
I i

Dynamic Instruction
Scheduling and the
Astronautics ZS-1

James E. Smith

Astronautics Corporation of America

ipelined instruction processing
has become a widely used tech-
nique for implementing high-per-

formance computers. Pipelining first ap-
peared in supercomputers and large
maiiiframes, but can now be found in less
expensive systems. For example, most of
the recent reduced instruction set com-
puters use pipelining.’.’ Indeed, a major
argument for RISC architectures is the
ease with which they can be pipelined. At
the other end of the spectrum, computers
with more complex instruction sets, such
as the VAX 8800,’ make effective use of
pipelining as well.

The ordering, or “scheduling,” of in-
structions as they enter and pass through
an instruction pipeline is a critical factor
in determining performance. In recent
years, the RISC philosophy has become
pervasive in computer design. The basic
reasoning behind the RISC philosophy
can be stated as “simple hardware means
faster hardware, and hardware can be
kept simple by doing as much as possible
in software.” A corollary naturally fol-
lows, stating that instruction scheduling
should be done by software at compile
time. We refer to this as static instruction
scheduling, and virtually every new
computer system announced in the last
several years has followed this approach.

I I
I I

Dynamic instruction
scheduling resolves

control and data
dependencies at

runtime. This extends
performance over that

possible with static
scheduling alone, as
shown by the ZS-1.

Many features of the pioneering CDC
66004 have found their way into modem
pipelined processors. One noteworthy
exception is the reordering of instruc-
tions at runtime, or dynamic instruction
scheduling. The CDC 6600 scoreboard
allowed hardware to reorder instruction
execution, and the memory system stunt
box allowed reordering of some memory
references as well. Another innovative

computer of considerable historical in-
terest, the IBM 360/9 1 ,s used dynamic
scheduling methods even more exten-
sively than the CDC 6600.

As the RISC philosophy becomes ac-
cepted by the design community, the
benefits of dynamic instruction schedul-
ing are apparently being overlooked.
Dynamic instruction scheduling can
provide performance improvements
simply not possible with static schedul-
ing alone.

This article has three major purposes:

(1) to provide an overview of and
survey solutions to the problem of
instruction scheduling for pipe-
lined computers,

(2) to demonstrate that dynamic in-
struction scheduling can provide
performance improvements not
possible with static scheduling
alone, and

(3) to describe a new high-perform-
ance computer, the Astronautics
ZS-1, which uses new methods for
implementing dynamic schedul-
ing and which can outperform
computers using similar-speed
technologies that rely solely on
state-of-the-art static scheduling
techniques.

July 1989 001S-9162/89/0700-0021$01.00 01989 IEEE 21

fetch

inst. 1
inst. 2
inst. 3
inst. 4

(a)
time -+

FDIEEEE
FDIEEEE
FDIEEEE
FDIEEEE

Figure 1. Pipelined instruction processing: (a) a typical pipeline; (b) ideal
flow of instructions through the pipeline.

I I
RI t (Y)
R2 t (Z)
R3 t RI +f R2
(X) t R3
R4 t (B)
R5 t (C)
R6 t R4 *f R5
(A)+ R6

Load register RI from memory location Y
Load register R2 from memory location Z
Floating add registers RI and R2
Store the result into memory location X
Load register R4 from memory location B
Load register R5 from memory location C
Floating multiply registers R4 and R5
Store the result into memory location A

time -+

R I t (Y)
R2 t (Z)
R3 t RI +f R2
(X) t R3
R4 t (B)
R5 t (C)
R6 t R4 *f R5
(A)+ R6

(b)

FDIEEEE
FDIEEEE
FD. . . IEEE
F...D..IEEEE

F. . DIEEEE
FDIEEEE
FD. . . IEEE
F...D..IEEEE

Figure 2. Pipelined execution of X=Y+Z and A=B*C: (a) machine code; (b)
pipeline timing.

stages. Figure 1 illustrates a simple ex-
ample pipeline. In Figure la, the pipeline Introduction to

pipelined computing stages are:

Pipelining decomposes instruction (I) Instruction fetch -- for simplicity
processing into assembly line-like assume that all instructions are fetched

in one cycle from a cache memory.
(2) Instruction decode -- the instruc-

tion's opcode is examined to determine
the function to perform and the resources
needed. Resources include general-pur-
pose registers, buses, and functional
units.

(3) Instruction issue -- resource
availability is checked and resources are
reserved. That is, pipeline control inter-
locks are maintained at this stage. As-
sume that operands are read from regis-
ters during the issue stage.

(4) Instruction execution -- instruc-
tions are executed in one or several exe-
cution stages. Writing results into the
general-purpose registers is done during
the last execution stage. In this discus-
sion, consider memory load and store
operations to be part of execution.

Figure Ib illustrates an idealized flow
of instructions through the pipeline.
Time is measured in clock periods and
runs from left to right. The diagram notes
the pipeline stage holding an instruction
each clock period. F denotes the instruc-
tion fetch stage, D denotes the decode
stage, I denotes the issue stage, and E
denotes the execution stages.

In theory, the clock period for a p-
stage pipeline would be I/p the clock
period for a nonpipelined equivalent.
Consequently, there is the potential for a
p times throughput (performance) im-
provement. There are several practical
limitations, however, on pipeline per-
formance. The limitation of particular
interest here is instruction dependencies.

Instructions may depend on results of
previous instructions and may therefore
have to wait for the previous instructions
to complete before they can proceed
through the pipeline. A data dependence
occurs when instructions use the same
input and/or output operands; for ex-
ample, when an instruction uses the re-
sult of a preceding instruction as an input
operand. A data dependence may cause
an instruction to wait in the pipeline for
a preceding instruction to complete. A
control dependence occurs when control
decisions (typically as conditional
branches) must be made before subse-
quent instructions can be executed.

Figure 2 illustrates the effects of de-
pendencies on pipeline performance.
Figure 2a shows a sequence of machine
instructions that a compiler might gener-
ate to perform the high-level language
statements X = Y + Z and A = B * C.
Assume load and store instructions take

22 COMPUTER

four execution clock periods while float-
ing-point additions and multiplications
take three. (These timing assumptions
represent a moderate level of pipelining.
In many RISC processors fewer clock
periods are needed. On the other hand,
the Cray-1 requires 1 1 clock periods for
a load, and floating-point additions take
six. Cray-2 pipelines are about twice the
length of the Cray-1’s.)

Figure 2b illustrates the pipeline tim-
ing. A simple in-order method of instruc-
tion issuing is used; that is, if an instruc-
tion is blocked from issuing due to a
dependence, all instructions following it
are also blocked. The same letters as
before are used to denote pipeline stages.
A period indicates that an instruction is
blocked or “stalled” in a pipeline stage
and cannot proceed until either the in-
struction ahead of i t proceeds, or, at the
issue stage, until all resources and data
dependencies are satisfied.

The first two instructions issue on
consecutive clock periods, but the add is
dependent on both loads and must wait
three clock periods for the load data
before it can issue. Similarly, the store to
location X must wait three clock periods
for the add to finish due to another data
dependence. There are similar blockages
during the calculation of A. The total
time required is 18 clock periods. This
time is measured beginning when the
first instruction starts execution until the
last starts execution. (We measure time
in this way so that pipeline “fill” and
“drain” times do not unduly influence
relative timings.)

Instruction scheduling

An important characteristic of pipe-
lined processors is that using equivalent,
but reordered, code sequences can result
in performance differences. For ex-
ample, the code in Figure 3a performs
the same function as that in Figure 2a
except that i t has been reordered, or
“scheduled,” to reduce data dependen-
cies. Furthermore, registers have been
allocated differently to eliminate certain
register conflicts that appear to the hard-
ware as dependencies. Figure 3b illus-
trates the pipeline timing for the code in
Figure 3a. Note that there is considerably
more overlap, and the time required is
correspondingly reduced to 1 1 clock
periods.

