
CMU 18-447 Introduction to Computer Architecture, Spring 2015

HW 4: SIMD, VLIW, Static Scheduling, Caching, Virtual Memory

Instructor: Prof. Onur Mutlu
TAs: Kevin Chang, Rachata Ausavarungnirun, Albert Cho, Jeremie Kim, Clement Loh

Assigned: Wed., 2/25, 2015
Due: Wed., 3/18, 2015 (Midnight)

Handin: autolab

1 Vector Processing [15 points]

Consider the following piece of code:

for (i = 0; i < 100; i ++)

A[i] = ((B[i] * C[i]) + D[i])/2;

(a) Translate this code into assembly language using the following instructions in the ISA (note the number
of cycles each instruction takes is shown next to each instruction):

Opcode Operands Number of Cycles Description
LEA Ri, X 1 Ri ← address of X
LD Ri, Rj, Rk 11 Ri ← MEM[Rj + Rk]
ST Ri, Rj, Rk 11 MEM[Rj + Rk] ← Ri

MOVI Ri, Imm 1 Ri ← Imm
MUL Ri, Rj, Rk 6 Ri ← Rj x Rk
ADD Ri, Rj, Rk 4 Ri ← Rj + Rk
ADD Ri, Rj, Imm 4 Ri ← Rj + Imm

RSHFA Ri, Rj, amount 1 Ri ← RSHFA (Rj, amount)
BRcc X 1 Branch to X based on condition codes

Assume one memory location is required to store each element of the array. Also assume that there are
8 registers (R0 to R7).

Condition codes are set after the execution of an arithmetic instruction. You can assume typically
available condition codes such as zero, positive, and negative.

How many cycles does it take to execute the program?

1/10

(b) Now write Cray-like vector assembly code to perform this operation in the shortest time possible. Assume
that there are 8 vector registers and the length of each vector register is 64. Use the following instructions
in the vector ISA:

Opcode Operands Number of Cycles Description
LD Vst, #n 1 Vst ← n (Vst = Vector Stride Register)
LD Vln, #n 1 Vln ← n (Vln = Vector Length Register)

VLD Vi, X 11, pipelined
VST Vi, X 11, pipelined
Vmul Vi, Vj, Vk 6, pipelined
Vadd Vi, Vj, Vk 4, pipelined
Vrshfa Vi, Vj, amount 1

How many cycles does it take to execute the program on the following processors? Assume that memory
is 16-way interleaved.

(i) Vector processor without chaining, 1 port to memory (1 load or store per cycle).

(ii) Vector processor with chaining, 1 port to memory.

(iii) Vector processor with chaining, 2 read ports and 1 write port to memory.

2/10

2 VLIW [15 points]

You are using a tool that transforms machine code that is written for the MIPS ISA to code in a VLIW
ISA. The VLIW ISA is identical to MIPS except that multiple instructions can be grouped together into one
VLIW instruction. Up to N MIPS instructions can be grouped together (N is the machine width, which
depends on the particular machine). The transformation tool can reorder MIPS instructions to fill VLIW
instructions, as long as loads and stores are not reordered relative to each other (however, independent loads
and stores can be placed in the same VLIW instruction). You give the tool the following MIPS program (we
have numbered the instructions for reference below):

(01) lw $t0 ← 0($a0)

(02) lw $t2 ← 8($a0)

(03) lw $t1 ← 4($a0)

(04) add $t6 ← $t0, $t1

(05) lw $t3 ← 12($a0)

(06) sub $t7 ← $t1, $t2

(07) lw $t4 ← 16($a0)

(08) lw $t5 ← 20($a0)

(09) srlv $s2 ← $t6, $t7

(10) sub $s1 ← $t4, $t5

(11) add $s0 ← $t3, $t4

(12) sllv $s4 ← $t7, $s1

(13) srlv $s3 ← $t6, $s0

(14) sllv $s5 ← $s0, $s1

(15) add $s6 ← $s3, $s4

(16) add $s7 ← $s4, $s6

(17) srlv $t0 ← $s6, $s7

(18) srlv $t1 ← $t0, $s7

(a) Draw the dataflow graph of the program Represent instructions as numbered nodes (01 through 18),
and flow dependences as directed edges (arrows).

