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ipelined instruction processing 
has become a widely used tech- 
nique for implementing high-per- 

formance computers. Pipelining first ap- 
peared in supercomputers and large 
maiiiframes, but can now be found in less 
expensive systems. For example, most of 
the recent reduced instruction set com- 
puters use pipelining.’.’ Indeed, a major 
argument for RISC architectures is the 
ease with which they can be pipelined. At 
the other end of the spectrum, computers 
with more complex instruction sets, such 
as the VAX 8800,’ make effective use of 
pipelining as well. 

The ordering, or “scheduling,” of in- 
structions as they enter and pass through 
an instruction pipeline is a critical factor 
in determining performance. In recent 
years, the RISC philosophy has become 
pervasive in computer design. The basic 
reasoning behind the RISC philosophy 
can be stated as “simple hardware means 
faster hardware, and hardware can be 
kept simple by doing as much as possible 
in software.” A corollary naturally fol- 
lows, stating that instruction scheduling 
should be done by software at compile 
time. We refer to this as static instruction 
scheduling, and virtually every new 
computer system announced in the last 
several years has followed this approach. 

I I 
I I 

Dynamic instruction 
scheduling resolves 

control and data 
dependencies at 

runtime. This extends 
performance over that 

possible with static 
scheduling alone, as 
shown by the ZS-1. 

Many features of the pioneering CDC 
66004 have found their way into modem 
pipelined processors. One noteworthy 
exception is the reordering of instruc- 
tions at runtime, or dynamic instruction 
scheduling. The CDC 6600 scoreboard 
allowed hardware to reorder instruction 
execution, and the memory system stunt 
box allowed reordering of some memory 
references as well. Another innovative 

computer of considerable historical in- 
terest, the IBM 360/9 1 ,s used dynamic 
scheduling methods even more exten- 
sively than the CDC 6600. 

As the RISC philosophy becomes ac- 
cepted by the design community, the 
benefits of dynamic instruction schedul- 
ing are apparently being overlooked. 
Dynamic instruction scheduling can 
provide performance improvements 
simply not possible with static schedul- 
ing alone. 

This article has three major purposes: 

(1)  to provide an overview of and 
survey solutions to the problem of 
instruction scheduling for pipe- 
lined computers, 

(2) to demonstrate that dynamic in- 
struction scheduling can provide 
performance improvements not 
possible with static scheduling 
alone, and 

(3) to describe a new high-perform- 
ance computer, the Astronautics 
ZS-1, which uses new methods for 
implementing dynamic schedul- 
ing and which can outperform 
computers using similar-speed 
technologies that rely solely on 
state-of-the-art static scheduling 
techniques. 
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fetch 

inst. 1 
inst. 2 
inst. 3 
inst. 4 

(a)  
time -+ 

FDIEEEE 
FDIEEEE 
FDIEEEE 
FDIEEEE 

Figure 1. Pipelined instruction processing: (a) a typical pipeline; (b) ideal 
flow of instructions through the pipeline. 

I I  
RI t ( Y )  
R2 t (Z) 
R3 t RI +f R2 
( X ) t  R3 
R4 t ( B )  
R5 t (C) 
R6 t R4 *f R5 
(A )+  R6 

Load register RI from memory location Y 
Load register R2 from memory location Z 
Floating add registers RI and R2 
Store the result into memory location X 
Load register R4 from memory location B 
Load register R5 from memory location C 
Floating multiply registers R4 and R5 
Store the result into memory location A 

time -+ 

R I  t ( Y )  
R2 t (Z) 
R3 t RI +f R2 
( X ) t  R3 
R4 t (B)  
R5 t (C) 
R6 t R4 *f R5 
(A)+ R6 

( b )  

FDIEEEE 
FDIEEEE 
FD. . . IEEE 
F...D..IEEEE 

F. . DIEEEE 
FDIEEEE 
FD. . . IEEE 
F...D..IEEEE 

Figure 2. Pipelined execution of X=Y+Z and A=B*C: (a) machine code; (b) 
pipeline timing. 

stages. Figure 1 illustrates a simple ex- 
ample pipeline. In Figure la, the pipeline Introduction to 

pipelined computing stages are: 

Pipelining decomposes instruction ( I )  Instruction fetch -- for simplicity 
processing into assembly line-like assume that all instructions are fetched 

in one cycle from a cache memory. 
(2) Instruction decode -- the instruc- 

tion's opcode is examined to determine 
the function to perform and the resources 
needed. Resources include general-pur- 
pose registers, buses, and functional 
units. 

(3) Instruction issue -- resource 
availability is checked and resources are 
reserved. That is, pipeline control inter- 
locks are maintained at this stage. As- 
sume that operands are read from regis- 
ters during the issue stage. 

(4) Instruction execution -- instruc- 
tions are executed in one or several exe- 
cution stages. Writing results into the 
general-purpose registers is done during 
the last execution stage. In this discus- 
sion, consider memory load and store 
operations to be part of execution. 

Figure Ib illustrates an idealized flow 
of instructions through the pipeline. 
Time is measured in clock periods and 
runs from left to right. The diagram notes 
the pipeline stage holding an instruction 
each clock period. F denotes the instruc- 
tion fetch stage, D denotes the decode 
stage, I denotes the issue stage, and E 
denotes the execution stages. 

In theory, the clock period for a p-  
stage pipeline would be I/p the clock 
period for a nonpipelined equivalent. 
Consequently, there is the potential for a 
p times throughput (performance) im- 
provement. There are several practical 
limitations, however, on pipeline per- 
formance. The limitation of particular 
interest here is instruction dependencies. 

Instructions may depend on results of 
previous instructions and may therefore 
have to wait for the previous instructions 
to complete before they can proceed 
through the pipeline. A data dependence 
occurs when instructions use the same 
input and/or output operands; for ex- 
ample, when an instruction uses the re- 
sult of a preceding instruction as an input 
operand. A data dependence may cause 
an instruction to wait in the pipeline for 
a preceding instruction to complete. A 
control dependence occurs when control 
decisions (typically as conditional 
branches) must be made before subse- 
quent instructions can be executed. 

Figure 2 illustrates the effects of de- 
pendencies on pipeline performance. 
Figure 2a shows a sequence of machine 
instructions that a compiler might gener- 
ate to perform the high-level language 
statements X = Y + Z and A = B * C. 
Assume load and store instructions take 
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four execution clock periods while float- 
ing-point additions and multiplications 
take three. (These timing assumptions 
represent a moderate level of pipelining. 
In many RISC processors fewer clock 
periods are needed. On the other hand, 
the Cray-1 requires 1 1  clock periods for 
a load, and floating-point additions take 
six. Cray-2 pipelines are about twice the 
length of the Cray-1’s.) 

Figure 2b illustrates the pipeline tim- 
ing. A simple in-order method of instruc- 
tion issuing is used; that is, if an instruc- 
tion is blocked from issuing due to a 
dependence, all instructions following it 
are also blocked. The same letters as 
before are used to denote pipeline stages. 
A period indicates that an instruction is 
blocked or “stalled” in a pipeline stage 
and cannot proceed until either the in- 
struction ahead of i t  proceeds, or, at the 
issue stage, until all resources and data 
dependencies are satisfied. 

The first two instructions issue on 
consecutive clock periods, but the add is 
dependent on both loads and must wait 
three clock periods for the load data 
before it can issue. Similarly, the store to 
location X must wait three clock periods 
for the add to finish due to another data 
dependence. There are similar blockages 
during the calculation of A. The total 
time required is 18 clock periods. This 
time is measured beginning when the 
first instruction starts execution until the 
last starts execution. (We measure time 
in this way so that pipeline “fill” and 
“drain” times do not unduly influence 
relative timings.) 