The above is an example of static in-
struction scheduling, that is, the sched-

R1 t (Y)
R2 t (Z)
R4 t (B)
R5 t (C)
R3 t R1 +f R2
R6 t R4 *f R5
(X) t R3
(A)+ R6

Load register RI from memory location Y
Load register R2 from memory location Z
Load register R4 from memory location B
Load register R5 from memory location C
Floating add X and Y
Floating multiply B and C
Store R3 to memory location X
Store R6 to memory location A

time -+

RI t (Y)
R2 t (Z)
R4 t (B)
R5 t (C)
R3 t R1 +f R2
R6 t R4 *f R5
(X) t R3
(A)+ R6

FDIEEEE
FDIEEEE
FDIEEEE
FDIEEEE
FD. IEEE
F .D. IEEE

F . DIEEEE
FD. IEEEE

Figure 3. Reordered code to perform X=Y+Z and A=B*C: (a) machine code;
(b) pipeline timing.

I I

Instruction
fetch

Execute Execute

E

Execute + Decode Issue Execute

D I E

Figure 4. Block diagram of the CDC 6600-style processor.

uling or reordering of instructions that
can be done by a compiler prior to execu-
tion. Most, if not all, pipelined comput-
ers today use some form of static sched-
uling by the compiler. Instructions can
also be reordered after they have entered
the pipeline, which is called dynamic
instruction scheduling. Used in some
high-performance computers over 20

years ago, it is rarely used in today’s
pipelined processors.

Dynamic instruction scheduling:
scoreboards. The CDC 66004 was an
early high-performance computer that
used dynamic instruction scheduling
hardware. Figure 4 illustrates a simpli-
fied CDC 6600-type processor. The CDC

July 1989 23

between execution units and registers,
the CDC 6600 used a centralized control

~~ ~

I t 1 t (Y)
lt2 t (Z)
IC3 t R1 +f R2
(X) t R3
I14 t (B)
IC5 t (C)
I16 t R1 *f R2
(A)+ R6

time -+

FDIEEEE
FDIEEEE
FDI. . . EEE
FDI EEEE
FDIEEEE
FDIEEEE
FDI. . . EEE
FDI. EEEE

Figure 5. Pipeline flow in a CDC 6600-like processor.

R1 <-(Y)
R2 <- (Z)
R3 <- R1 +f R2
(X) 6- R3
R1 < - (B)
R2 t- (C)
R3 4- R1 *f R2
(A)<- R3

R1 t - (X)
R2 <- (Y)
R3 t- R1 +f R2
(X) t- R3
R1 t- (B)
R2 t- (C)
R3 +- R1 *f R2
(A)+ R3

Load register R1 from memory location Y
Load register R2 from memory location Z
Add registers R1 and R2
Store the result into memory location X
Load register R1 from memory location B
Load register R2 from memory location C
Multiply registers R1 and R2
Store the result into memory location A

time +

FDIEEEE
FDIEEEE
FDI . . .EEE
FDI EEEE
FDIEEEE
FDIEEEE
FDI. . . EEE
FDI. EEEE

Figure 6. Pipelined execution of X=Y+Z and A=B*C using Tomasulo’s algo-
rithm: (a) minimal register machine code; (b) timing for pipeline flow.

6600 was pipelined only in the instruc-
tion fetch/decode/issue area. It used
parallel execution units (some dupli-
cated) to get the same overlapped effect
as pipelining. In addition, parallel units
allowed instructions to complete out of
order, which, in itself, is a simple form of
dynamic scheduling.

The CDC 6600 had instruction buffers
for each execution unit. Instructions

were issued regardless of whether regis-
ter input data were available (the execu-
tion unit itself had to be available, how-
ever). The instruction’s control informa-
tion could then wait in a buffer for its
data to be produced by other instruc-
tions. In this way, instructions to differ-
ent units could issue and begin execution
out of the original program order.

To control the correct routing of data

unit known as the scoreboard. The score-
board kept track of the registers needed
by instructions waiting for the various
functional units. When all the registers
had valid data, the scoreboard issued a
series of “go” signals to cause the data
to be read from the register file, to send
data to the correct functional unit, and
to start the unit’s execution. Similarly,
when a unit was about to finish execu-
tion, it signaled the scoreboard. When
the appropriate result bus was available,
the scoreboard sent a “go” signal to the
unit, and it delivered its result to the
register file.

The original CDC 6600 scoreboard
was a rather complicated control unit. In
recent years, the term “scoreboard” has
taken on a generic meaning: any con-
trol logic that handles register and result
bus reservations, including methods that
are not as sophisticated as the 6600’s
scoreboard.

Figure 5 illustrates the example of
Figure 2 executed with a pipeline using
scoreboard issue logic similar to that
used in the CDC 6600. The pipeline la-
tencies are the same as those in previous
examples. The add instruction is issued
to its functional unit before its registers
are ready. It then waits for its input
register operands. The scoreboard routes
the register values to the adder unit when
they become available. In the meantime,
the issue stage of the pipeline is not
blocked, so other instructions can bypass
the blocked add. Performance is im-
proved in a way similar to the static
scheduling illustrated in Figure 3. Here,
it takes 13 clock periods to perform the
required operations.

Developed independently, and at
roughly the same time as the CDC 6600,
the IBM 360/91 floating-point unit6 used
a similar but more elaborate method of
dynamically issuing floating-point in-
structions. Instructions were issued to
reservation stations at the inputs of the
floating-point units. The reservation
stations held not only control informa-
tion, but also operand data. The operands
were given rags that associated the data
buffers in the reservation stations with
functional units that would supply the
data. The data would then be automati-
cally routed via a common data bus to the
appropriate reservation stations as they
became available. Any instruction in a
reservation station that had received all
its input operands was free to issue.

24 COMPUTER

Tomasulo’s algorithm,6 used in the
IBM 360/91, differed from the CDC 6600
method in two important ways:

(1) There were multiple reservation
stations at each unit so that more than
one instruction could be waiting for
operands. The first one with all its input
operands could proceed ahead of the
others.

(2) The use of tags, rather than regis-
ter designators, allowed a form of dy-
namic register reallocation, as well as
instruction reordering. This feature was
particularly important in the 360/91
because the IBM 360 architecture had
only four floating-point registers.

Figure 6 shows the example of Figure
2 with a minimal register allocation. The
pipeline timing with Tomasulo’s algo-
rithm appears in Figure 6b. Here, the
timing is essentially the same as with the
CDC 6600 scoreboard in Figure 5. Note,
however, that the registers are automati-
cally reassigned by the hardware. If the
CDC 6600 were given the same code as
in Figure 6, its timing would be similar to
the slower timing shown in Figure 2
because it would be unable to reassign
registers “on-the-fly” as the 360/91
does.

Control dependencies. It may appear
from the previous examples that, while
the dynamic scheduling methods are very
clever, a compiler could be used to ar-
range the code as well as the hardware
can (see Figure 3). One need only con-
sider programs containing conditional
branches, especially loops, to see that
this is not the case.

For static code scheduling, instruction
sequences are often divided into basic
blocks. A basic block is a sequence of
code that can only be entered at the top
and exited at the bottom. Conditional
branches and conditional branch targets
typically delineate basic blocks. To
phrase i t differently, control dependen-
cies break programs into basic blocks.
Dynamic scheduling allows instruction
reordering beyond machine-code-level
basic-block boundaries. This ability to
schedule past control dependencies is
demonstrated in later examples.

Some advanced static scheduling
methods are also directed at minimizing
the effects of control dependencies. Loop
unrolling and vectorizing start with high-
level language basic blocks and produce
machine-code-level basic blocks con-

taining more operations. Performance is
improved by reducing the number of
control dependencies, but static schedul-
ing still cannot look beyond the larger
machine-code-level blocks. Dynamic
scheduling can be used in conjunction
with loop unrolling and vectorizing to
further enhance performance by looking
beyond the remaining control dependen-
cies.

