18-447

Computer Architecture
Recitation 2

Rachata Ausavarungnirun
Carnegie Mellon University
Spring 2015, 2/9/2015




Agenda for Today

Quick recap on the previous lectures
Practice questions
Q&A on HW2, lab3, and lecture materials

Important deadlines:
o HW2 due Wednesday (2/11)




Quick Review

Microprogrammed
Microcoded designs
Pipelining

o Handling stalls

o Data dependences

o Data Forwarding

o Control Dependences

Fine-grained multithreading
Predicated Execution
Branch Prediction



Practice Questions: Value Prediction

Assume the following piece of code, which has four load instructions in each loop iteration, loads to
arrays x, v, z, t:

// initialize integer variables ¢, d, e, f to zeros
// initialize integer arrays x, vy, 2z, t

for (i=0; 1<1000; i++) {
c += x[i];

d += y[i];
e += z[1i];
f += t[i];

}

Assume the following state of arrays before the loop starts executing:
e X consists of all (s
e v consists of alternating 3’s and 6’s in consecutive elements
e z consists of random values between 0 and 2(32) — 1

e t consists of 0, 1. 2, 3. 4, ..., 999




Practice Questions: Pipelining

When handling dependent instructions, an alternative to data forwarding is value prediction, as we discussed
in class. You are going to use value prediction to resolve flow dependences in a processor with a 10-stage
pipeline (Fetch, two stages of Decode, five stages of Execute, one stage of Memory, one stage of Writeback).
Assume that the processor never stalls for memory, that it assumes branches are not taken until they are
resolved, and that it resolves branches in the last stage of Execute. The value predictor is placed in the
Decode stage, and produces a value prediction for a register whose value is not available. The processor is
designed so that it never stalls due to data dependences, but always value-predicts to resolve stalls. This
works as follows:

e When an instruction passes through the second stage of Decode and reads a register, data dependence
detection logic detects whether an older instruction later in the pipeline is writing to that register.

e When a data dependence is detected, the processor uses its value predictor to predict the value that
the register will eventually have, and (i) feeds that value to the dependent instruction, (ii) records the
value for later checking. Therefore, the dependent instruction can proceed without a stall using the
predicted value.

e When an instruction that writes a register reaches the Writeback stage, it writes its value back, and
also checks the value against predictions that were made for that value. If a prediction was incorrect,
then (i) the entire pipeline is flushed, and (ii) fetch restarts in the subsequent cycle from the first
instruction that received a mispredicted value.

Assume that the processor is designed so that it can handle multiple predictions “in flight” for a single
register at different instructions in the pipeline, and that a new prediction is made each time a register is
read.




Practice Questions: Branch Prediction

int array[1000] = { /* random values */ };
int suml = 0, sum2 = 0, sum3 = 0, sumd = 0;

for (i = 0; 1 < 1000; i ++) // LOOP BRANCH
{
if (i /4 4 == 0) // IF CONDITION 1
suml += array[i]; // TAKEN PATH
else
sum2 += array[i]; // NOT-TAKEN PATH

if (i 4 2 == 0) // IF CONDITION 2

sum3 += arrayl[il; // TAKEN PATH
else

sum4 += array([i]; // NOT-TAKEN PATH




Q& A




