS machine that you will simulate.

3.1. Instruction Cache

The instruction cache is accessed every cycle by the fetch stage.

Organization. It is a four-way set-associative cache that is 8 KB in size with 32 byte blocks (this
implies that the cache has 64 sets). When accessing the cache, the set index is calculated using bits
[10:5] of the PC.

Miss Timing. When the fetch stage misses in the instruction cache, the block must be retrieved
from main memory. An access to main memory takes 50 cycles. On the 50th cycle, the new block is
inserted into the cache. In total, an instruction cache miss stalls the pipeline for 50 cycles.

Replacement. When a new block is retrieved from main memory, it is inserted into the appropriate
set within the instruction cache. If any block within the set are empty, the new block is simply inserted

CMU 18-447 – Introduction to Computer Architecture – Spring 2015 2/5

into the empty block. However, if none of the blocks in the set are empty, the new block replaces the
least-recently-used block. For both cases, the new block becomes the most-recently-used block.

Control-Flow. While the fetch stage is stalled due to a miss in the instruction cache, a control-flow
instruction further down the pipeline may redirect the PC. As a result, the pending miss may turn
out to be unnecessary: it is retrieving the wrong block from main memory. In this case, the pending
miss is canceled: the block that is eventually returned by main memory is not inserted into the cache
– even if the redirection happens on the very last stall cycle. Finally, note that a redirection that
accesses the same block as a pending miss does not cancel the pending miss.

3.2. Data Cache

The data cache is accessed whenever a load or store instruction is in the memory stage.

Organization. It is an eight-way set-associative cache that is 64 KB in size with 32 byte blocks
(this implies that the cache has 256 sets). When accessing the cache, the set index is calculated using
bits [12:5] of the data address that is being loaded/stored.

Miss Timing & Replacement. Miss timing and replacement of the data cache are identical to the
instruction cache.

Handling Stores. Both load and store misses stall the pipeline for 50 cycles. They both retrieve a
new block from main memory and insert it into the cache.

Dirty Evictions. When a “dirty” block is replaced by a new block from main memory, it must be
written back into main memory. For the purpose of this lab, we will assume that such dirty evictions
are handled instantaneously – i.e., they are written immediately into main memory in the same cycle
as when the new block is inserted into the cache.

3.3. Instruction & Data Caches

• Assume that both caches are initially empty.

• In both caches, every block has a separate tag that stores information about the block: e.g.,
address, valid, recency, etc. Tags are initialized to 0.

• Assume that the program that runs on the processor never modifies its own code (referred to as
self-modifying code): a given block cannot reside in both the caches.

• Assume that both caches are initially empty.

3.4. Branch Predictor

Organization. The branch predictor consists of (i) a gshare predictor and (ii) a branch target buffer.

Gshare. The gshare predictor uses an 8 bit global branch history register (GHR). The most recent
branch is stored in the least-significant-bit of the GHR and a value of ‘1’ denotes a taken branch.
The predictor XORs the GHR with bits [9:2] of the PC and uses this 8 bit value to index into a
256-entry pattern history table (PHT). Each entry of the PHT is a 2 bit saturating counter that
operates as discussed in class: a taken branch increments whereas a not-taken branch decrements; the
four values of the counter correspond to strongly not-taken (00), weakly not-taken (01), weakly taken
(10), strongly taken (11).

Branch Target Buffer. The branch target buffer (BTB) contains 1024 entries indexed by bits
[11:2] of the PC. Each entry of the BTB contains (i) an address tag, indicating the full PC; (ii) a
valid bit; (iii) a bit indicating whether this branch is unconditional ; and (iv) the target of the branch.

Prediction. At every fetch cycle, the predictor indexes into both the BTB and the PHT. If the
predictor misses in the BTB (i.e., address tag != PC or valid bit = 0), then the next PC is predicted

CMU 18-447 – Introduction to Computer Architecture – Spring 2015 3/5

as PC+4. If the predictor hits in the BTB, then the next PC is predicted as the target supplied by
the BTB entry when either of the following two conditions are met: (i) the BTB entry indicates that
the branch is unconditional, or (ii) the gshare predictor indicates that the branch should be taken.
Otherwise, the next PC is predicted as PC+4.

Update. The branch predictor structures are always updated in the execute stage, where all branches
are resolved. The update consists of: (i) updating the PHT, which is indexed using the current value
of the GHR (ii) updating the GHR, and (iii) updating the BTB. Unconditional branches do not
update the PHT or the GHR, but only the BTB (setting the unconditional bit in the corresponding
entry.

Initial State. All branch predictor structures are initialized to 0.

3.5. Flushing the Pipeline

When resolving a branch, the pipeline is flushed under any of the following conditions:

• The instruction is a branch, but the predicted direction does not match the actual direction.

• The instruction is a branch, and it is taken, but the predicted destination (target) does not
match the actual destination

• The instruction is a branch, but it was not recognized as a branch (i.e., BTB miss)

4. Lab Resources

4.1. Source Code

Do NOT modify any files or folders unless explicitly specified in the list below.

• Makefile

• refsim: Reference simulator in machine-executable format

• verify: Script that compares your simulator against the reference simulator

• src/: Source code (Modifiable; feel free to add more files)

– pipe.c: Your simulator (Modifiable)

– pipe.h: Your simulator (Modifiable)

– mips.h: MIPS related pound defines

– shell.c: Interactive shell for your simulator (similar to Lab 1)

– shell.h: Interactive shell for your simulator (similar to Lab 1)

• 447inputs/: Example test inputs for your simulator

• 447scripts/: Dependencies for verify

• inputs/: Your custom test inputs (Modifiable; feel free to add more files)

Make sure that your source code is readable and well documented. Please submit the lab by executing
the following commands.