Trace scheduling’ is based on stati-
cally predicting conditional branch out-
comes. These predictions are based on
compile-time information deduced from
the source code or from compiler direc-
tives. Instructions can then be reordered
around control dependencies, but in-
structions must also be inserted to
“undo” any mistaken static branch pre-
dictions. Incorrect branch predictions
result in:

(1) instructions executed that should
not be,

(2) additional instructions to undo the
mistakes, and

(3) execution of the correct instruc-
tions that should have been done in
the first place.

With dynamic resolution of control de-
pendencies, there are no mistakes, and
no “undoing” is necessary.

Some types of control constructs in-
herently make certain static scheduling
techniques extremely difficult. For ex-
ample, “while” loops (in Fortran, Do
loops with early exit conditions) severely
restrict loop unrolling and vectorizing
techniques because the exact number of
loop iterations is only discovered at the
time the loop is completed.

As the following example illustrates,
however, there are other advantages to
dynamic resolution of control dependen-
cies associated with ordinary Fortran Do
loops. Figure 7 shows a Fortran loop and
a compilation into machine instructions.
The loop code has been statically sched-
uled. Its execution for two iterations on a
standard pipelined machine is shown in
Figure 7c (left pipeline flow), and its
execution with a Tomasulo-like dynamic
hardware scheduler is shown in Figure 7c
(right pipeline flow).

Performance with the dynamic sched-
uling algorithm is improved because the
conditional branch at the end of the loop
issues and executes before some of the
preceding instructions have begun exe-
cution. After the conditional branch is
out of the way, instructions following the

branch instruction can also be fetched
and executed before all the instructions
from the previous basic block(s) have
executed.

Note that, in the above example, nc
special techniques are used to improve
the performance of the conditiona’
branch instruction. That is, there is nc
branch prediction or delayed branching
Only after the branch is executed car
instruction fetching of the target instruc-
tion begin. Dynamic scheduling reduces
the delay between the branch and preced-
ing instructions. Therefore, performance
improvements for conditional branches
accrue regardless of whether a particular
branch is taken or not. More advanced
branching methods tend to improve per-
formance after the branch execution by
reducing the hole in the pipeline between
the branch and the following instruction.
Consequently, special branching tech-
niques can be successfully used to sup-
plement a dynamic scheduling algo-
rithm.

Quantitatively, with static scheduling
only, each loop iteration in Figure 7
executes in 18 clock periods. With dy-
namic scheduling it takes only 1 1 clock
periods. This is an improvement of about
60 percent. A more complete perform-
ance comparison can be found in Weiss
and Smith,8 where the Cray-1 architec-
ture is used as a common base for com-
paring various instruction issue meth-
ods, including Tomasulo’s algorithm.
Instructions are statically scheduled
prior to the performance analysis, and
Tomasulo’s algorithm is shown to pro-
vide a 60-percent performance improve-
ment beyond that provided by static
scheduling.

Data dependencies. Techniques (both
static and dynamic) that reduce the per-
formance impact of control dependen-
cies tend to expose data dependencies as
the next major performance obstacle.

(1) Dynamic scheduling around con-
trol dependencies causes instructions in
the basic block following a branch to be
eligible for issue and execution before
all the instructions in the previous block
have finished. Instructions from the two
different basic blocks may have data
dependencies that a static scheduler
cannot resolve.

(2) Static scheduling methods that
increase basic block size, such as trace
scheduling and loop unrolling, increase
the scheduling possibilities within the

July 1989 25

Do 1 I = 1,100
A(1) = B(1) + C(I)*D(I) 1

R1 t 100
R2 t 1

loop: R3 t (C + R2)
R4 t (D + R2)
R5 t (B + R2)
R6 t R3 *f R4
R7 t R6 +f R5
(A + R2) t R7
R2 t R2 + 1
Br loop; R2 I RI

static scheduling only dynamic scheduling

R3 t (C + R2)
R4 t (D + R2)
R5 t (B + R2)
R6 t R3 *f R4
R7 t R6 +f R5
(A + R2) t R7
R2 t R2 + I
Br loop; R2 I R1
R3 t (C + R2)
R4 t (D + R2)
R5 t (B + R2)
R6 t R3 *f R4
R7 t R6 +f R5
(A + R2) t R7
R2 t R2 + 1
Br loop; R2 I RI

FDIEEEE FDIEEEE
FDIEEEE FDIEEEE
FDIEEEE FDIEEEE
FD. . IEEE FDI. .EEE
F..D..IEEE FDI....EEE

F..D..IEEEE FDI... . . . EEEE
F. .DIE FDIE

FDIE FDIE
FDIEEEE FDIEEEE

FDIEEEE FDIEEEE
FDIEEEE FDIEEEE
FD. . IEEE FDI. . EEE
F..D..IEEE FDI....EEE

F..D..IEEEE FDI. EEEE
F. .DIE FDIE

FDIE FDIE

Figure 7. Loop execution with and without dynamic instruction scheduling: (a) Fortran loop; (b) machine in-
structions; (c) pipeline flows.

basic block. Indeed, this is a major justi-
fication for using such methods. In the
process, however, the number and vari-
ety of data dependencies is increased as
well.

Data dependencies may involve data
held either in registers or memory. There
are three varieties of data dependenciesg:

(1) flow dependencies, when a result
operand of one instruction is used
as a source operand for a subse-
quent one,

(2) output dependencies, when a re-
sult operand of one instruction is
also used as a result operand for a
subsequent one, and

(3) antidependencies, when a source
operand of one instruction is used
as a result operand for a subse-
quent one.

All three types of data dependencies
can occur for either register data or
memory data. Flow dependencies are
inherent in the algorithm and cannot be.
avoided. Within a basic block, output
and antidependencies involving regis-
ters can be avoided by static methods,
specifically by reallocating registers
(assuming that enough registers are
available). However, dynamic schedul-
ing of branch instructions may result in
situations where output and antidepen-
dencies involving register instructions in

different basic blocks must be resolved.
For example, in Figure 7, one can con-
ceive of dynamic issuing methods where
the load from memory into R3 is ready to
issue for the second loop iteration before
the instruction using the old value of R3
(i.e., R6 = R3 *f R4) has issued in the first
loop iteration. (While this may at first
seem farfetched, the dynamic issuing
method used by the ZS-1 frequently
causes such a situation.) Dynamic regis-
ter reallocation such as that provided by
Tomasulo’s algorithm can effectively
deal with such situations.

Probably more difficult to deal with
than dependencies involving registers
are memory data dependencies. All three
forms of data dependencies that can

26 COMPUTER

occur with registers can also occur with
memory data. For example, a load in-
struction following a store to the same
memory address is a flow dependence,
and the load may not be reordered ahead
of the store instruction. On the other
hand, if the load and store are to different
addresses, there is no problem with reor-
dering them.

Load and store instructions to scalar
variables produce dependencies that are
relatively simple to resolve. Further-
more, data dependencies involving sca-
lars can often be removed by optimizing
compilers.

Memory dependencies involving ar-
rays and other data structures are much
more difficult to schedule. The major
problem with scheduling such memory
dependencies lies in detecting them.
Accesses involving arrays and other data
structures use index values that can
change at runtime, so complete informa-
tion regarding the index values may be
difficult or impossible for the compiler
to discern. This is because the only ad-
dress information available to the com-
piler is in symbolic form (such as array
subscript expressions expressed in a
high-level language).