Instruction scheduling 

An important characteristic of pipe- 
lined processors is that using equivalent, 
but reordered, code sequences can result 
in performance differences. For ex- 
ample, the code in Figure 3a performs 
the same function as that in Figure 2a 
except that i t  has been reordered, or 
“scheduled,” to reduce data dependen- 
cies. Furthermore, registers have been 
allocated differently to eliminate certain 
register conflicts that appear to the hard- 
ware as dependencies. Figure 3b illus- 
trates the pipeline timing for the code in 
Figure 3a. Note that there is considerably 
more overlap, and the time required is 
correspondingly reduced to 1 1  clock 
periods. 

The above is an example of static in- 
struction scheduling, that is, the sched- 

R1 t ( Y )  
R2 t (Z) 
R4 t (B)  
R5 t (C) 
R3 t R1 +f R2 
R6 t R4 *f R5 
( X ) t  R3 
(A)+ R6 

Load register RI from memory location Y 
Load register R2 from memory location Z 
Load register R4 from memory location B 
Load register R5 from memory location C 
Floating add X and Y 
Floating multiply B and C 
Store R3 to memory location X 
Store R6 to memory location A 

time -+ 

RI  t ( Y )  
R2 t (Z) 
R4 t (B)  
R5 t (C) 
R3 t R1 +f R2 
R6 t R4 *f R5 
( X ) t  R3 
(A)+ R6 

FDIEEEE 
FDIEEEE 
FDIEEEE 
FDIEEEE 
FD. IEEE 
F .D. IEEE 

F . DIEEEE 
FD. IEEEE 

Figure 3. Reordered code to perform X=Y+Z and A=B*C: (a) machine code; 
(b) pipeline timing. 

I I 

Instruction 
fetch 

Execute Execute 

E 

Execute + Decode Issue Execute 

D I E 

Figure 4. Block diagram of the CDC 6600-style processor. 

uling or reordering of instructions that 
can be done by a compiler prior to execu- 
tion. Most, if not all, pipelined comput- 
ers today use some form of static sched- 
uling by the compiler. Instructions can 
also be reordered after they have entered 
the pipeline, which is called dynamic 
instruction scheduling. Used in some 
high-performance computers over 20 

years ago, it is rarely used in today’s 
pipelined processors. 

Dynamic instruction scheduling: 
scoreboards. The CDC 66004 was an 
early high-performance computer that 
used dynamic instruction scheduling 
hardware. Figure 4 illustrates a simpli- 
fied CDC 6600-type processor. The CDC 
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between execution units and registers, 
the CDC 6600 used a centralized control 

~~ ~ 

I t 1  t ( Y )  
lt2 t (Z) 
IC3 t R1 +f R2 
( X ) t  R3 
I14 t (B) 
IC5 t (C) 
I16 t R1 *f R2 
(A)+ R6 

time -+ 

FDIEEEE 
FDIEEEE 
FDI. . . EEE 
FDI . . . . .  EEEE 
FDIEEEE 
FDIEEEE 
FDI. . . EEE 
FDI. . . . .  EEEE 

Figure 5. Pipeline flow in a CDC 6600-like processor. 

R1 <-(Y) 
R2 <- (Z) 
R3 <- R1 +f R2 
(X) 6- R3 
R1 < - ( B )  
R2 t- (C) 
R3  4- R1 *f R2 
(A)<- R3 

R1 t - ( X )  
R2 <- (Y) 
R3 t- R1 +f R2 
(X) t- R3 
R1 t- (B) 
R2 t- (C) 
R3 +- R1 *f R2 
(A)+ R3 

Load register R1 from memory location Y 
Load register R2 from memory location Z 
Add registers R1 and R2 
Store the result into memory location X 
Load register R1 from memory location B 
Load register R2 from memory location C 
Multiply registers R1 and R2 
Store the result into memory location A 

time + 

FDIEEEE 
FDIEEEE 
FDI . . .EEE 
FDI . . . . .  EEEE 
FDIEEEE 
FDIEEEE 
FDI. . . EEE 
FDI. . . . .  EEEE 

Figure 6.  Pipelined execution of X=Y+Z and A=B*C using Tomasulo’s algo- 
rithm: (a) minimal register machine code; (b) timing for pipeline flow. 

6600 was pipelined only in the instruc- 
tion fetch/decode/issue area. It used 
parallel execution units (some dupli- 
cated) to get the same overlapped effect 
as pipelining. In addition, parallel units 
allowed instructions to complete out of 
order, which, in itself, is a simple form of 
dynamic scheduling. 

The CDC 6600 had instruction buffers 
for each execution unit. Instructions 

were issued regardless of whether regis- 
ter input data were available (the execu- 
tion unit itself had to be available, how- 
ever). The instruction’s control informa- 
tion could then wait in a buffer for its 
data to be produced by other instruc- 
tions. In this way, instructions to differ- 
ent units could issue and begin execution 
out of the original program order. 

To control the correct routing of data 

unit known as the scoreboard. The score- 
board kept track of the registers needed 
by instructions waiting for the various 
functional units. When all the registers 
had valid data, the scoreboard issued a 
series of “go” signals to cause the data 
to be read from the register file, to send 
data to the correct functional unit, and 
to start the unit’s execution. Similarly, 
when a unit was about to finish execu- 
tion, it signaled the scoreboard. When 
the appropriate result bus was available, 
the scoreboard sent a “go” signal to the 
unit, and it delivered its result to the 
register file. 

The original CDC 6600 scoreboard 
was a rather complicated control unit. In 
recent years, the term “scoreboard” has 
taken on a generic meaning: any con- 
trol logic that handles register and result 
bus reservations, including methods that 
are not as sophisticated as the 6600’s 
scoreboard. 

Figure 5 illustrates the example of 
Figure 2 executed with a pipeline using 
scoreboard issue logic similar to that 
used in the CDC 6600. The pipeline la- 
tencies are the same as those in previous 
examples. The add instruction is issued 
to its functional unit before its registers 
are ready. It then waits for its input 
register operands. The scoreboard routes 
the register values to the adder unit when 
they become available. In the meantime, 
the issue stage of the pipeline is not 
blocked, so other instructions can bypass 
the blocked add. Performance is im- 
proved in a way similar to the static 
scheduling illustrated in Figure 3. Here, 
it takes 13 clock periods to perform the 
required operations. 

Developed independently, and at 
roughly the same time as the CDC 6600, 
the IBM 360/91 floating-point unit6 used 
a similar but more elaborate method of 
dynamically issuing floating-point in- 
structions. Instructions were issued to 
reservation stations at the inputs of the 
floating-point units. The reservation 
stations held not only control informa- 
tion, but also operand data. The operands 
were given rags that associated the data 
buffers in the reservation stations with 
functional units that would supply the 
data. The data would then be automati- 
cally routed via a common data bus to the 
appropriate reservation stations as they 
became available. Any instruction in a 
reservation station that had received all 
its input operands was free to issue. 

24 COMPUTER 



Tomasulo’s algorithm,6 used in the 
IBM 360/91, differed from the CDC 6600 
method in two important ways: 

( 1 ) There were multiple reservation 
stations at each unit so that more than 
one instruction could be waiting for 
operands. The first one with all its input 
operands could proceed ahead of the 
others. 

( 2 )  The use of tags, rather than regis- 
ter designators, allowed a form of dy- 
namic register reallocation, as well as 
instruction reordering. This feature was 
particularly important in the 360/91 
because the IBM 360 architecture had 
only four floating-point registers. 

Figure 6 shows the example of Figure 
2 with a minimal register allocation. The 
pipeline timing with Tomasulo’s algo- 
rithm appears in Figure 6b. Here, the 
timing is essentially the same as with the 
CDC 6600 scoreboard in Figure 5. Note, 
however, that the registers are automati- 
cally reassigned by the hardware. If the 
CDC 6600 were given the same code as 
in Figure 6, its timing would be similar to 
the slower timing shown in Figure 2 
because it would be unable to reassign 
registers “on-the-fly” as the 360/91 
does. 

