
CMU 18-447 Introduction to Computer Architecture, Spring 2015

Lab 2: Single Cycle MIPS

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie Kim, Clement Loh

Assigned: Wed., 1/21, 2015
Due: Fri., 2/6, 2015

Introduction

In Lab 1, you wrote a functional simulator for a MIPS machine. In this lab, you will implement a MIPS
machine using a hardware description language (System Verilog). The architecture of the MIPS machine is
very similar to what had been specified in Lab 1. The microarchitecture of the MIPS machine is single-cycle,
a very simple microarchitecture that we covered in class. For full credit, you should achieve the following in
this lab.

1. Implement a single-cycle MIPS machine in System Verilog.

2. Ensure that your implementation is correct by simulating it and verifying the register dumps of the
test inputs.

3. Ensure that your implementation is synthesizable (i.e., capable of being translated into logic gates)
and satisfies timing constraints.

Extra credit: A significant amount of extra credit will be given if you also implement another MIPS
machine using a microcoded microarchitecture.

Specifications of the MIPS Machine

Architecture

• Instruction Set. The machine supports all MIPS instructions specified in Lab 1, excluding those
related to multiplication and division: DIV, DIVU, MFHI, MFLO, MTHI, MTLO, MULT, MULTU. As shown in
the following table, there are 45 MIPS instructions that the machine supports.

ADD ADDU ADDI ADDIU AND ANDI BEQ
BGEZ BGEZAL BGTZ BLEZ BLTZ BLTZAL BNE
DIV DIVU J JAL JALR JR LB
LBU LH LHU LUI LW MFHI MFLO
MTHI MTLO MULT MULTU NOR OR ORI
SB SH SLL SLLV SLT SLTI SLTIU
SLTU SRA SRAV SRL SRLV SUB SUBU
SW SYSCALL XOR XORI

• System Call Instruction. The machine supports a very limited form of the syscall instruction as
was specified in Lab 1: if register $r2 has a value of 0xA when a syscall instruction is invoked, it
signals the end of the program (and also dumps out the register values). To minimize the confusion, we
have the syscall instruction already implemented in the supplementary source code that we provide.

• Exceptions. The machine does not support exceptions. The machine assumes that all instructions
execute correctly and does not even bother to check for exceptions. (For example, operands to an ADDI

instruction are guaranteed not to overflow their output. So the machine does not check whether the
carry-outs of the most-significant two bits are different from each other.)

• Branch Delay Slot. The machine does not support a branch delay slot after a jump or branch
instruction. (We are being consistent with Lab 1.) This means two things. First, the instruction

1/6

at the target-address of the jump/branch instruction is executed immediately after the jump/branch
instruction (for a branch instruction, this is assuming that the branch condition is true). Second, some
of the jump/branch instructions operate differently from their definitions in the MIPS R4000 User’s
Manual, as shown in the following table. Specifically, PC + 4 is linked instead of PC + 8.

JAL
R[31] ← PC + 4

PC ← PC31...28 + (Immediate << 2)

JALR
R[rd] ← PC + 4

PC ← R[rs]

B<cond>AL
R[31] ← PC + 4

if (cond)
PC ← PC + 4 + (Sign Extended Immediate << 2)

Microarchitecture

The machine has a single-cycle microarchitecture: every instruction takes exactly one cycle to execute. Aside
from correctness (as defined by the architectural specifications), this is the only constraint that we are placing
on the machine’s microarchitecture. As long as these two constraints are satisfied (i.e., correctness and single-
cycle), you are free to implement the microarchitecture in anyway you want. To guide you along the way,
we provide an abstract description of the single-cycle microarchitecture as we discussed in class.

• The architectural state of the machine (excluding memory) is stored in registers: the program counter
and general-purpose registers.

• There is a global wire called the “clock” that is connected to all the registers.

• When a register sees a rising edge on the clock, the register captures the instantaneous “snapshot” of
the values on its input. From then on, the register holds the captured values and feeds them to its
output.

• The output from the register(s) are fed into a combinational circuit consisting of logic gates (e.g., ADD).
In turn, the output from the logic gates are fed back as input to the register(s).

• At the next rising edge on the clock, the register again captures the values on its input.

• At each rising edge, the execution of an instruction is initiated. At the next rising edge, the values
stored in all the registers (i.e., the architectural state) should be updated in such a way that the
instruction can be considered to have correctly executed.

Lab Resources

Source Code

The source code is available at: /afs/ece/class/ece447/labs/lab2. Do NOT modify any files or folders
unless explicitly specified in the list below.

• Makefile

• update.sh

• src/ (ALL FILES MODIFIABLE) – You are allowed to add more source code files.