Trace scheduling and loop unrolling
combine high-level language basic
blocks into larger machine-language
ones. Significant performance advan-
tages accrue if operations from the origi-
nal basic blocks can be “blended” to-
gether as the instructions are scheduled.
A good schedule tends to have load in-
structions near the top of a basic block
with functional operations (adds and
multiplies) in the middle and stores near
the bottom. To achieve this with trace
scheduling or loop unrolling, load in-
structions must often be scheduled ahead
of stores belonging to different loop it-
erations. Consequently, the ability to
determine data dependencies involving
loads and stores from different HLL
basic blocks is of critical importance. In
the trace scheduling method, this proc-
ess, known as memory disambiguation,I0
is a very important component. Memory
disambiguation manipulates array sub-
script expressions in the form of systems
of integer equations and inequalities to
determine if load and store addresses to
the same array can ever coincide in such
a way that it is unsafe to interchange the
load and store instructions.

Vectorizing compilers also concen-
trate on this kind of dependence, using
very similar methods.” In fact, resolving

memory data dependencies involving
array references is a primary feature of
vectorizing methods. Because of the
excellent literature available on vec-
torizing compilers, the remaining dis-
cussion on memory data dependencies is
phrased in terms of vectorizing com-
pilers.

If the loop statement A(/) = A(I) + C(I)
is vectorized.

(1) the elements of A(/) are loaded as

(2) the elements of C (I) are loaded as

(3) there is a vector add of A(/) and

(4) A([) is stored as a vector.

a vector,

a vector,

C(I), and

The vector load of the A (/) followed
later by the vector store amounts to a
massive reordering of the loads and
stores. That is, loads from A([) for later
loop iterations are allowed to pass stores
for earlier iterations. The loop A(I) = A(I-
1) + C (/) cannot be vectorized as just
described, however, because the loads of
A([-1) involve values just computed
during the previous loop iteration. (Some
simple linear recurrences may vectorize
on certain computers that have special
recurrence instructions. Throughout,
this article uses simple examples for il-
lustrative purposes; more complex linear
and nonlinear recurrences could just as
easily be used to prove the point.)

In two important classes of problems
the static data dependence analysis done
by compilers cannot achieve perform-
ance as high as dynamic runtime analy-
sis. The first class involves analyses of
such complexity that the compiler can-
not safely determine if the subscripts are
independent. These are referred to as
ambiguous subscripts. The second class
consists of code that has true load/store
conflicts, but only for a few iterations of
a loop.

An example of ambiguous subscripts
is shown below:

NL1=I
NL2=2
Do 1 I=I,N
DO 2 J=I,N

NTEMP=NL I
NL 1 =NL2

1 NL2=NTEMP

2 A(J,NLl)=A(J- 1 ,NL2)+B(J)

In the above example, the array A is split
into two halves; old values in one half are

used to compute new values in the other.
When this process is finished, the two
halves are switched (by interchanging
NL 1 and NL2). This kind of construct can
be found in many Fortran programs. In
fact, the original program from which
Lawrence Livermore Kernel 8” was ex-
tracted used this kind of technique. A
vectorizing compiler must determine
that NLI is never equal to NL2 to vec-
torize the loop. It is doubtful that any
current vectorizing compiler has this
capability. (However, a compiler might
compile the example code as both vector
and scalar and use a runtime test when-
ever the loop is encountered to determine
which version should be used.) In
general, NLI and NL2 could be arbitrar-
ily complex functions of any number of
variables. This suggests the theoretical
undecidability of vectorizable loops.

As another example, consider array
references that frequently occur when
handling sparse matrices. For example,
A(MAP(/)) = A(MAP(I)) + B (/) , where
MAP is an integer array of indices. This
code can be vectorized (with vector
gathedscatter instructions) if the com-
piler can determine that none of the
MAP(I) are equal. In most cases this is
beyond a vectorizing compiler’s capa-
bilities.

As mentioned above, the second im-
portant class of problems where static
analysis is inferior to dynamic analysis
occurs when loops have true data de-
pendencies, but for relatively few of the
loop iterations. For example, consider
the following nested loop:

DO 1 J=l,N
DO 1 I=l,N
X(1) = X(J) + Y(1) 1

For a particular execution of the inner
loop, the value of X(J) changes partway
through, when I d . The store into X(I)
when Id must follow all the loads of
X(J) for preceding inner loop iterations.
This store must precede all subsequent
loads of X(J).

Another example is the case where
subscripted subscripts are used; for ex-
ample, the inner loop statement X (M (K))
= X(N(K)) + W(K), where M and N have
a small nonempty intersection. In this
case, many, but not all, of the loads may
pass stores. (The ones that may not pass
occur when M(I1) = N(I2) for I2 < /I.)

Dynamic scheduling: stunt boxes.
al- The IBM 360/91 memory system’*

July 1989 21

DO I J=l,N
DO 1 I=I,N
X(1) = X(J) + Y(1) 1

R3 t (Rl)
R4 t (Y + R2)
R6 t (Y+l + R2)
R5 t R3 +f R4
(X + R 2) t R5
R7 t (Rl)
R8 t R6 +f R7
(X+1 + R2) t R8
R2 t R2 + 1
Br loop; R2 5 R1
R3 t (Rl)
R4 t (Y + R2)
R6 t (Y+1 + R2)
R 5 t R 3 + f R 4
(X + R2) t R5
R7 t (Rl)
R8 t R6 +f R7
(X+1 + R2) t R8
R2 t R2 + 1
Br loop; R2 5 R1

FDIEEEE
FDIEEEE
FDIEEEE
FDI. . EEE
FDI EEEE
FDI EEEE
FDI EEE
FDI. EEEE
FDIE
FDIE

FDI EEEE
FDI....EEEE
FDI EEEE
FDI EEE
FDI EEEE
FDI EEEE
FDI EEE
FDI EEEE
FDIE
FDIE

no memory conflicts with memory conflict

R3 t (Rl)
R4 t (Y + R2)
R6 t (Y+1 + R2)
R5 t R3 +f R4
(X + R 2) t R5
R7 t (Rl)
R8 t R6 +f R7

R2 t R2 + 1
Br loop; R2 5 RI
R3 t (RI)
R4 t (Y + R2)
R6 t (Y+1 + R2)
R5 t R3 +f R4
(X + R2) t R5
R7 t (Rl)
R8 t R6 +f R7

R2 t R2 + 1
Br loop; R2 5 R1

(Xi-I + R2) t R8

(Xi-I + R2) t R8

FDIEEEE FDIEEEE
FDIEEEE
FDIEEEE
FDI. .EEE
FDI EEEE
FDIEEEE
FDI . . .EEE
FDI EEEE
FDIE
FDIE

FDIEEEE
FDIEEEE
FDIEEEE
FDI . .EEE
FDI EEEE
FDIEEEE
FDI. . . EEE
FDI EEEE
FDIE
FDIE

FDIEEEE
FDIEEEE
FDI. .EEE
FDI EEEE
FDI EEEE
FDI.. EEE
FDI. EEEE
FDIE
FDIE

FDIEEEE
FDIEEEE
FDIEEEE
FDI. .EEE
FDI EEEE
FDIEEEE
FDI .. .EEE
FDI EEEE
FDIE
FDIE

Figure 8. The effects of loadstore reordering: (a) a nonvectorizable loop with a memory hazard; (b) pipeline execu-
tion without dynamic memory reordering; (c) pipeline execution with dynamic memory reordering.

28 COMPUTER

lowed load instructions to pass store
instructions after they had been issued.
The memory system allowed the dy-
namic reordering of loads and stores as
long as a load or a store did not pass a
store to the same address. Store instruc-
tions could issue before their data were
actually ready. There was a queue for
store instructions waiting for data. Load
instructions entering the memory system
had their addresses compared with the
waiting stores. If there were no matches,
the loads were allowed to pass the wait-
ing stores. I f a load matched a store
address, i t was held in a buffer. When the
store data became available, they were
automatically bypassed to the waiting
load as well as being stored to memory.