Control dependencies. It may appear 
from the previous examples that, while 
the dynamic scheduling methods are very 
clever, a compiler could be used to ar- 
range the code as well as the hardware 
can (see Figure 3). One need only con- 
sider programs containing conditional 
branches, especially loops, to see that 
this is not the case. 

For static code scheduling, instruction 
sequences are often divided into basic 
blocks. A basic block is a sequence of 
code that can only be entered at the top 
and exited at the bottom. Conditional 
branches and conditional branch targets 
typically delineate basic blocks. To 
phrase i t  differently, control dependen- 
cies break programs into basic blocks. 
Dynamic scheduling allows instruction 
reordering beyond machine-code-level 
basic-block boundaries. This ability to 
schedule past control dependencies is 
demonstrated in later examples. 

Some advanced static scheduling 
methods are also directed at minimizing 
the effects of control dependencies. Loop 
unrolling and vectorizing start with high- 
level language basic blocks and produce 
machine-code-level basic blocks con- 

taining more operations. Performance is 
improved by reducing the number of 
control dependencies, but static schedul- 
ing still cannot look beyond the larger 
machine-code-level blocks. Dynamic 
scheduling can be used in conjunction 
with loop unrolling and vectorizing to 
further enhance performance by looking 
beyond the remaining control dependen- 
cies. 

Trace scheduling’ is based on stati- 
cally predicting conditional branch out- 
comes. These predictions are based on 
compile-time information deduced from 
the source code or from compiler direc- 
tives. Instructions can then be reordered 
around control dependencies, but in- 
structions must also be inserted to 
“undo” any mistaken static branch pre- 
dictions. Incorrect branch predictions 
result in: 

(1) instructions executed that should 
not be, 

( 2 )  additional instructions to undo the 
mistakes, and 

(3) execution of the correct instruc- 
tions that should have been done in 
the first place. 

With dynamic resolution of control de- 
pendencies, there are no mistakes, and 
no “undoing” is necessary. 

Some types of control constructs in- 
herently make certain static scheduling 
techniques extremely difficult. For ex- 
ample, “while” loops (in Fortran, Do 
loops with early exit conditions) severely 
restrict loop unrolling and vectorizing 
techniques because the exact number of 
loop iterations is only discovered at the 
time the loop is completed. 

As the following example illustrates, 
however, there are other advantages to 
dynamic resolution of control dependen- 
cies associated with ordinary Fortran Do 
loops. Figure 7 shows a Fortran loop and 
a compilation into machine instructions. 
The loop code has been statically sched- 
uled. Its execution for two iterations on a 
standard pipelined machine is shown in 
Figure 7c (left pipeline flow), and its 
execution with a Tomasulo-like dynamic 
hardware scheduler is shown in Figure 7c 
(right pipeline flow). 

Performance with the dynamic sched- 
uling algorithm is improved because the 
conditional branch at the end of the loop 
issues and executes before some of the 
preceding instructions have begun exe- 
cution. After the conditional branch is 
out of the way, instructions following the 

branch instruction can also be fetched 
and executed before all the instructions 
from the previous basic block(s) have 
executed. 

Note that, in the above example, nc 
special techniques are used to improve 
the performance of the conditiona’ 
branch instruction. That is, there is nc 
branch prediction or delayed branching 
Only after the branch is executed car 
instruction fetching of the target instruc- 
tion begin. Dynamic scheduling reduces 
the delay between the branch and preced- 
ing instructions. Therefore, performance 
improvements for conditional branches 
accrue regardless of whether a particular 
branch is taken or not. More advanced 
branching methods tend to improve per- 
formance after the branch execution by 
reducing the hole in the pipeline between 
the branch and the following instruction. 
Consequently, special branching tech- 
niques can be successfully used to sup- 
plement a dynamic scheduling algo- 
rithm. 

Quantitatively, with static scheduling 
only, each loop iteration in Figure 7 
executes in 18 clock periods. With dy- 
namic scheduling it takes only 1 1  clock 
periods. This is an improvement of about 
60 percent. A more complete perform- 
ance comparison can be found in Weiss 
and Smith,8 where the Cray-1 architec- 
ture is used as a common base for com- 
paring various instruction issue meth- 
ods, including Tomasulo’s algorithm. 
Instructions are statically scheduled 
prior to the performance analysis, and 
Tomasulo’s algorithm is shown to pro- 
vide a 60-percent performance improve- 
ment beyond that provided by static 
scheduling. 

Data dependencies. Techniques (both 
static and dynamic) that reduce the per- 
formance impact of control dependen- 
cies tend to expose data dependencies as 
the next major performance obstacle. 

(1)  Dynamic scheduling around con- 
trol dependencies causes instructions in 
the basic block following a branch to be 
eligible for issue and execution before 
all the instructions in the previous block 
have finished. Instructions from the two 
different basic blocks may have data 
dependencies that a static scheduler 
cannot resolve. 

( 2 )  Static scheduling methods that 
increase basic block size, such as trace 
scheduling and loop unrolling, increase 
the scheduling possibilities within the 
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Do 1 I = 1,100 
A(1) = B(1) + C(I)*D(I) 1 

R1 t 100 
R2 t 1 

loop: R3 t (C + R2) 
R4 t (D + R2) 
R5 t (B + R2) 
R6 t R3 *f R4 
R7 t R6 +f R5 
(A + R2) t R7 
R2 t R2 + 1 
Br loop; R2 I RI 

static scheduling only dynamic scheduling 

R3 t (C + R2) 
R4 t (D + R2) 
R5 t (B + R2) 
R6 t R3 *f R4 
R7 t R6 +f R5 
(A + R2) t R7 
R2 t R2 + I 
Br loop; R2 I R1 
R3 t (C + R2) 
R4 t (D + R2) 
R5 t (B + R2) 
R6 t R3 *f R4 
R7 t R6 +f R5 
(A + R2) t R7 
R2 t R2 + 1 
Br loop; R2 I RI 

FDIEEEE FDIEEEE 
FDIEEEE FDIEEEE 
FDIEEEE FDIEEEE 
FD. . IEEE FDI. .EEE 
F..D..IEEE FDI....EEE 

F..D..IEEEE FDI... . . .  EEEE 
F. .DIE FDIE 

FDIE FDIE 
FDIEEEE FDIEEEE 

FDIEEEE FDIEEEE 
FDIEEEE FDIEEEE 
FD. . IEEE FDI. . EEE 
F..D..IEEE FDI....EEE 

F..D..IEEEE FDI. . . . . .  EEEE 
F. .DIE FDIE 

FDIE FDIE 

Figure 7. Loop execution with and without dynamic instruction scheduling: (a) Fortran loop; (b) machine in- 
structions; (c) pipeline flows. 

basic block. Indeed, this is a major justi- 
fication for using such methods. In the 
process, however, the number and vari- 
ety of data dependencies is increased as 
well. 

Data dependencies may involve data 
held either in registers or memory. There 
are three varieties of data dependenciesg: 

(1) flow dependencies, when a result 
operand of one instruction is used 
as a source operand for a subse- 
quent one, 

(2) output dependencies, when a re- 
sult operand of one instruction is 
also used as a result operand for a 
subsequent one, and 

(3) antidependencies, when a source 
operand of one instruction is used 
as a result operand for a subse- 
quent one. 

All three types of data dependencies 
can occur for either register data or 
memory data. Flow dependencies are 
inherent in the algorithm and cannot be. 
avoided. Within a basic block, output 
and antidependencies involving regis- 
ters can be avoided by static methods, 
specifically by reallocating registers 
(assuming that enough registers are 
available). However, dynamic schedul- 
ing of branch instructions may result in 
situations where output and antidepen- 
dencies involving register instructions in 

different basic blocks must be resolved. 
For example, in Figure 7, one can con- 
ceive of dynamic issuing methods where 
the load from memory into R3 is ready to 
issue for the second loop iteration before 
the instruction using the old value of R3 
(i.e., R6 = R3 *f R4) has issued in the first 
loop iteration. (While this may at first 
seem farfetched, the dynamic issuing 
method used by the ZS-1 frequently 
causes such a situation.) Dynamic regis- 
ter reallocation such as that provided by 
Tomasulo’s algorithm can effectively 
deal with such situations. 