– mips core.v: The top-level skeleton of the MIPS machine. This is where you will be doing most
of the coding.

– mips decode.v: The skeleton of the instruction decoding unit.

– mips defines.vh: MIPS-related definitions. This file contains more information than is necessary
for this lab.

2/6

/afs/ece/class/ece447/labs/lab2

– internal defines.vh: Where you can add your own definitions.

• 447src/ – Supplementary source code.

– regfile.v: An array of 3-ported registers. (A “file” is an array of registers.)

– syscall unit.v: The system call unit: exercised only when the syscall instruction is invoked
to terminate a program.

– exception unit.v: The exception unit: not exercised.

– mips mem.v: The memory module.

– testbench.v: The testbench.

• 447inputs/ – Example test inputs.

• inputs/ (MODIFIABLE) – You are allowed to add your own test inputs.

• outputs/ (MODIFIABLE) – You can direct your outputs to here.

• 447ncsim/ – Config. file for the ncsim tool.

• ncsim/ (MODIFIABLE) – Ignore. If you really want, you can implement a customized config. file.

• dc/ (MODIFIABLE) – Config. files for the DC tool. You have to add any new source files in here,
according to dependencies.

• 447util/

The source code is written in System Verilog, a very popular hardware description language. If you need a
refresher on System Verilog, please refer to the course website for tutorials. Your source code must compile,
simulate, and synthesize using our Makefile, our software tools, and our supplementary source code. Please
stick to the bread-and-butter features of the language, so that you don’t experience esoteric incompatibilities.
(Direct all questions on this matter to the technical documents of the software tools.)

Software Tools

We provide software tools for compiling, simulating, and synthesizing your MIPS machine. In order to
use the tools, remotely log into an ECE server (e.g., ece[000-008].ece.cmu.edu from off-campus and
ece[009-031].campus.ece.cmu.local from on-campus) and execute the following command in your bash
shell. The command will modify your shell’s environment variables to setup the correct AFS paths to the
tool binaries as well as the licenses for using them. We highly recommend doing the lab on the ECE servers.

$ source /afs/ece/class/ece447/bin/setup447

The following is the list of software tools that are involved in this lab. For your benefit, we also provide
their technical documents on the course website (they have the correct versions that match with those of
the binaries). If you have questions about the tools, please consult the technical documents first.

• ncvlog: Verilog/System Verilog compiler (Cadence) – ncvlog.pdf

• ncelab: Verilog/System Verilog elaborator (Cadence) – ncvlog.pdf

• ncsim: Verilog/System Verilog simulator (Cadence) – ncvlog.pdf

• simvision: Waveform viewer (Cadence) – simvision.pdf, simviscmdref.pdf

• xst: Verilog/System Verilog synthesizer (Xilinx) – xst.pdf

Among these, simvision is the only tool that you will directly invoke. All other tools will be automatically
invoked by the Makefile that we provide. Since simvision requires a graphical interface, make sure that you
enable X11 forwarding when you remotely log into an ECE server (i.e., ssh -X ece000.ece.cmu.edu).1

1If you are running Microsoft Windows on your local machine, you need to install an X server that does the actual rendering.
Please install both Xming and Xming-fonts from http://www.straightrunning.com/XmingNotes/.

3/6

 http://www.straightrunning.com/XmingNotes/

Makefile

We provide a Makefile that automates the tedious process of compiling, simulating, verifying, and synthe-
sizing your System Verilog implementation. Typing make without any targets or options will invoke the help
screen. Please read this help screen carefully!

$ make

The TAs may have to update the supplementary source code in order to fix a bug. Every time you run
make for anything, the Makefile also checks for updates by querying the network file system. If the Makefile
discovers any updates, it will alert you by flashing an annoying message on your terminal. This message will
continue to appear until you run make update to actually apply the updates.

$ make update

Within your current working directory, the updates will patch only the files that you were not allowed to
modify. On the other hand, the files/folders you were allowed to modify will not be touched.

Getting Started & Tips

Getting Started

1. In the top-level skeleton (src/mips core.sv), instantiate the general-purpose register file (defined in
447src/regfile.v) and wire up its inputs and outputs.

2. At this point, you should be able to simulate the test input 447inputs/addiu.s by executing the
following command in your shell:
$ make sim INPUT=447inputs/addiu.s

3. You should check for correctness by comparing the register dump of the simulation against the reference
register dump (447input/addiu.reg). You can do this by executing the following command in your
shell:
$ make verify INPUT=447inputs/addiu.s

4. Now that you have a feeling of how things work, study the provided source code. Before you begin
to implement your MIPS machine, draw a block diagram of how you want to organize it. The block
diagram will help you think about your implementation. As your implementation matures, so will you
refine your block diagram. This block diagram will be collected!