The CDC 6600 memory system was
simpler than in the IBM 360/91 and al-
lowed some limited reordering of mem-
ory references to increase memory
throughput in a memory system that used
no cache and had a relatively slow inter-
leaved main memory. In the CDC 6600,
the unit used for holding memory refer-
ences while they were waiting for mem-
ory was called the stunf bo.\-. The CDC
6600 stunt box did not actually allow
loads to pass waiting stores, hut just as
the term “scoreboard” has taken on a
more general meaning than the way it
was used in the 6600, the term “stunt
box” has come to mean any device that
allows reordering of memory references
in the memory system.

Figure 8a shows a Fortran loop, un-
rolled twice, that has a memory data
dependence that inhibits vectorization.
Because of this, the compiler is restricted
from moving certain loads above stores
that may potentially be to the same ad-
dress. Figure 8b shows pipeline usage
with dynamic scheduling but with no
provision for loads to pass stores via a
stunt box. Figure 8c shows pipeline us-
age with dynamic scheduling and a
memory stunt box. The left pipeline flow
is for a sequence of code where I d so
there are no dependencies involving X (f)
and X (J) . The right pipeline flow in-
cludes the case where f “passes” J so
that there is temporarily a memory haz-
ard preventing a load from X(J) from
passing a store to X (I) when I d . This
results in a temporary glitch in the execu-
tion of memory instructions, but there is
no overall time penalty as the code se-
quence continues past the point where
Id. By inspecting the timing diagrams,
the pipeline without dynamic load/store
reordering can execute one loop iteration

(two iterations in the original rolled loop)
every 17 clock periods. With dynamic
load/store reordering, i t executes an it-
eration every I3 clock periods. Without
any dynamic scheduling at all, each loop
iteration takes 25 clock periods (this case
is not illustrated). Using full dynamic
scheduling results in an almost two-
times performance improvement over
static scheduling alone.

The viability of
dynamic scheduling

As pointed out, dynamic scheduling
was used in large-scale computers in the
1960s and has not been used to any ap-
preciable extent since. One can only
speculate about the reasons for abandon-
ment of dynamic scheduling in produc-
tion high-performance machines. Fol-
lowing are some of the possible reasons:

(I) Increased difficulty in hardware
debugging: a hardware failure can cause
errors that are highly dependent on the
order of instruction issuing for many
clock periods prior to the actual detec-
tion of the error. This makes error repro-
ducibility difficult. The fault diagnosis
problem was compounded in the IBM
360/91 and CDC 6600 because discrete
logic was used, and diagnostic resolution
had to be very fine.

(2) Longer clock period: dynamic in-
struction issuing can lead to more com-
plex control hardware. This carries with
it potentially longer control paths and a
longer clock period.

(3) Advances in compiler develop-
ment: initially, dynamic scheduling per-
mitted simple compilers that required
relatively little static scheduling capa-
bility. However, improvedcompilers with
better register allocation and scheduling
could realize some (but certainly not all)
of the benefits of dynamic issuing.

Why consider dynamic scheduling to-
day, when it was passed by years ago?
First, very large scale integration parts
and extensive use of simulation in to-
day’s computers alleviate many of the
debugging and diagnosis problems pres-
ent 20 years ago. Simulation can be used
to find design errors, and hardware faults
need only be located to within a (large)
replaceable unit. That is, if a fault is
detected in a CPU’s instruction issue
logic, the entire CPU, or at least a large
part of it, can be replaced; there is no

need for extensive and detailed fault
location methods.

Second, i t is possible to use methods
that selectively limit the generality of
dynamic scheduling so that significant
performance benefits can be realized
while keeping the control logic simpler
than in the CDC 6600 and IBM 360/91.
Techniques of this type have been suc-
cessfully used in the ZS-l and are de-
scribed in later sections.

Third, both compiler scheduling and
processor design are much more mature,
and most of the big performance gains in
these areas have probably been made.
Consequently, the gains achievable by
dynamic scheduling may appear more
attractive today than they did 20 years
ago.

The ZS-1

The Astronautics ZS-l is a recently
developed, high-speed computer system
targeted at scientific and engineering
applications. The ZS-l central processor
is constructed of transistor-transistor
logic-based technology and has no vec-
tor instructions, but makes extensive use
of dynamic instruction scheduling and
pipelining to achieve one-third the per-
formance of a Cray X-MPI.

A block diagram of a ZS-1 system is
shown in Figure 9. The ZS-l is divided
into four major subsystems: the central
processor, the memory system, the I/O
system, and the interconnection network.
In its maximum configuration, the ZS-l
contains one gigabyte of central mem-
ory, and an 1/0 system consisting of up to
32 input-output processors. Unix is the
primary operating system.

The ZS-1 uses a decoupled architec-
ture13 that employs two instruction pipe-
lines to issue up to two instructions per
clock period. One of the instruction
streams performs the bulk of fixed-point
and memory addressing operations,
while the other performs floating-point
calculations.

To support the two instruction
streams, the decoupled architecture of
the ZS-1 provides two sets of operating
registers. A set of thirty-one 32-bit A
registers is used for all memory address
computation and accessing, and a second
set of thirty-one @-bit X registers is
used for all floating-point operations.
The A and X registers provide fast tempo-
rary storage for 32-bit integers and 64-
bit floating-point numbers, respectively.

July 1989 29

A distinctive feature of the ZS-1 is the
use of architectural queues for communi-

I 1

Memory

32 Mbytes - 1 Gbyte

Interconnection
network

1.4 Gbytes I s s
zs-1

central
processing

unit

Figurre 9. Overall diagram of the ZS-1 system.

Do 10 I = 1, 100
A(1) = B(I)*C(I) + D(I) 10

S I : A 5 t O
S2: A 6 t A - 8
S3: A 7 t B - 8
S4: ASt C-8
S 5 : A 9 t D - 8
S6: loop: A5 t A5 + 1
S7:
S8:
S9:

S IO:
S I] : X 2 t X L Q
S12:
S13:
S 14:
S 15: Br loop; B==O

B, A0 t (A5 == 100)
XLQ t (A7 = A7 + 8)
XLQ t (A8 = A8 + 8)
XLQ t (A9 = A9 + 8)

X3 t X2 *f XLQ
XSQ t XLQ +f X3
(A6 t A6 + 8) = XSQ

.loop count

.load initial pointer to A

.load initial pointer to B

.load initial pointer to C

.load initial pointer to D

.increment A5

.compare =, set Branch Flag

.load next element of B

.load next element of C

.load next element of D

.copy B element into X2

.multiply B and C

.add D; result to XSQ
store result into A
.branch on false to “loop”

Figur’e 10. A Fortran loop and its ZS-1 compilation: (a) Fortran source;
(b) machine language version of the loop.

cation with main memory. There are two
sets of queues. One set consists of a 15-
element A load queue (ALQ) and a 7-
element A store queue (ASQ). These A
queues are used in conjunction with the
32-bit A registers. The other set of queues
consists of a 15-element X load queue
(XLQ) and a 7-element X store queue
(XSQ). These X queues are used in con-
junction with the 64-bit X registers.

Instructions. Instruction formats are
reminiscent of those used in the CDC
6600/7600 and Cray-1. There is an op-
code, and operands specified by i, j, and
k fields. The j and k fields typically
specify input operands and the i field
specifies the result. The i, j, and k oper-
ands may be either general-purpose reg-
isters or queues. A designator of 31 in the
j or k field indicates that the first element
of the load queue is used as a source
operand. A designator of 31 in the i field
indicates that the result is placed into the
store queue. In this way, queue operands
can be easily intermixed with register
operands in all instruction types. The
opcode determines whether A registers
and queues or X registers and queues are
to be operated upon.

The ZS-1 architecture is best under-
stood by examining a sequence of ma-
chine code. Figure 10a contains a simple
Fortran loop, and Figure lob contains a
compilation into ZS- 1 machine instruc-
tions. The instruction SI initializes
fixed-point register A5, which is used as
the loop counter. Then instructions S 2
through S5 initialize A 6 through A9 to
point to the arrays accessed in the loop.
The pointers are offset by -8 because
byte addressing is used, and the load and
store instructions use pre-autoincre-
menting.