(b) When you run the tool with its settings targeted for a particular VLIW machine, you find that the
resulting VLIW code has 9 VLIW instructions. What minimum value of N must the target VLIW
machine have?

(c) Write the MIPS instruction numbers (from the code above) corresponding to each VLIW instruction,
for this value of N . When there is more than one MIPS instruction that could be placed into a VLIW
instruction, choose the instruction that comes earliest in the original MIPS program.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

VLIW Instruction 1:
VLIW Instruction 2:
VLIW Instruction 3:
VLIW Instruction 4:
VLIW Instruction 5:
VLIW Instruction 6:
VLIW Instruction 7:
VLIW Instruction 8:
VLIW Instruction 9:

(d) You find that the code is still not fast enough when it runs on the VLIW machine, so you contact the
VLIW machine vendor to buy a machine with a larger machine width N . What minimum value of N

3/10

would yield the maximum possible performance (i.e., the fewest VLIW instructions), assuming that all
MIPS instructions (and thus VLIW instructions) complete with the same fixed latency and assuming no
cache misses?

(e) Write the MIPS instruction numbers corresponding to each VLIW instruction, for this optimal value
of N . Again, as in part (c) above, pack instructions such that when more than one instruction can be
placed in a given VLIW instruction, the instruction that comes first in the original MIPS code is chosen.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

MIPS
Inst.
No.

VLIW Instruction 1:
VLIW Instruction 2:
VLIW Instruction 3:
VLIW Instruction 4:
VLIW Instruction 5:
VLIW Instruction 6:
VLIW Instruction 7:
VLIW Instruction 8:
VLIW Instruction 9:

(f) A competing processor design company builds an in-order superscalar processor with the same machine
width N as the width you found in part (b) above. The machine has the same clock frequency as the
VLIW processor. When you run the original MIPS program on this machine, you find that it executes
slower than the corresponding VLIW program on the VLIW machine in part (b). Why could this be
the case?

(g) When you run some other program on this superscalar machine, you find it runs faster than the corre-
sponding VLIW program on the VLIW machine. Why could this be the case?

4/10

3 Code Optimizations [20 points]

Assume an in-order, non-pipelined machine. The ISA for this machine consists of only the following
five instructions that never generate exceptions. In this syntax, x is a register, whereas y and z are either
registers or constants. Note that this machine is able to execute branches and jumps instantaneously.

Instruction Name Syntax Cycles
Move x = y 1

Addition x = y + z 2
Multiplication x = y ∗ z 5

Branch-If-Greater-Than if (y > z) 0
Jump – 0

Consider the following assembly program that is written in the machine’s ISA. For any initial values of
registers a and b, the purpose of the program is to compute the final value and store it in register f . After
the program terminates, it is considered to have executed correctly if and only if the values stored in registers
a, b, and f are correct.

a = a + 1

c = 2 * a

if (a > b)

b = b + 2

d = a + b

f = f + d

a = a + 1

d = a + b

f = f + d

e = 2 * a

f = f + c

f = f + e

if (a > 10)

then else

then

END

else

START

f = 0

BB1

BB2 BB3

BB4

BB0

5/10

(a) How many cycles does the machine take to execute the assembly program, when a and b are initialized
to 0 and 1, respectively?

You decide to make simple optimizations to the program to reduce its execution time. The optimizations
involve only removing, modifying, and/or moving some of the already existing instructions. However,
there are two restrictions: you may not move instructions out of the loop and you may not add completely
new instructions.

(b) Show the optimized assembly program.

(c) How many cycles does the machine take to execute the optimized assembly program, when a and b are
initialized to 0 and 1?

After learning about superblocks, you decide to optimize the program even further to reduce its execution
time. In order to form the superblock(s), assume that you run the program once beforehand when a and b
are initialized to 0 and 1. During this profile run, if a branch is biased in either direction by more than 60%,
it is included in the superblock(s). However, there are two restrictions: you may not move instructions out
of the loop and you may not unroll the loop.

(d) Show the superblock-optimized assembly program. Circle the superblock(s).