Probably more difficult to deal with 
than dependencies involving registers 
are memory data dependencies. All three 
forms of data dependencies that can 
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occur with registers can also occur with 
memory data. For example, a load in- 
struction following a store to the same 
memory address is a flow dependence, 
and the load may not be reordered ahead 
of the store instruction. On the other 
hand, if the load and store are to different 
addresses, there is no problem with reor- 
dering them. 

Load and store instructions to scalar 
variables produce dependencies that are 
relatively simple to resolve. Further- 
more, data dependencies involving sca- 
lars can often be removed by optimizing 
compilers. 

Memory dependencies involving ar- 
rays and other data structures are much 
more difficult to schedule. The major 
problem with scheduling such memory 
dependencies lies in detecting them. 
Accesses involving arrays and other data 
structures use index values that can 
change at runtime, so complete informa- 
tion regarding the index values may be 
difficult or impossible for the compiler 
to discern. This is because the only ad- 
dress information available to the com- 
piler is in symbolic form (such as array 
subscript expressions expressed in a 
high-level language). 

Trace scheduling and loop unrolling 
combine high-level language basic 
blocks into larger machine-language 
ones. Significant performance advan- 
tages accrue if operations from the origi- 
nal basic blocks can be “blended” to- 
gether as the instructions are scheduled. 
A good schedule tends to have load in- 
structions near the top of a basic block 
with functional operations (adds and 
multiplies) in the middle and stores near 
the bottom. To achieve this with trace 
scheduling or loop unrolling, load in- 
structions must often be scheduled ahead 
of stores belonging to different loop it- 
erations. Consequently, the ability to 
determine data dependencies involving 
loads and stores from different HLL 
basic blocks is of critical importance. In 
the trace scheduling method, this proc- 
ess, known as memory disambiguation,I0 
is a very important component. Memory 
disambiguation manipulates array sub- 
script expressions in the form of systems 
of integer equations and inequalities to 
determine if load and store addresses to 
the same array can ever coincide in such 
a way that it is unsafe to interchange the 
load and store instructions. 

Vectorizing compilers also concen- 
trate on this kind of dependence, using 
very similar methods.” In fact, resolving 

memory data dependencies involving 
array references is a primary feature of 
vectorizing methods. Because of the 
excellent literature available on vec- 
torizing compilers, the remaining dis- 
cussion on memory data dependencies is 
phrased in terms of vectorizing com- 
pilers. 

If the loop statement A(/) = A(I) + C(I)  
is vectorized. 

( 1 )  the elements of A(/) are loaded as 

(2)  the elements of C ( I )  are loaded as 

(3) there is a vector add of A(/) and 

(4) A([) is stored as a vector. 

a vector, 

a vector, 

C(I),  and 

The vector load of the A ( / )  followed 
later by the vector store amounts to a 
massive reordering of the loads and 
stores. That is, loads from A([) for later 
loop iterations are allowed to pass stores 
for earlier iterations. The loop A(I) = A(I- 
1) + C ( / )  cannot be vectorized as just 
described, however, because the loads of 
A([-1) involve values just computed 
during the previous loop iteration. (Some 
simple linear recurrences may vectorize 
on certain computers that have special 
recurrence instructions. Throughout, 
this article uses simple examples for il- 
lustrative purposes; more complex linear 
and nonlinear recurrences could just as 
easily be used to prove the point.) 

In two important classes of problems 
the static data dependence analysis done 
by compilers cannot achieve perform- 
ance as high as dynamic runtime analy- 
sis. The first class involves analyses of 
such complexity that the compiler can- 
not safely determine if the subscripts are 
independent. These are referred to as 
ambiguous subscripts. The second class 
consists of code that has true load/store 
conflicts, but only for a few iterations of 
a loop. 

An example of ambiguous subscripts 
is shown below: 

NL1=I 
NL2=2 
Do 1 I=I,N 
DO 2 J=I,N 

NTEMP=NL I 
NL 1 =NL2 

1 NL2=NTEMP 

2 A(J,NLl)=A(J- 1 ,NL2)+B(J) 

In the above example, the array A is split 
into two halves; old values in one half are 

used to compute new values in the other. 
When this process is finished, the two 
halves are switched (by interchanging 
NL 1 and NL2). This kind of construct can 
be found in many Fortran programs. In 
fact, the original program from which 
Lawrence Livermore Kernel 8” was ex- 
tracted used this kind of technique. A 
vectorizing compiler must determine 
that NLI is never equal to NL2 to vec- 
torize the loop. It is doubtful that any 
current vectorizing compiler has this 
capability. (However, a compiler might 
compile the example code as both vector 
and scalar and use a runtime test when- 
ever the loop is encountered to determine 
which version should be used.) In 
general, NLI and NL2 could be arbitrar- 
ily complex functions of any number of 
variables. This suggests the theoretical 
undecidability of vectorizable loops. 

As another example, consider array 
references that frequently occur when 
handling sparse matrices. For example, 
A(MAP(/)) = A(MAP(I)) + B ( / ) ,  where 
MAP is an integer array of indices. This 
code can be vectorized (with vector 
gathedscatter instructions) if the com- 
piler can determine that none of the 
MAP(I) are equal. In most cases this is 
beyond a vectorizing compiler’s capa- 
bilities. 

As mentioned above, the second im- 
portant class of problems where static 
analysis is inferior to dynamic analysis 
occurs when loops have true data de- 
pendencies, but for relatively few of the 
loop iterations. For example, consider 
the following nested loop: 

DO 1 J=l,N 
DO 1 I=l,N 
X(1) = X(J) + Y(1) 1 

For a particular execution of the inner 
loop, the value of X(J) changes partway 
through, when I d .  The store into X(I) 
when Id must follow all the loads of 
X(J) for preceding inner loop iterations. 
This store must precede all subsequent 
loads of X(J). 

Another example is the case where 
subscripted subscripts are used; for ex- 
ample, the inner loop statement X ( M ( K ) )  
= X(N(K)) + W(K),  where M and N have 
a small nonempty intersection. In this 
case, many, but not all, of the loads may 
pass stores. (The ones that may not pass 
occur when M(I1)  = N(I2) for I2 < /I.) 

Dynamic scheduling: stunt boxes. 
al- The IBM 360/91 memory system’* 
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DO I J=l,N 
DO 1 I=I,N 
X(1) = X(J) + Y(1) 1 

R3 t (Rl )  
R4 t (Y + R2) 
R6 t (Y+l + R2) 
R5 t R3 +f R4 
( X +  R 2 ) t  R5 
R7 t (Rl) 
R8 t R6 +f R7 
(X+1 + R2) t R8 
R2 t R2 + 1 
Br loop; R2 5 R1 
R3 t (Rl )  
R4 t (Y + R2) 
R6 t (Y+1 + R2) 
R 5 t  R 3 + f R 4  
(X + R2) t R5 
R7 t (Rl) 
R8 t R6 +f R7 
(X+1 + R2) t R8 
R2 t R2 + 1 
Br loop; R2 5 R1 

FDIEEEE 
FDIEEEE 
FDIEEEE 
FDI. . EEE 
FDI . . . .  EEEE 
FDI . . . .  EEEE 
FDI . . . . . . .  EEE 
FDI. . . . . . . . .  EEEE 
FDIE 
FDIE 