In the loop body, instructions S6 and
S7 increment the loop counter and test it
to see if it has reached the upper limit.
The test is done by a compare instruc-
tion, which generates a Fortran Boolean
result that is placed in A 0 (because A 0 is
defined to always hold constant 0, this is
equivalent to discarding it), and it also
sets the architectural branch flag, B, to
the result of the comparison. The branch
flag will be tested by the conditional
branch instruction that terminates the

Instructions S8 through S10 load the
elements from arrays B, C, and D. These
memory operands are automatically

loop.

30 COMPUTER

Execute

i @ @ @ jT1 Execute

* E

Buffer Decode Issue

Figure 11. The ZS-1 processor pipelines.

Execute Execute

placed in the XLQ. Because the destina-
tion of the load instructions are queues
implied by the opcode, the i field of load
and store instructions may be used to
specify a result register for the effective
address add. This makes autoincre-
menting memory operations particularly
easy to implement.

Then instructions SI I through S I3
copy the memory data from the XLQ and
perform the required floating-point op-
erations. These are generic floating-
point instructions with register designa-
tor 31 used wherever there is a queue
operand. The floating-point add is of
particular interest because i t not only
uses the XLQ as its j operand, but it also
uses the XSQ for its result. The store
instruction, S14, generates the store
address in array A.

D +

Decoupled
implement at ion

I - E +

A simplified block diagram of the ZS-
1 CPU pipelines is shown in Figure 11.
The pipeline segments include an in-
struction fetch stage where instruction
words are read from a 16-kilobyte in-

Decode

+ b

struction cache. An instruction word may
contain either one 64-bit instruction
(used for conditional branches and loads
and stores with direct addressing) or two
32-bit instructions (by far the most
common case). The next pipeline seg-
ment is the “splitter” stage, where in-
struction words are split into instructions
and sent to the two instruction pipelines.
In one cycle, the instruction word is
examined by the A instruction pipeline
and the X instruction pipeline to see
whether it contains one or two instruc-
tions and to determine whether the in-
structions are:

Execute
+ +D

Issue Execute

i e

(1) X unit instructions,
(2) A unit instructions,
(3) branch instructions or system call/

return instructions.

Branch and system call/return instruc-
tions are held and executed in the splitter
stage. Instructions belonging to the first
two classes are sent to an instruction
buffer at the beginning of the appropriate
instruction pipeline. Up to two instruc-
tions are forwarded to the instruction
pipelines per clock period.

The instruction buffer in the X instruc-

tion pipeline can hold 24 instructions.
The buffer in the A instruction pipeline is
four instructions deep and can be by-
passed. The very deep X instruction
buffer allows the A instruction pipeline
to issue many instructions in advance of
the X instruction pipeline. The A instruc-
tion buffering is intended to reduce
blockages of the splitter. The bypass
allows instructions to move quickly up
the A pipeline when i t is empty; for
example, following some branches.

In the instruction pipelines, pipeline
segments are:

(1) the buffer stage where instructions
are read from the instruction buff-
ers,

(2) the decode stage where instruc-
tions are decoded, and

(3) the issue stage where instructions
are sent to functional units for
execution.

At the issue stage a simple Cray-I-like
issuing method allows instructions to
begin execution in strict program se-
quence. For example, if an instruction
uses the result of a previously issued, but
unfinished, instruction, it waits at the

July 1989 31

I 1
1: A 5 t A 5 + 1
2 : B, A0 t (A5 == 100)
3 : XLQ t (A7 = A7 + 8)
4 : XLQ t (A8 = A8 + 8)
5: XLQ t (A9 = A9 + 8)

5 : X3 t X2 *f XLQ
E.: XSQ t XLQ +f X3
9: (A6 t A6 + 8) = XSQ

6 : X2 t XLQ

10: Br loop;B==O
11: A 5 t A 5 + 1
l:!: B, A0 t (A5 == 100)
13 : XLQ t (A7 = A7 + 8)
14: XLQ t (A8 = A8 + 8)
15: XLQ t (A9 = A9 + 8)
I t) : X2 t XLQ
1:’: X3 t X2 *f XLQ
18: XSQ t XLQ +f X3
19: (A6 t A6 + 8) = XSQ
20: Br loop;B==O

FSdie
FSbdie
FSbdieeee
FS.bdieeee
FS.bdieeee
FSBD. . . IE
FSB . . . DIEEE
FS BD..IEEE
FSbdi eeee
FS
FSdie
FSbdie
FSbdieeee
FS.bdieeee
FS.bdieeee
FSBD.. . IE
FSB . . . DIEEE
FS.B . . . D..IE
FSbdi eeee
FS

Figure 12. The processing of two iterations of the loop in Figure 10.

issue register until the previous instruc-
tion completes.

At the time an instruction is issued
from one of the pipelines, operand data
are read from the appropriate register
files and/or queues. After issue, the in-
struction begins execution in one of the
parallel functional units. The primary
funclional units for the fixed-point A
instnictions are: a shifter, an integer
adder/logical unit, and an integer multi-
plier/divider. The primary functional
units for the floating-point X instruc-
tions are: an X logical unit, a floating-
poini. adder, a floating-point multiplier,
and a floating-point divider. Data can be
copied between A and X registers via the
copy unit.

Ttie ZS-1 uses several dynamic sched-
uling techniques:

(1) The architectural instruction
stream is split in two, with each resulting
stream proceeding at its own speed. This
not only permits the ZS-1 to sustain an
instruction issue rate of up to two in-
structions per clock period, but it allows
the memory access instructions to dy-
nami.cally schedule ahead of the float-
ing-point instructions. In addition, the
&oreboard issue logic at the end of each

of the instruction pipelines remains as
simple as in the Cray-1; no instruction
reordering is done within a single pipe-
line.

(2) Branch instructions are held and
executed at the splitter. This is accom-
plished by decomposing branch opera-
tions into their two fundamental compo-
nents: comparing register values and
transferring control. Compare instruc-
tions are detected in the splitter and set
the branch flag to “busy” as they pass
through. If a branch instruction encoun-
ters a “busy” branch flag, it waits in the
splitter until the flag is set by the com-
pare instruction. Compare instructions
are subsequently issued from the appro-
priate instruction pipeline, depending on
whether fixed- or floating-point data are
tested. A comparison sets the branch flag
when it completes. Consequently, branch
instructions do not directly read register
values, they simply test the branch flag.
This mechanism allows branches to be
executed dynamically ahead of instruc-
tions that precede them in the instruction
stream. Furthermore, executing
branches very early in the pipeline re-
duces, and in some cases eliminates, any
resulting “hole” in the pipeline.

(3) Using queues for memory oper-

ands provides an elastic way of joining
the memory access and floating-point
functions. This elasticity allows the
memory access function to schedule it-
self dynamically ahead of the floating-
point operations. This can also be viewed
as a way of achieving dynamic register
allocation. That is, each load or store
instruction dynamically allocates a new
value of “register” 31.
(4) Store instructions merely generate

store addresses; they do not wait for the
store data beforejssuing. In the memory
system is a stunt box containing two
queues, one for load addresses and the
other for store addresses. Store addresses
wait in their queue until a corresponding
data item appears in a store data queue
(one for fixed-point data, one for float-
ing-point). Load addresses may pass
store instructions that are waiting for
their data. Memory hazards are checked
by comparing load and store addresses so
that loads do not pass stores to the same
address.