(e) How many cycles does the machine take to execute the superblock-optimized assembly program, when
a and b are initialized to 0 and 1?

(f) If you had used traces to optimize the program instead of superblocks, would the execution time increase,
decrease, or stay the same compared to (e)? Choose one and explain briefly why.

(g) If you had used hyperblocks to optimize the program instead of superblocks, would the execution time
increase, decrease, or stay the same compared to (e)? Choose one and explain briefly why.

6/10

4 Caching [15 points]

Below, we have given you four different sequences of addresses generated by a program running on a processor
with a data cache. Cache hit ratio for each sequence is also shown below. Assuming that the cache is initially
empty at the beginning of each sequence, find out the following parameters of the processor’s data cache:

• Associativity (1, 2 or 4 ways)

• Block size (1, 2, 4, 8, 16, or 32 bytes)

• Total cache size (256 B, or 512 B)

• Replacement policy (LRU or FIFO)

Assumptions: all memory accesses are one byte accesses. All addresses are byte addresses.

Sequence No. Address Sequence Hit Ratio
1 0, 2, 4, 8, 16, 32 0.33
2 0, 512, 1024, 1536, 2048, 1536, 1024, 512, 0 0.33
3 0, 64, 128, 256, 512, 256, 128, 64, 0 0.33
4 0, 512, 1024, 0, 1536, 0, 2048, 512 0.25

7/10

5 Virtual Memory [10 points]

An ISA supports an 8-bit, byte-addressable virtual address space. The corresponding physical memory has
only 128 bytes. Each page contains 16 bytes. A simple, one-level translation scheme is used and the page
table resides in physical memory. The initial contents of the frames of physical memory are shown below.

Frame Number Frame Contents
0 Empty
1 Page 13
2 Page 5
3 Page 2
4 Empty
5 Page 0
6 Empty
7 Page Table

A three-entry translation lookaside buffer that uses Least Recently-Used (LRU) replacement is added to
this system. Initially, this TLB contains the entries for pages 0, 2, and 13. For the following sequence of
references, put a circle around those that generate a TLB hit and put a rectangle around those that generate
a page fault. What is the hit rate of the TLB for this sequence of references? (Note: LRU policy is used to
select pages for replacement in physical memory.)

References (to pages): 0, 13, 5, 2, 14, 14, 13, 6, 6, 13, 15, 14, 15, 13, 4, 3.

(a) At the end of this sequence, what three entries are contained in the TLB?

(b) What are the contents of the 8 physical frames?

8/10

6 Page Table Bits [5 points]

(a) What is the purpose of the “reference” or “accessed” bit in a page table entry?

(b) Describe what you would do if you did not have a reference bit in the PTE. Justify your reasoning
and/or design choice.

(c) What is the purpose of the dirty or modified bit in a page table entry?

(d) Describe what you would do if you did not have a modified bit in the PTE. Justify your reasoning and/or
design choice.

9/10

7 Virtual Memory - Optional(From past exam..)

A dedicated computer architecture student (like you) bought a 32-bit processor that implements paging-
based virtual memory using a single-level page table. Being a careful person, she also read the manual and
learnt that

• A page table entry (PTE) is 4-bytes in size.

• A PTE stores the physical page number in the least-significant bits. Unused bits are zeroed out.

• The page table base address (PTBA) is page-aligned.

• If an instruction attempts to modify a PTE, an exception is raised.

However, the manual did not mention the page size and the PTBA. The dedicated student then wrote the
following program to find out the missing information.

char *ptr = 0xCCCCCCCC;
ptr = 0x00337333;

The code ran with no exceptions. The following figure shows relevant locations of the physical memory after
execution.

0xFFFFFFFF

0x00000000

31 0

0xCCCCCCCC

0x00337333

0x00337333

0xCDCCCCCC

Using these results, what is the PTBA of this machine?

What is the page size (in bytes) of this machine? Write your answer in the form 2n.

10/10

	Vector Processing [15 points]
	VLIW [15 points]
	Code Optimizations [20 points]
	Caching [15 points]
	Virtual Memory [10 points]
	Page Table Bits [5 points]
	Virtual Memory - Optional(From past exam..)