FDI . . . .  EEEE 
FDI....EEEE 
FDI . . . .  EEEE 
FDI . . . . . .  EEE 
FDI . . . . . . . .  EEEE 
FDI . . . . . . . .  EEEE 
FDI . . . . . . . . . . .  EEE 
FDI . . . . . . . . . . . . .  EEEE 
FDIE 
FDIE 

no memory conflicts with memory conflict 

R3 t (Rl) 
R4 t (Y + R2) 
R6 t (Y+1 + R2) 
R5 t R3 +f R4 
( X + R 2 ) t  R5 
R7 t (Rl) 
R8 t R6 +f R7 

R2 t R2 + 1 
Br loop; R2 5 RI  
R3 t (RI) 
R4 t (Y + R2) 
R6 t (Y+1 + R2) 
R5 t R3 +f R4 
(X + R2) t R5 
R7 t (Rl) 
R8 t R6 +f R7 

R2 t R2 + 1 
Br loop; R2 5 R1 

(Xi-I + R2) t R8 

(Xi-I  + R2) t R8 

FDIEEEE FDIEEEE 
FDIEEEE 
FDIEEEE 
FDI. .EEE 
FDI . . . .  EEEE 
FDIEEEE 
FDI . .  .EEE 
FDI . . . . .  EEEE 
FDIE 
FDIE 

FDIEEEE 
FDIEEEE 
FDIEEEE 
FDI . .EEE 
FDI . . . .  EEEE 
FDIEEEE 
FDI. . .  EEE 
FDI . . . . .  EEEE 
FDIE 
FDIE 

FDIEEEE 
FDIEEEE 
FDI. .EEE 
FDI . . . .  EEEE 
FDI . . . .  EEEE 
FDI.. . . . . .  EEE 
FDI. . . . . . . . .  EEEE 
FDIE 
FDIE 

FDIEEEE 
FDIEEEE 
FDIEEEE 
FDI. .EEE 
FDI .... EEEE 
FDIEEEE 
FDI .. .EEE 
FDI ..... EEEE 
FDIE 
FDIE 

Figure 8. The effects of loadstore reordering: (a) a nonvectorizable loop with a memory hazard; (b) pipeline execu- 
tion without dynamic memory reordering; (c) pipeline execution with dynamic memory reordering. 
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lowed load instructions to pass store 
instructions after they had been issued. 
The memory system allowed the dy- 
namic reordering of loads and stores as 
long as a load or a store did not pass a 
store to the same address. Store instruc- 
tions could issue before their data were 
actually ready. There was a queue for 
store instructions waiting for data. Load 
instructions entering the memory system 
had their addresses compared with the 
waiting stores. If there were no matches, 
the loads were allowed to pass the wait- 
ing stores. I f  a load matched a store 
address, i t  was held in a buffer. When the 
store data became available, they were 
automatically bypassed to the waiting 
load as well as being stored to memory. 

The CDC 6600 memory system was 
simpler than in the IBM 360/91 and al- 
lowed some limited reordering of mem- 
ory references to increase memory 
throughput in a memory system that used 
no cache and had a relatively slow inter- 
leaved main memory. In the CDC 6600, 
the unit used for holding memory refer- 
ences while they were waiting for mem- 
ory was called the stunf bo.\-. The CDC 
6600 stunt box did not actually allow 
loads to pass waiting stores, hut just as 
the term “scoreboard” has taken on a 
more general meaning than the way it 
was used in the 6600, the term “stunt 
box” has come to mean any device that 
allows reordering of memory references 
in the memory system. 

Figure 8a shows a Fortran loop, un- 
rolled twice, that has a memory data 
dependence that inhibits vectorization. 
Because of this, the compiler is restricted 
from moving certain loads above stores 
that may potentially be to the same ad- 
dress. Figure 8b shows pipeline usage 
with dynamic scheduling but with no 
provision for loads to pass stores via a 
stunt box. Figure 8c shows pipeline us- 
age with dynamic scheduling and a 
memory stunt box. The left pipeline flow 
is for a sequence of code where I d  so 
there are no dependencies involving X ( f )  
and X ( J ) .  The right pipeline flow in- 
cludes the case where f “passes” J so 
that there is temporarily a memory haz- 
ard preventing a load from X(J) from 
passing a store to X ( I )  when I d .  This 
results in a temporary glitch in the execu- 
tion of memory instructions, but there is 
no overall time penalty as the code se- 
quence continues past the point where 
Id. By inspecting the timing diagrams, 
the pipeline without dynamic load/store 
reordering can execute one loop iteration 

(two iterations in the original rolled loop) 
every 17 clock periods. With dynamic 
load/store reordering, i t  executes an it- 
eration every I3 clock periods. Without 
any dynamic scheduling at all, each loop 
iteration takes 25 clock periods (this case 
is not illustrated). Using full dynamic 
scheduling results in an almost two- 
times performance improvement over 
static scheduling alone. 

The viability of 
dynamic scheduling 

As pointed out, dynamic scheduling 
was used in large-scale computers in the 
1960s and has not been used to any ap- 
preciable extent since. One can only 
speculate about the reasons for abandon- 
ment of dynamic scheduling in produc- 
tion high-performance machines. Fol- 
lowing are some of the possible reasons: 

( I ) Increased difficulty in hardware 
debugging: a hardware failure can cause 
errors that are highly dependent on the 
order of instruction issuing for many 
clock periods prior to the actual detec- 
tion of the error. This makes error repro- 
ducibility difficult. The fault diagnosis 
problem was compounded in the IBM 
360/91 and CDC 6600 because discrete 
logic was used, and diagnostic resolution 
had to be very fine. 

(2)  Longer clock period: dynamic in- 
struction issuing can lead to more com- 
plex control hardware. This carries with 
it potentially longer control paths and a 
longer clock period. 

(3) Advances in compiler develop- 
ment: initially, dynamic scheduling per- 
mitted simple compilers that required 
relatively little static scheduling capa- 
bility. However, improvedcompilers with 
better register allocation and scheduling 
could realize some (but certainly not all) 
of the benefits of dynamic issuing. 

Why consider dynamic scheduling to- 
day, when it was passed by years ago? 
First, very large scale integration parts 
and extensive use of simulation in to- 
day’s computers alleviate many of the 
debugging and diagnosis problems pres- 
ent 20 years ago. Simulation can be used 
to find design errors, and hardware faults 
need only be located to within a (large) 
replaceable unit. That is, if a fault is 
detected in a CPU’s instruction issue 
logic, the entire CPU, or at least a large 
part of it, can be replaced; there is no 

need for extensive and detailed fault 
location methods. 

Second, i t  is possible to use methods 
that selectively limit the generality of 
dynamic scheduling so that significant 
performance benefits can be realized 
while keeping the control logic simpler 
than in the CDC 6600 and IBM 360/91. 
Techniques of this type have been suc- 
cessfully used in the ZS-l and are de- 
scribed in later sections. 

Third, both compiler scheduling and 
processor design are much more mature, 
and most of the big performance gains in 
these areas have probably been made. 
Consequently, the gains achievable by 
dynamic scheduling may appear more 
attractive today than they did 20 years 
ago. 

The ZS-1 

The Astronautics ZS-l is a recently 
developed, high-speed computer system 
targeted at scientific and engineering 
applications. The ZS-l central processor 
is constructed of transistor-transistor 
logic-based technology and has no vec- 
tor instructions, but makes extensive use 
of dynamic instruction scheduling and 
pipelining to achieve one-third the per- 
formance of a Cray X-MPI. 

A block diagram of a ZS-1 system is 
shown in Figure 9. The ZS-l is divided 
into four major subsystems: the central 
processor, the memory system, the I/O 
system, and the interconnection network. 
In its maximum configuration, the ZS-l 
contains one gigabyte of central mem- 
ory, and an 1/0 system consisting of up to 
32 input-output processors. Unix is the 
primary operating system. 

The ZS-1 uses a decoupled architec- 
ture13 that employs two instruction pipe- 
lines to issue up to two instructions per 
clock period. One of the instruction 
streams performs the bulk of fixed-point 
and memory addressing operations, 
while the other performs floating-point 
calculations. 