Figure 12 illustrates the processing of
two iterations of the loop in Figure 10.
As in earlier examples, only the instruc-
tions within the loop body are shown.
Many of the pipeline stages are the same
as in previous examples, and there are
two new stages. One of the new stages is
the splitter stage, the other is the buffer
stage at the beginning of each of the
instruction pipelines (although the buffer
in the fixed-point pipeline can be by-
passed). Because there are actually two
distinct instruction pipelines following
the splitter, for all stages after the split-
ter lowercase letters are used to denote
fixed-point instructions, and uppercase
letters are used for floating-point in-
structions. Pipeline lengths are the same
as in the previous examples to more
clearly demonstrate the principles at
work. To summarize, the letters labeling
pipeline stages have the following mean-
ings:

F denotes the instruction is in the fetch

S indicates the instruction word is

B or b indicates the instruction is read

D or d indicates the instruction is

I or i indicates the instruction is issued

E or e indicates the instruction is exe-

stage,

processed at the splitter,

from an instruction buffer,

decoded,

for execution,

cuted.

32 COMPUTER

The first instruction (AS = AS + 1) is split
at time 0. decoded at time 1 (the buffer is
bypassed), issued at time 2, and executed
at time 3.

The second instruction is split at the
same time as the first and is read from the
buffer at time I . Note that this second
instruction sets the branch flag. The next
three instructions follow a similar se-
quence for processing.

The sixth instruction is the first X
instruction. It is split at time 2, is read
from the X instruction buffer at time 3,
and is decoded at time 4. It must then
wait for data from the XLQ before
continuing.

The seventh and eighth instructions
perform the required floating-point op-
erations in sequence, with the eighth
putting its result in the XSQ for storage
to memory.

The ninth instruction generates the
store address for the preceding one. It is
an A instruction that issues at time 7. It
passes through four clock periods of
execution while the address is generated
and translated. It then waits while the pre-
ceding floating-point addition completes.
Then the result is stored to memory.

The tenth and final instruction in the
loop body is the conditional branch. It is
detected and executed in the splitter
stage. Note that, in this example. all but
one of the clock periods required for the
conditional branch are hidden; instruc-
tion issuing proceeds without interrup-
tion in the fixed-point pipeline.

The second loop iteration follows the
first in Figure 12, and all subsequent
loop iterations are similar to it. In this
example. steady state performance is
determined by the rate at which the fixed-
point operations can be issued. In cases
where tloating-point dependencies are
more severe, steady state performance is
determined by the floating-point pipeline.

By extrapolating data from the dia-
gram we can see that up to three itera-
tions of the loop are in some phase of
processing simultaneously. This is a
clear example of the ability of dynamic
scheduling to fetch and execute instruc-
tions beyond basic-block boundaries.
During many clock periods eight or more
instructions are processed in parallel (not
counting those blocked in the pipeline).

The example just given is intended to
illustrate dynamic scheduling aspects of
the ZS-l implementation. In fact, the ZS-
1 compilers automatically unroll loops.
The degree of unrolling is a function of

AS t AS + I

XLQ t (AI)
X L Q t (A 2 + 8)
XLQ t (A2 + 8)
XI t XLQ
XSQ t XI +f XLQ
X2 t XLQ
(A3 + 8) t XSQ
XLQ t (AI)
XSQ t X2 +f XLQ
(A3 + 8) t XSQ
Br loop:B==O
AS t AS + 1
B. A0 t (AS == 100)
XLQ t (AI)
XLQ t (A2 + 8)
XLQ t (A2 + 8)
XI t XLQ
XSQ t XI +f XLQ
X2 t XLQ
(A3 + 8) t XSQ
XLQ t (A I)
XSQ t X2 +f XLQ
(A3 + 8) t XSQ
Br loop;B==O

B, A0 t (AS == 100)
F S d i e
FSbdie
FSbdieeee
FS.bdieeee
FS.bdieeee
FSBD. . . IE
FSB . . . DIEEE
FS BDIE
FSbdi eeee
FS.bdieeee
FS . . . BD.IEEE
FS.bdi eeee
FS
FSdie
FSbdie
FSbdieeee
FS.bdieeee
FS.bdieeee
FSBD. . . IE
FSB . . . DIEEE
FS BDIE
FSbdi eeee
FS.bdieeee
FS . . . BD.IEEE
FS.bdi eeee
FS

Figure 13. ZS-1 execution of a nonvectorizable loop.

the size of the loop; for a simple loop as
illustrated in Figure 12, the Fortran
compiler unrolls the loop body eight
times. When this is done, and instruc-
tions are rescheduled using the resulting
larger basic blocks, vector levels of per-
formance can be achieved. For example,
if the loop of Figure 12 is unrolled for the
ZS-I, a load or store instruction issues
during 94 percent of the clock periods. In
other words, the memory path is busy 94
percent of the time. Many vector pro-
cessors, including the Cray-l and Cray-
2, have their vector performance limited
by their ability to perform only one load
or store operation per clock period. For
practical purposes, this is the same bot-
tleneck that ultimately limits ZS-l per-
formance, and vector instructions would
provide no significant performance
benefit.

On the other hand, when faced with
loops like those in Figure 8 that do not
vectorize, the ZS-l can achieve vector
performance levels. This is illustrated in
Figure 13, where the loop is unrolled two
times to permit comparison with the
earlier example.

This example illustrates the iterations

where no memory conflict exists. When
I=J and there is a memory conflict, a
slight perturbation that lasts for only two
loop iterations occurs. The delays caused
by this perturbation are completely hid-
den by the dynamic scheduling, how-
ever. The total time to execute an inner
loop in this example is nine clock peri-
ods. Because this loop is not vecto-
rizable, we saw earlier that i t would take
a static-scheduled Cray- 1-like machine
17 clock periods to execute the inner
loop once. Note also that this example
illustrates a situation where instruction
issuing in the fixed-point pipeline is
completely uninterrupted by the condi-
tional branch executed at the splitter.

ZS-1 performance

All the examples in this article have
used a fixed set of pipeline lengths to
make comparisons possible. The produc-
tion ZS-1 models operate at a 45-nanos-
econd clock period and use VLSI float-
ing-point chips that provide pipeline
lengths of three clock periods for 64-bit
floating-point multiplication and addi-

July 1989 33

tion. (The prototype systems described
in an carlier workI4 used standard TTL-
based floating-point units with latencies
about twice as long. In addition, the
production systems use a true divide
algorithm as opposed to the reciprocal
approximation method described in that
work.“) The memory pipeline is conser-
vatively designed and consumes eight
clock periods for data found in the 128-
kilobyte data cache. The decision to use
a data cache was made relatively late in
the de,sign process. Consequently, the
cache was added in series with the ad-
dress translation unit, with a board-
crossing between. A more parallel ad-
dress translation/cache system would
probably have only half the latency, or
about four clock periods.

For performance comparisons, we use
the 24 Livermore Kernels” because they
are extracted from real programs and
contain a realistic mix of both vector and
scalar code. To summarize performance
in millions of floating-point operations
per second (Mflops), we use the har-
monic mean, which is the total number of
operations (scaled to be the same for
each kernel) divided by the total time.
For the 24 double-precision kernels,
using ihe original Fortran (with no added
compiler directives, as are often used to
assist vector machines), the ZS-1 per-
forms at 4.1 Mflops.

The Multiflow Trace 7/2oO1O is con-
structed of similar-speed technology
(about 3.5 nanoseconds per gate) as the
ZS- 1 and uses state-of-the-art trace
schediiling compiler technology. On the
24 Livermore Kernels the Multiflow
Trace operates at 2.3 Mflops. As a final
comparison, the Cray X-MP can execute
the Livermore Kernels at 12.3 Mflops.”

Of course, all the above performance
numbers are very much a function of the
compiler used. It is expected that later
compiler versions for any of the ma-
chines, including the ZS-l, could lead to
improqed performance.

The book by Thornton4 describing the CDC 6600 is a classic, but unfortunately
it is out of print. Considerable detail on the scoreboard design can be found in
the Thornton and Cray patent, US. patent no. 3,346,851. The IBM 360/91 is de-
scribed in a series of papers in the January 1967 issue of the ISM Journal of Re-
search and Development. A recent book by Schnecki5 contains a discussion of
several pipelined machines, including both the CDC 6600 and the IBM 360/91.
The book by Kogge16 is another excellent reference. Recent research in pipe-
lined computers has concentrated on static scheduling, rather than dynamic
scheduling. A notable exception is work being undertaken by Hwu and PaW7 that
contains interesting enhancements to Tomasulo’s algorithm.