$ cp -r src /afs/ece/class/ece447/handin/lab6/andrewID/

$ cp -r src report.pdf /afs/ece/class/ece447/handin/lab6extra/andrewID/

4.2. Makefile

We provide a Makefile that automates the compilation and verification of your simulator.

CMU 18-447 – Introduction to Computer Architecture – Spring 2015 4/5

To compile your simulator:

$ make

To compile your simulator and verify it against the reference simulator using one or more test inputs:

$ make verify INPUT=447inputs/inst/addiu.x

$ make verify INPUT=447inputs/inst/*.x

$ make verify

5. Getting Started

For this lab, you do not need the setup447 script. Please do NOT source it. If you do, you will get
an error due to a incorrectly configured $LD LIBRARY PATH environment variable.

5.1. The Goal

We provide you with a skeleton of the timing simulator that models a five-stage MIPS pipeline: pipe.c
and pipe.h. As it is, the simulator is already architecturally correct: it can correctly execute any
arbitrary MIPS program.1 When the simulator detects data dependences, it correctly handles them
by stalling and/or bypassing. When the simulator detects control dependences, it correctly handles
them by flushing the pipeline as necessary.

By executing the following command, you can see that your simulator (sim) does indeed have identical
architectural outputs (e.g., register values) as the reference simulator (refsim) for all the test inputs
that we provide in 447inputs/.

$ make verify

However, your simulator has different microarchitectural outputs (e.g., cycle count) than the reference
simulator. Your job is to model the timing effects of the caches, the branch predictor, and main
memory so that your simulator becomes microarchitecturally equivalent to the reference simulator.

5.2. Studying the Timing Simulator

Please study pipe.c and pipe.h in detail.

The simulator models each pipeline stage as a separate function – e.g., pipe stage fetch(). The
simulator models the state of the pipeline as a collection of pointers to Pipe Op structures (defined
in pipe.h). Each Pipe Op represents one instruction in the pipeline by storing all of the necessary
information about the instruction that is needed by the simulator. A Pipe Op structure is allocated
when an instruction is fetched. It then flows through the pipeline and eventually arrives at the last
stage (writeback), where it is deallocated once the instruction completes. To elaborate, each stage
receives a Pipe Op from the previous stage, processes the Pipe Op, and passes it down to the next
stage. The simulator models pipeline stalls by stopping the flow of Pipe Op structures and pipeline
flushes by deallocating the Pipe Op structures at different stages.

5.3. Tip

The two major tasks of this lab – implementing caches, and implementing branch prediction – are
independent, so you may tackle them in either order. One way to approach this lab is to first write a
generic implementation of a set-associative cache, and then plug it into both the fetch stage (instruction

1This is not entirely true since we pose the usual restrictions on system calls, exceptions, etc.

CMU 18-447 – Introduction to Computer Architecture – Spring 2015 5/5

cache) and the memory stage (data cache). Once the caches are functional and they also stall the
pipeline correctly, you can implement the branch predictor.

5.4. Late Days

We will write-lock the handin directories at midnight on the due date. For late submissions, please
send an email to 447-instructors@ece.cmu.edu with tarballs of what you would have submitted to
the handin directory.

$ tar cvzf lab6 andrewID.tar.gz src

$ tar cvzf lab6extra andrewID.tar.gz src report.pdf

Remember, you have only 7 late lab days for the entire semester (this includes the 2 extra late days
given for lab4). If we receive the tarball within 24 hours, we will deduct 1 late lab day. If we receive
the tarball within 24 to 48 hours, we will deduct 2 late lab days... During this time, you may send
updated versions of the tarballs (but try not to send too many). However, once a tarball is received,
it will immediately invalidate a previous tarball you may have sent. You may not take it back. We
will take your very last tarball to calculate how many late lab days to deduct. If we don’t hear from
you at all, we will not deduct any late lab days, but you will receive a 0 score for the lab.

6. Extra Credit: Cache Exploration

We will offer up to 50% additional credit for this lab (equivalent to 2.5% additional credit for the
course) for exploring two different design aspects of the cache.

1. Cache size, block size, associativity: a sweep of cache parameters. You should write a set
of benchmarks that use significant amounts of memory (for example: accessing a large array in
streaming or random patterns), and run your simulator to find IPC for various cache parameters.
Show how changing the associativity, block size, and cache size affect performance.

2. Replacement, insertion: an exploration of cache replacement and/or insertion policies. The
cache replacement policy specifies which cache block in a set is replaced when a new block is
inserted into the cache. The cache insertion policy specifies where in the list of blocks the new
block is placed. Up to now, we have used a replacement policy that evicts (replaces) the least-
recently-used block, and an insertion policy that places new blocks at the most-recently-used
position. However, other replacement and insertion policies have been studied, and some have
been shown to achieve significantly better performance (fewer cache misses) for certain access
patterns [1, 2]. You should experiment with a variety of test programs and optimize the cache
replacement/insertion policy.

3. Other. Optionally, you may also choose to experiment with other aspects of the cache. For
example, using more sophisticated hashing functions to map cache blocks to cache sets and/or
using more than one hashing function [3].

Please write a two-part report (report.pdf) that briefly summarizes (i) your observations on the
effect of each cache parameter and (ii) your findings on cache replacement/insertion policies. Your
report does not need to be more than one page. Please also submit the version of your simulator
(src/) that implements the best performing cache replacement/insertion policies.

References

[1] M. K. Qureshi et al. Adaptive insertion policies for high performance caching. 2007.

[2] V. Seshadri et al. The evicted-address filter: A unified mechanism to address both cache pollution and thrashing.
In PACT, 2012.

[3] A. Seznec. A case for two-way skewed-associative cache. 1993.