To  support the two instruction 
streams, the decoupled architecture of 
the ZS-1 provides two sets of operating 
registers. A set of thirty-one 32-bit A 
registers is used for all memory address 
computation and accessing, and a second 
set of thirty-one @-bit X registers is 
used for all floating-point operations. 
The A and X registers provide fast tempo- 
rary storage for 32-bit integers and 64- 
bit floating-point numbers, respectively. 
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A distinctive feature of the ZS-1 is the 
use of architectural queues for communi- 

I 1 

Memory 

32 Mbytes - 1 Gbyte 

Interconnection 
network 

1.4 Gbytes I s s 
zs-1 

central 
processing 

unit 

Figurre 9. Overall diagram of the ZS-1 system. 

Do 10 I = 1, 100 
A(1) = B(I)*C(I) + D(I) 10 

S I :  A 5 t O  
S2: A 6 t A - 8  
S3: A 7 t B - 8  
S4: ASt C-8 
S 5 :  A 9 t D - 8  
S6: loop: A5 t A5 + 1 
S7: 
S8: 
S9: 

S IO: 
S I ] :  X 2 t X L Q  
S12: 
S13: 
S 14: 
S 15: Br loop; B==O 

B, A0 t (A5 == 100) 
XLQ t (A7 = A7 + 8) 
XLQ t (A8 = A8 + 8) 
XLQ t (A9 = A9 + 8) 

X3 t X2 *f XLQ 
XSQ t XLQ +f X3 
(A6 t A6 + 8) = XSQ 

.loop count 

.load initial pointer to A 

.load initial pointer to B 

.load initial pointer to C 

.load initial pointer to D 

.increment A5 

.compare =, set Branch Flag 

.load next element of B 

.load next element of C 

.load next element of D 

.copy B element into X2 

.multiply B and C 

.add D; result to XSQ 
store result into A 
.branch on false to “loop” 

Figur’e 10. A Fortran loop and its ZS-1 compilation: (a) Fortran source; 
(b) machine language version of the loop. 

cation with main memory. There are two 
sets of queues. One set consists of a 15- 
element A load queue (ALQ) and a 7- 
element A store queue (ASQ). These A 
queues are used in conjunction with the 
32-bit A registers. The other set of queues 
consists of a 15-element X load queue 
(XLQ) and a 7-element X store queue 
(XSQ). These X queues are used in con- 
junction with the 64-bit X registers. 

Instructions. Instruction formats are 
reminiscent of those used in the CDC 
6600/7600 and Cray-1. There is an op- 
code, and operands specified by i, j, and 
k fields. The j and k fields typically 
specify input operands and the i field 
specifies the result. The i, j, and k oper- 
ands may be either general-purpose reg- 
isters or queues. A designator of 31 in the 
j or k field indicates that the first element 
of the load queue is used as a source 
operand. A designator of 31 in the i field 
indicates that the result is placed into the 
store queue. In this way, queue operands 
can be easily intermixed with register 
operands in all instruction types. The 
opcode determines whether A registers 
and queues or X registers and queues are 
to be operated upon. 

The ZS-1 architecture is best under- 
stood by examining a sequence of ma- 
chine code. Figure 10a contains a simple 
Fortran loop, and Figure lob contains a 
compilation into ZS- 1 machine instruc- 
tions. The instruction SI initializes 
fixed-point register A5, which is used as 
the loop counter. Then instructions S 2  
through S5 initialize A 6  through A9 to 
point to the arrays accessed in the loop. 
The pointers are offset by -8 because 
byte addressing is used, and the load and 
store instructions use pre-autoincre- 
menting. 

In the loop body, instructions S6 and 
S7 increment the loop counter and test it 
to see if it has reached the upper limit. 
The test is done by a compare instruc- 
tion, which generates a Fortran Boolean 
result that is placed in A 0  (because A 0  is 
defined to always hold constant 0, this is 
equivalent to discarding it), and it also 
sets the architectural branch flag, B, to 
the result of the comparison. The branch 
flag will be tested by the conditional 
branch instruction that terminates the 

Instructions S8 through S10 load the 
elements from arrays B, C, and D. These 
memory operands are automatically 

loop. 
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Figure 11. The ZS-1 processor pipelines. 

Execute Execute 

placed in the XLQ. Because the destina- 
tion of the load instructions are queues 
implied by the opcode, the i field of load 
and store instructions may be used to 
specify a result register for the effective 
address add. This makes autoincre- 
menting memory operations particularly 
easy to implement. 

Then instructions SI I through S I3  
copy the memory data from the XLQ and 
perform the required floating-point op- 
erations. These are generic floating- 
point instructions with register designa- 
tor 31 used wherever there is a queue 
operand. The floating-point add is of 
particular interest because i t  not only 
uses the XLQ as its j operand, but it also 
uses the XSQ for its result. The store 
instruction, S14, generates the store 
address in array A. 

D +  

Decoupled 
implement at ion 

I - E +  

A simplified block diagram of the ZS- 
1 CPU pipelines is shown in Figure 11. 
The pipeline segments include an in- 
struction fetch stage where instruction 
words are read from a 16-kilobyte in- 

Decode 

+ b  

struction cache. An instruction word may 
contain either one 64-bit instruction 
(used for conditional branches and loads 
and stores with direct addressing) or two 
32-bit instructions (by far the most 
common case). The next pipeline seg- 
ment is the “splitter” stage, where in- 
struction words are split into instructions 
and sent to the two instruction pipelines. 
In one cycle, the instruction word is 
examined by the A instruction pipeline 
and the X instruction pipeline to see 
whether it contains one or two instruc- 
tions and to determine whether the in- 
structions are: 

Execute 
+ +D 

Issue Execute 

i e 

( 1 )  X unit instructions, 
(2) A unit instructions, 
(3) branch instructions or system call/ 

return instructions. 

Branch and system call/return instruc- 
tions are held and executed in the splitter 
stage. Instructions belonging to the first 
two classes are sent to an instruction 
buffer at the beginning of the appropriate 
instruction pipeline. Up to two instruc- 
tions are forwarded to the instruction 
pipelines per clock period. 

The instruction buffer in the X instruc- 

tion pipeline can hold 24 instructions. 
The buffer in the A instruction pipeline is 
four instructions deep and can be by- 
passed. The very deep X instruction 
buffer allows the A instruction pipeline 
to issue many instructions in advance of 
the X instruction pipeline. The A instruc- 
tion buffering is intended to reduce 
blockages of the splitter. The bypass 
allows instructions to move quickly up 
the A pipeline when i t  is empty; for 
example, following some branches. 

In the instruction pipelines, pipeline 
segments are: 

( 1 ) the buffer stage where instructions 
are read from the instruction buff- 
ers, 

(2) the decode stage where instruc- 
tions are decoded, and 

(3) the issue stage where instructions 
are sent to functional units for 
execution. 

At the issue stage a simple Cray-I-like 
issuing method allows instructions to 
begin execution in strict program se- 
quence. For example, if an instruction 
uses the result of a previously issued, but 
unfinished, instruction, it waits at the 
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I 1 
1: A 5 t A 5 + 1  
2 :  B, A0 t (A5 == 100) 
3 :  XLQ t (A7 = A7 + 8) 
4 :  XLQ t (A8 = A8 + 8) 
5: XLQ t (A9 = A9 + 8) 

5 :  X3 t X2 *f XLQ 
E.: XSQ t XLQ +f X3 
9: (A6 t A6 + 8) = XSQ 

6 :  X2 t XLQ 

10: Br loop;B==O 
11: A 5 t A 5 + 1  
l:!: B, A0 t (A5 == 100) 
13 :  XLQ t (A7 = A7 + 8) 
14: XLQ t (A8 = A8 + 8) 
15: XLQ t (A9 = A9 + 8) 
I t ) :  X2 t XLQ 
1:’: X3 t X2 *f XLQ 
18: XSQ t XLQ +f X3 
19: (A6 t A6 + 8) = XSQ 
20: Br loop;B==O 

FSdie 
FSbdie 
FSbdieeee 
FS.bdieeee 
FS.bdieeee 
FSBD. . . IE 
FSB . . .  DIEEE 
FS . . . .  BD..IEEE 
FSbdi . . . . . . . .  eeee 
FS 
FSdie 
FSbdie 
FSbdieeee 
FS.bdieeee 
FS.bdieeee 
FSBD.. . IE 
FSB . . .  DIEEE 
FS.B . . .  D..IE 
FSbdi . . . . . .  eeee 
FS 

Figure 12. The processing of two iterations of the loop in Figure 10. 

issue register until the previous instruc- 
tion completes. 