I

D ynamic instruction scheduling
improves performance by re-
solving control and data de-

pendencies at runtime using real data.
Static scheduling must rely on predic-

tions or worst-case assumptions made at
compile time. Consequently, there will
always be situations where runtime sched-
uling can outperform static scheduling.

It ir generally true that simple, stream-
lined instruction sets reduce hardware

34

Additional reading on
dynamic instruction scheduling

control complexity and tend to produce
faster pipelined implementations than
complex instruction sets. However, it
does not logically follow that less hard-
ware control complexity leads to better
Performance. When complexity is di-
rected toward greater instruction func-
tionality, performance often does suffer,
but carefully chosen control complexity
can also be directed toward greater per-
formance.

There is a performance/complexity
trade-off curve, but it is not clear that the
maximum performance point occurs at
the minimal complexity end of the curve.
It may very well be that some additional
control complexity can be effectively
used to increase performance. The risk,
of course, in increasing control complex-
ity is that performance advantages can be
offset by slower control paths and an
increased clock period. The ZS-1 is a
successful attempt at achieving im-
proved performance levels by using an
architecture that naturally leads to mul-
tiple instruction streams and dynamic
instruction scheduling. Despite using dy-
namic scheduling, the Zs- 1 ’s 45-nano-
second clock period is the fastest we
know of for standard TTL-based ma-
chines.

The result is an architecture that can
achieve vector levels of performance on
highly parallel, vectorizable code. Fur-
thermore, and more importantly, similar
performance levels can be achieved with
many less parallel, nonvectorizable
codes. This is done by mixing advanced
static scheduling techniques, based on
loop unrolling (and simple forms of trace
scheduling), with advanced dynamic
scheduling techniques. It is important to
note the “orthogonality” of advanced
static scheduling techniques and dy-

namic scheduling. Static scheduling can
go a long way toward high performance,
but this article has shown that dynamic
scheduling can extend performance be-
yond that achievable with static schedul-
ing alone.

A final observation is that compiler
complexity and compilation times are
often considered to be of little conse-
quence when discussing hardware con-
trol complexity/performance trade-offs.
This is not absolutely true, however.
Mature compilers take considerable time
to construct, and in many program devel-
opment environments compilation times
using advanced static scheduling meth-
ods can become excessively long. Using
dynamic scheduling provides good per-
formance on nonoptimum code. This
means that immature compilers, or very
fast compilers with reduced optimiza-
tion, can come close to achieving the full
potential of a computer that uses dy-
namic scheduling methods. 0

Acknowledgments
The ZS-l has resulted from the hard work of

many people; only a few are acknowledged
here. The original architecture was specified
by Greg Dermer, Tom Kaminski, Michael
Goldsmith, and myself. The processor design
was completed by Brian Vandenvam, Steve
Klinger, Chris Rozewski, Dan Fowler, Keith
Scidmore, and Jim Laudon. Other principals in
the hardware design effort were Bob Niemi,
Harold Mattison. Tom Staley, and Jerry Rabe.
In the software area, Don Neuhengen managed
the operating system development, Greg Fis-
cher managed compiler development, and
Kate Murphy managed applications develop-
ment. Finally, I would like to acknowledge the
constant interest and encouragement provided
by Ron Zelazo, president of the Astronautics
Corporation of America.

COMPUTER

References
I . J. Hennessy, “VLSI Processor Architec-

ture,” IEEE Truns on Coniputers, Vol. 33,
Dec. 1984, pp. 1,221-1,246.

2. D.A. Patterson, “Reduced Instruction Set
Computers,” Comni. ACM, Vol. 28, Jan.
1985. pp. 8-21.

3. D.W. Clark, “Pipelining and Performance
in the VAX 8800 Processor,” Pi-oc.. 2nd
I n (’ / Conf. Ai-chifecturul Support for Pro-
cyrun~tnin~y Lun,quugrs u d Operating Sys-
tenis (ASPLOS II), Oct. 1987, pp. 173-177.

4 . J.E. Thornton, Desi%y17 of0 Computer -- The
Conti-ol Data 6600. Scott, Foresman and
Co., Glenview, 111.. 1970.

5 . D.W. Anderson, F.J. Sparacio, and R.M.
Tomasulo, “The IBM System/360 Model
91: Machine Philosophy and Instruction-
Handling,” IBM J . Reheor-ch und Dri.elop-
ment, Jan. 1967. pp. 8-24.

6. R.M. Tomasulo, “An Efficient Algorithm
for Exploiting Multiple Arithmetic Units,”
IBM J . Reseurch und Deidopment, Jan.
1967. pp. 25-33.

7 . J.A. Fisher, “Trace Scheduling: A Tech-
nique for Global Microcode Compaction.”
IEEE Trails. Con7prtrers, Vol. C-30, July
1981. pp. 478-490.

8. S. Weiss and J.E. Smith, “Instruction Issue
Logic in Pipelined Supercomputers,”
IEEE Truns. Conlputers, Vol. C-33. Nov.
1984. pp. l,OI3-1,022.

9. D.A. Padua and M.J. Wolfe, “Advanced
Compiler Optimizations for Super-
computers,” Comm. ACM. Vol. 29, Dec.
1986. pp. 1,184-1,201.

I O . R.P. Colwell et al., “A VLIW Architecture
for a Trace Scheduling Compiler,” IEEE
Trans. Computers, Vol. 37, Aug. 1988, pp.
967-979.

1 1 . F.H. McMahon, “The Livermore Fortran
Kernels: A Computer Test of the Numeri-
cal Performance Range,” Research Re-
port, Lawrence Livermore Laboratories,
Dec. 1986.

12. L.J. Boland et al., “The IBM System/360
Model 91: Storage System,” IBM J . , Jan.
1967. pp. 54-68.

13. J.E. Smith, S. Weiss, and N. Pang, “A
Simulation Study of Decoupled Architec-
ture Computers.” /E€€ Trans. Computers,
Vol. C-35, Aug. 1986, pp. 692-702.

14. J.E. Smith et al., “The ZS-l Central
Processor,” Proc. ASPLOS 11, Oct. 1987,
pp. 199-204.

15. P.B. Schneck, Supercomputer Architec-
tures, Kluwer Acacemic Publishers, Nor-
well, Mass., 1988.

July 1989

16. P.M. Kogge, The Architecture of Pipelined
Computers, McGraw-Hill, New York,
1981.

17. W. Hwu and Y.N. Patt, “HPSm, a High
Performance Restricted Data Flow Archi-
tecture Having Minimal Functionality,”
Proc. 13th A n n Synip. Coniputer Arc,hirec,-
tiire, June 1986, pp. 297-307.

James E. Smith has been with the Astronau-
tics Corporation Technology Center in Madi-
son, Wis., since 1984. He is system architect
for the ZS Series of computer systems and has
performed research and development activi-
ties primarily directed toward the ZS- I , a large-
scale scientific computer system. He is cur-
rently involved in the specification and design
of follow-on products.

Smith received BS, MS, and PhD degrees
from the University of lllinois in 1972, 1974.
and 1976, respectively. Since 1976, he has
been on the faculty of the University of Wis-
consin at Madison, where he is an associate
professor (on leave) in the Department of Elec-
trical and Computer Engineering. He is a
member of the IEEE Computer Society, IEEE,
and ACM.

Readers may contact the author at Astronau-
tics Corp. of America, Technology Center,
4800 Cottage Grove Rd., Madison, WI 53716-
1387.

Available for the IBM’PC AT. Psi2 and close compatibles
irequires MS Windows”1 $351). and Macintosh” Plus SE. I1 $250

Reader Service Number 5