Tips

• Read this handout in detail. Ask questions to the TAs using the Q&A forum (link available on the
course website).

• When you encounter a technical problem, please read the logs/reports generated by the software tools
in the outputs/ folder.

• Be cautious about how System Verilog handles signed/unsigned numbers.

• The dual-ported memory module (447src/mips mem.v) provides 4 write enable signals for each port.
Each write enable signal corresponds to a byte in a 4-byte word.

• Memory accesses must be aligned. If you are accessing a byte, any address is allowed. But, if you are
accessing a 4-byte word, the two lowest bits of the address must be zero.

• Your implementation should satisfy the timing constraints that the synthesis tool checks for. Notably,
your implementation should have a minimum clock cycle of less than 25ns. The synthesis report
(timing mip core.rpt) shows the value of the minimum clock cycle as well as the critical-path through
your implementation that determines this value. Based on the synthesis report, you will analyze and
briefly discuss the critical-path of your implementation.

4/6

Submission

Block Diagram

Please submit a hardcopy of a computer-drawn diagram of your single-cycle MIPS machine. The TAs will
collect this diagram during the Lab Sections and you will be responsible for explaining your design decisions
to the TAs.

The diagram should be at the same level of detail as you saw in the textbook and lecture notes. All major
structures (e.g, registers, muxes) should be drawn, as well as boxes for the various control logic blocks.
Label all wires with their names and widths. We suggest using different colors (or line styles) to differentiate
control- and data-path wires. Putting in an extra effort to keep this diagram neat and clean will definitely
pay off. It is okay to utilize plenty of white space and to span multiple sheets of paper. We recommend
using Inkscape (cross-platform), Adobe Illustrator (Windows/Mac), or Microsoft Visio (Windows/Mac).

Lab Section Checkoff

So that the TAs can check you off, please come to any of the lab sections during the week immediately after
the deadline – i.e., during the week starting from Mon., 2/18. Please come early during the lab section.

During the Lab Section, the TAs may ask you:

• to answer questions about your implementation,

• to simulate your implementation using various test inputs (some of which you may have not seen
before),

• to synthesize your implementation.

Source Code

Make sure that your source code is readable and documented. Please submit the lab by executing the
following commands.

$ cp -r src /afs/ece/class/ece447/handin/lab2/andrewID/

$ cp -r inputs /afs/ece/class/ece447/handin/lab2/andrewID/

README

In addition, please submit a README.txt file. To create this file, execute the following command.

$ cp README.txt /afs/ece/class/ece447/handin/lab2/andrewID/README.txt

The README.txt file must contain the following two pieces of information.

1. A high-level description of your design.

2. A high-level description of the critical-path of your synthesized implementation.

It may also contain information about any additional aspect of your lab.

Late Days

We will write-lock the handin directories at midnight on the due date. For late submissions, please send an
email to 447-instructors@ece.cmu.edu with a tarball of what you would have submitted to the handin
directory.

$ tar cvzf lab2 andrewID.tar.gz src inputs README.txt

5/6

Remember, you have only 5 late lab days for the entire semester (applies to only lab submissions, not to
homeworks, not to anything else). If we receive the tarball within 24 hours, we will deduct 1 late lab day.
If we receive the tarball within 48 hours, we will deduct 2 late lab days... During this time, you may send
updated versions of the tarball (but try not to send too many). However, once a tarball is received, it will
immediately invalidate a previous tarball you may have sent. You may not take it back. We will take your
very last tarball to calculate how many late lab days to deduct. If we don’t hear from you at all, we won’t
deduct any late lab days, but you will receive a 0 score for the lab.

Extra Credit

For extra credit on this assignment, you may implement a microcoded microarchitecture for the MIPS
machine described in this handout. It is up to you as a computer architect to come up with a functional and
efficient design. Because this will require a substantial amount of effort, it will be worth up to 4% additional
credit in the course (i.e., if your grade ended up being 89% at the end of the semester, this could boost it
up to 93%). Note that you do not have to complete the full implementation to receive extra credit – we will
give partial extra credit for the portions of your design that you are able to demonstrate, and we encourage
everyone to attempt this extra credit. All of the guidelines for Lab 2 specified in this handout also apply to
the extra credit, except for the following differences.

• Block diagram: This can be drawn by hand. Please make sure to include the state machine, control
logic (microsequencer and control store design), and datapath.

• Submission path: /afs/ece/class/ece447/handin/lab2extra/andrewID/

• Tarball (for late submissions): lab2extra andrewID.tar.gz

For late submissions, we must receive the tarballs for both Lab 2 and the extra credit on the same day. If
not, we’ll deduct the lab late days for whichever tarball we received last.

6/6