At the time an instruction is issued 
from one of the pipelines, operand data 
are read from the appropriate register 
files and/or queues. After issue, the in- 
struction begins execution in one of the 
parallel functional units. The primary 
funclional units for the fixed-point A 
instnictions are: a shifter, an integer 
adder/logical unit, and an integer multi- 
plier/divider. The primary functional 
units for the floating-point X instruc- 
tions are: an X logical unit, a floating- 
poini. adder, a floating-point multiplier, 
and a floating-point divider. Data can be 
copied between A and X registers via the 
copy unit. 

Ttie ZS-1 uses several dynamic sched- 
uling techniques: 

(1 )  The architectural instruction 
stream is split in two, with each resulting 
stream proceeding at its own speed. This 
not only permits the ZS-1 to sustain an 
instruction issue rate of up to two in- 
structions per clock period, but it allows 
the memory access instructions to dy- 
nami.cally schedule ahead of the float- 
ing-point instructions. In addition, the 
&oreboard issue logic at the end of each 

of the instruction pipelines remains as 
simple as in the Cray-1; no instruction 
reordering is done within a single pipe- 
line. 

(2) Branch instructions are held and 
executed at the splitter. This is accom- 
plished by decomposing branch opera- 
tions into their two fundamental compo- 
nents: comparing register values and 
transferring control. Compare instruc- 
tions are detected in the splitter and set 
the branch flag to “busy” as they pass 
through. If a branch instruction encoun- 
ters a “busy” branch flag, it waits in the 
splitter until the flag is set by the com- 
pare instruction. Compare instructions 
are subsequently issued from the appro- 
priate instruction pipeline, depending on 
whether fixed- or floating-point data are 
tested. A comparison sets the branch flag 
when it completes. Consequently, branch 
instructions do not directly read register 
values, they simply test the branch flag. 
This mechanism allows branches to be 
executed dynamically ahead of instruc- 
tions that precede them in the instruction 
stream. Furthermore, executing 
branches very early in the pipeline re- 
duces, and in some cases eliminates, any 
resulting “hole” in the pipeline. 

(3) Using queues for memory oper- 

ands provides an elastic way of joining 
the memory access and floating-point 
functions. This elasticity allows the 
memory access function to schedule it- 
self dynamically ahead of the floating- 
point operations. This can also be viewed 
as a way of achieving dynamic register 
allocation. That is, each load or store 
instruction dynamically allocates a new 
value of “register” 31. 
(4) Store instructions merely generate 

store addresses; they do not wait for the 
store data beforejssuing. In the memory 
system is a stunt box containing two 
queues, one for load addresses and the 
other for store addresses. Store addresses 
wait in their queue until a corresponding 
data item appears in a store data queue 
(one for fixed-point data, one for float- 
ing-point). Load addresses may pass 
store instructions that are waiting for 
their data. Memory hazards are checked 
by comparing load and store addresses so 
that loads do not pass stores to the same 
address. 

Figure 12 illustrates the processing of 
two iterations of the loop in Figure 10. 
As in earlier examples, only the instruc- 
tions within the loop body are shown. 
Many of the pipeline stages are the same 
as in previous examples, and there are 
two new stages. One of the new stages is 
the splitter stage, the other is the buffer 
stage at the beginning of each of the 
instruction pipelines (although the buffer 
in the fixed-point pipeline can be by- 
passed). Because there are actually two 
distinct instruction pipelines following 
the splitter, for all stages after the split- 
ter lowercase letters are used to denote 
fixed-point instructions, and uppercase 
letters are used for floating-point in- 
structions. Pipeline lengths are the same 
as in the previous examples to more 
clearly demonstrate the principles at 
work. To summarize, the letters labeling 
pipeline stages have the following mean- 
ings: 

F denotes the instruction is in the fetch 

S indicates the instruction word is 

B or b indicates the instruction is read 

D or d indicates the instruction is 

I or i indicates the instruction is issued 

E or e indicates the instruction is exe- 

stage, 

processed at the splitter, 

from an instruction buffer, 

decoded, 

for execution, 

cuted. 
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The first instruction (AS = AS + 1) is split 
at time 0. decoded at time 1 (the buffer is 
bypassed), issued at time 2, and executed 
at time 3. 

The second instruction is split at the 
same time as the first and is read from the 
buffer at time I .  Note that this second 
instruction sets the branch flag. The next 
three instructions follow a similar se- 
quence for processing. 

The sixth instruction is the first X 
instruction. It is split at time 2, is read 
from the X instruction buffer at time 3, 
and is decoded at time 4. It must then 
wait for data from the XLQ before 
continuing. 

The seventh and eighth instructions 
perform the required floating-point op- 
erations in sequence, with the eighth 
putting its result in the XSQ for storage 
to memory. 

The ninth instruction generates the 
store address for the preceding one. It is 
an A instruction that issues at time 7. It 
passes through four clock periods of 
execution while the address is generated 
and translated. It then waits while the pre- 
ceding floating-point addition completes. 
Then the result is stored to memory. 

The tenth and final instruction in the 
loop body is the conditional branch. It is 
detected and executed in the splitter 
stage. Note that, in this example. all but 
one of the clock periods required for the 
conditional branch are hidden; instruc- 
tion issuing proceeds without interrup- 
tion in the fixed-point pipeline. 

The second loop iteration follows the 
first in Figure 12, and all subsequent 
loop iterations are similar to it. In this 
example. steady state performance is 
determined by the rate at which the fixed- 
point operations can be issued. In cases 
where tloating-point dependencies are 
more severe, steady state performance is 
determined by the floating-point pipeline. 

By extrapolating data from the dia- 
gram we can see that up to three itera- 
tions of the loop are in some phase of 
processing simultaneously. This is a 
clear example of the ability of dynamic 
scheduling to fetch and execute instruc- 
tions beyond basic-block boundaries. 
During many clock periods eight or more 
instructions are processed in parallel (not 
counting those blocked in the pipeline). 

The example just given is intended to 
illustrate dynamic scheduling aspects of 
the ZS-l implementation. In fact, the ZS- 
1 compilers automatically unroll loops. 
The degree of unrolling is a function of 

AS t AS + I 

XLQ t (AI )  
X L Q t  ( A 2 + 8 )  
XLQ t (A2 + 8) 
XI t XLQ 
XSQ t XI +f XLQ 
X2 t XLQ 
(A3 + 8) t XSQ 
XLQ t (AI )  
XSQ t X2 +f XLQ 
(A3 + 8) t XSQ 
Br loop:B==O 
AS t AS + 1 
B. A0 t (AS == 100) 
XLQ t (AI )  
XLQ t (A2 + 8) 
XLQ t (A2 + 8) 
XI t XLQ 
XSQ t XI +f XLQ 
X2 t XLQ 
(A3 + 8) t XSQ 
XLQ t ( A I )  
XSQ t X2 +f XLQ 
(A3 + 8) t XSQ 
Br loop;B==O 

B, A0 t (AS == 100) 
F S d i e  
FSbdie 
FSbdieeee 
FS.bdieeee 
FS.bdieeee 
FSBD. . . IE 
FSB . . .  DIEEE 
FS . . . .  BDIE 
FSbdi . . . . .  eeee 
FS.bdieeee 
FS . . .  BD.IEEE 
FS.bdi . . . . . .  eeee 
FS 
FSdie 
FSbdie 
FSbdieeee 
FS.bdieeee 
FS.bdieeee 
FSBD. . . IE 
FSB . . .  DIEEE 
FS . . . .  BDIE 
FSbdi . . . . .  eeee 
FS.bdieeee 
FS . . .  BD.IEEE 
FS.bdi . . . . . .  eeee 
FS 

Figure 13. ZS-1 execution of a nonvectorizable loop. 

the size of the loop; for a simple loop as 
illustrated in Figure 12, the Fortran 
compiler unrolls the loop body eight 
times. When this is done, and instruc- 
tions are rescheduled using the resulting 
larger basic blocks, vector levels of per- 
formance can be achieved. For example, 
if the loop of Figure 12 is unrolled for the 
ZS-I, a load or store instruction issues 
during 94 percent of the clock periods. In 
other words, the memory path is busy 94 
percent of the time. Many vector pro- 
cessors, including the Cray-l and Cray- 
2, have their vector performance limited 
by their ability to perform only one load 
or store operation per clock period. For 
practical purposes, this is the same bot- 
tleneck that ultimately limits ZS-l per- 
formance, and vector instructions would 
provide no significant performance 
benefit. 

On the other hand, when faced with 
loops like those in Figure 8 that do not 
vectorize, the ZS-l can achieve vector 
performance levels. This is illustrated in 
Figure 13, where the loop is unrolled two 
times to permit comparison with the 
earlier example. 

This example illustrates the iterations 

where no memory conflict exists. When 
I=J and there is a memory conflict, a 
slight perturbation that lasts for only two 
loop iterations occurs. The delays caused 
by this perturbation are completely hid- 
den by the dynamic scheduling, how- 
ever. The total time to execute an inner 
loop in this example is nine clock peri- 
ods. Because this loop is not vecto- 
rizable, we saw earlier that i t  would take 
a static-scheduled Cray- 1-like machine 
17 clock periods to execute the inner 
loop once. Note also that this example 
illustrates a situation where instruction 
issuing in the fixed-point pipeline is 
completely uninterrupted by the condi- 
tional branch executed at the splitter. 

ZS-1 performance 

All the examples in this article have 
used a fixed set of pipeline lengths to 
make comparisons possible. The produc- 
tion ZS-1 models operate at a 45-nanos- 
econd clock period and use VLSI float- 
ing-point chips that provide pipeline 
lengths of three clock periods for 64-bit 
floating-point multiplication and addi- 
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tion. (The prototype systems described 
in an carlier workI4 used standard TTL- 
based floating-point units with latencies 
about twice as long. In addition, the 
production systems use a true divide 
algorithm as opposed to the reciprocal 
approximation method described in that 
work.“) The memory pipeline is conser- 
vatively designed and consumes eight 
clock periods for data found in the 128- 
kilobyte data cache. The decision to use 
a data cache was made relatively late in 
the de,sign process. Consequently, the 
cache was added in series with the ad- 
dress translation unit, with a board- 
crossing between. A more parallel ad- 
dress translation/cache system would 
probably have only half the latency, or 
about four clock periods. 

For performance comparisons, we use 
the 24 Livermore Kernels” because they 
are extracted from real programs and 
contain a realistic mix of both vector and 
scalar code. To summarize performance 
in millions of floating-point operations 
per second (Mflops), we use the har- 
monic mean, which is the total number of 
operations (scaled to be the same for 
each kernel) divided by the total time. 
For the 24 double-precision kernels, 
using ihe original Fortran (with no added 
compiler directives, as are often used to 
assist vector machines), the ZS-1 per- 
forms at 4.1 Mflops. 

The Multiflow Trace 7/2oO1O is con- 
structed of similar-speed technology 
(about 3.5 nanoseconds per gate) as the 
ZS- 1 and uses state-of-the-art trace 
schediiling compiler technology. On the 
24 Livermore Kernels the Multiflow 
Trace operates at 2.3 Mflops. As a final 
comparison, the Cray X-MP can execute 
the Livermore Kernels at 12.3 Mflops.” 

Of course, all the above performance 
numbers are very much a function of the 
compiler used. It is expected that later 
compiler versions for any of the ma- 
chines, including the ZS-l, could lead to 
improqed performance. 

The book by Thornton4 describing the CDC 6600 is a classic, but unfortunately 
it is out of print. Considerable detail on the scoreboard design can be found in 
the Thornton and Cray patent, US. patent no. 3,346,851. The IBM 360/91 is de- 
scribed in a series of papers in the January 1967 issue of the ISM Journal of Re- 
search and Development. A recent book by Schnecki5 contains a discussion of 
several pipelined machines, including both the CDC 6600 and the IBM 360/91. 
The book by Kogge16 is another excellent reference. Recent research in pipe- 
lined computers has concentrated on static scheduling, rather than dynamic 
scheduling. A notable exception is work being undertaken by Hwu and PaW7 that 
contains interesting enhancements to Tomasulo’s algorithm. 

I 

D ynamic instruction scheduling 
improves performance by re- 
solving control and data de- 

pendencies at runtime using real data. 
Static scheduling must rely on predic- 

tions or  worst-case assumptions made at 
compile time. Consequently, there will 
always be situations where runtime sched- 
uling can outperform static scheduling. 

It ir  generally true that simple, stream- 
lined instruction sets reduce hardware 
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Additional reading on 
dynamic instruction scheduling 

control complexity and tend to produce 
faster pipelined implementations than 
complex instruction sets. However, it 
does not logically follow that less hard- 
ware control complexity leads to better 
Performance. When complexity is di- 
rected toward greater instruction func- 
tionality, performance often does suffer, 
but carefully chosen control complexity 
can also be directed toward greater per- 
formance. 

There is a performance/complexity 
trade-off curve, but it is not clear that the 
maximum performance point occurs at 
the minimal complexity end of the curve. 
It may very well be that some additional 
control complexity can be effectively 
used to increase performance. The risk, 
of course, in increasing control complex- 
ity is that performance advantages can be 
offset by slower control paths and an 
increased clock period. The ZS-1 is a 
successful attempt at achieving im- 
proved performance levels by using an 
architecture that naturally leads to mul- 
tiple instruction streams and dynamic 
instruction scheduling. Despite using dy- 
namic scheduling, the Zs- 1 ’s 45-nano- 
second clock period is the fastest we 
know of for standard TTL-based ma- 
chines. 

The result is an architecture that can 
achieve vector levels of performance on 
highly parallel, vectorizable code. Fur- 
thermore, and more importantly, similar 
performance levels can be achieved with 
many less parallel, nonvectorizable 
codes. This is done by mixing advanced 
static scheduling techniques, based on 
loop unrolling (and simple forms of trace 
scheduling), with advanced dynamic 
scheduling techniques. It is important to 
note the “orthogonality” of advanced 
static scheduling techniques and dy- 

namic scheduling. Static scheduling can 
go a long way toward high performance, 
but this article has shown that dynamic 
scheduling can extend performance be- 
yond that achievable with static schedul- 
ing alone. 

A final observation is that compiler 
complexity and compilation times are 
often considered to be of little conse- 
quence when discussing hardware con- 
trol complexity/performance trade-offs. 
This is not absolutely true, however. 
Mature compilers take considerable time 
to construct, and in many program devel- 
opment environments compilation times 
using advanced static scheduling meth- 
ods can become excessively long. Using 
dynamic scheduling provides good per- 
formance on nonoptimum code. This 
means that immature compilers, or very 
fast compilers with reduced optimiza- 
tion, can come close to achieving the full 
potential of a computer that uses dy- 
namic scheduling methods. 0 
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