Lecture #23

Real Time
Operating Systems

18-348 Embedded System Engineering
Philip Koopman
Monday, April 11, 2016

- Carnegie
) Electrical &Computer g
A ENENEmNG Mellon

© Copyright 2010-2016, Philip Koopman, All Rights Reserved

. . me——— |
h Systern Overview i rd_,i-'
ng tlng RadioRA 2
mr o

A
@ Bﬁ Keypads Dimmers & Switches Sensors
L3

¢ It’sjusta

light switch -
hOW hard y Ramate Conltrols Programming & Software
can it be? - — —
- _[e] D EAT
Lighting Fixturas Temperature Control

- . BB

Window Treatments

http://www.lutron.com/Products/WholeHomeSystems/Homeworksgs/Pages/Components.aspx

Hart Building Suite 101

Energy Savings

Ligating Fnangy Saved Over Last 7 Days Highting Prvwrer

Real time light dimming

* Occupancy Sensors

« Daylight Sensors

 Wireless & wired networking

* Provide constant illumination
across building

« Save by avoiding 100%-on

[Lutron]

=OX

Where Are We Now?

¢ Where we’ve been:
* Interrupts
» Context switching and response time analysis
« Concurrency
¢ Scheduling

¢ Where we’re going today:
¢ RTOS and other related topics
* Priority inversion
« Why software quality matters (safety & security)

¢ Where we’re going next:
* Intro to embedded networks
« System booting, control, safety
o Test #2 on Wednesday April 20th, 2016

Preview

¢ Priority Inversion

e Combining priorities with a mutex leads to complications
 Priority inheritance & priority ceiling as solutions

¢ RTOS overview
¢ Whatto look for in an RTOS
¢ Market trends in RTOS
¢ General embedded design trends

Remember the Major Scheduling Assumptions?

¢ Five assumptions throughout this lecture
1. Tasks {T;} are perfectly periodic

B=0

Pi = DI

Worst case C;

Context switching is free

oL

Overcoming Assumptions

¢ WHAT IF:

1. Tasks {T;} are NOT periodic
— Use Sporadic techniques

2. Tasks are NOT completely independent

— Worry about dependencies
(lets talk about this one)

3. Deadline NOT = period
— Use Deadline monotonic

4. Worst case computation time c; isn’t known
— Use worst case computation time, if known
— Build or buy a tool to help determine Worst Case Execution Time (WCET)
— Turn off caches and otherwise reduce variability in execution time

5. Context switching is free (zero cost)
— Gets messy depending on assumptions
— Might have to include scheduler as task
— Almost always need to account for blocking time B

Reminder: Basic Hazards

¢ Deadlock
¢ Task A needs resources X and Y
¢ Task B needs resources X and Y

e Task A acquires mutex for resource X
« Task B acquires mutex for resource Y

« Task A waits forever to get mutex for resource Y
» Task B waits forever to get mutex for resource X

¢ Livelock

» Tasks release resources when they fail to acquire both X and Y, but...
just keep deadlocking again and again

¢ We’re not to solve these here... desktop OS designers have these too

« But there are related priority problems specific to real time embedded systems
8

Mutex + Priorities Leads To Problems

& Scenario: Higher priority task waits for release of shared resource
e Task L (low prio) acquires resource X via mutex
e Task H (high prio) wants mutex for resource X and waits for it

¢ Simplistic outcome with no remedies to problems (don’t do this!)
e Task H hogs CPU in an infinite test-and-set loop waiting for resource X
e Task L never gets CPU time, and never releases resource X

« Strictly speaking, this is “starvation” rather than “deadlock”

Waits for Mutex Forever
Task H -

Task L " y =

_r | Critical section execution

[Renwick04] modified

Normal execution

Bounded Priority Inversion

¢ An possible approach (BUT, this has problems...)
e Task H returns to scheduler every time mutex for resource X is busy
e Somehow, scheduler knows to run Task L instead
— Ifitis a round-robin preemptive scheduler, this will help

— In prioritized scheduler, task H will have to reschedule itself for later
» Can get fancy with mutex release re-activating waiting tasks, whatever

 Priority inversion is bounded — Task L will eventually release Mutex
— And, if we keep critical regions short, this blocking time B won’t be too bad

Bounded priority r

inversion
Task H y
Task L : »
Normal execution F ; Critical section execution

Figure 1: Bounded priority inversion [Renwickod]
10

Unbounded Priority Inversion

¢ But, simply having Task H relinquish the CPU isn’t enough
e Task L acquires mutex X
e Task H sees mutex X is busy, and goes to sleep for a while; Task L resumes
e Task M preempts task L, and runs for a long time
* Now task H is waiting for task M =» Priority Inversion
— Task H is effectively running at the priority of task L because of this inversion

Unbounded prierity inversion
Task H g s —j »
Task M b
r r r
Task L 1 J ‘ >
Normal execution F ! Critical section execution

Figure 2: Unbounded priority inversion [Renwickod]

11

Solution: Priority Inheritance

¢ When task H finds a lock occupied:
e Itelevates task L to at least as high a priority as task H
e Task L runs until it releases the lock, but with priority of at least H
e Task L is demoted back to its normal priority
e Task H gets its lock as fast as possible; lock release by L ran at prio H
¢ ldea: since mutex is delaying task H, free mutex as fast as you can
« Without suspending tasks having higher priority than H!
e For previous slide picture, L would execute with higher prio than M

Pricrity
Task L fr L |
(hoisted) &,
Req A A

Task H — r J

Reqg A A | Y
Task L

Tirme
1 2 3 B 3 [7 8 -
Mormal execution F | Critical region

Figure 5: Simple priority inheritance [Renwick04] i

Priority Inheritance Pro/Con

¢ Pro: it avoids many deadlocks and starvation scenarios!
* Only elevates priority when needed (only when high prio task wants mutex)

¢ Run-time scheduling cost is perhaps neutral
e Task H burns up extra CPU time to run Task L at its priority
» Blocking time B costs per the scheduling math are:
— L runs at prio H, which effectively increases H’s CPU usage
— But, H would be “charged” with blocking time B regardless, so no big loss

¢ Con: complexity can be high
* Almost-static priorities, not fully static
— But, only changes when mutex encountered, not on every scheduling cycle
» Nested priority elevations can be tricky to unwind as tasks complete
« Multi-resource implementations are even trickier

< If you can avoid need for a mutex, that helps a lot

« But sometimes you need a mutex; then you need priority inheritance too!
13

Mars Pathfinder Incident (SOJourner Rover)

¢ July 4, 1997 — Pathfinder lands on Mars
« First US Mars landing since Vikings in 1976
 First rover to land (vs. crash) on Mars
e Uses VxWorks RTOS

& But, a few days later...

» Multiple system resets occur
— Watchdog timer saves the day! G
— System reset to safe state instead of unrecoverable crash

« Reproduced on ground; patch uploaded to fix it
— Developers didn’t have Priority Inheritance turned on!
— Scenario pretty much identical to H/M/L picture a couple slides back
— Rough cause: “The data bus task executes very frequently and is time-critical -- we

shouldn't spend the extra time in it to perform priority inheritance” [Jones07]

RTOS Selection

¢ RTOS = Real Time Operating System
¢ An OS specifically intended to support real time scheduling
— Usually, this means ability to meet deadlines
« Can support any scheduling approach, but often is preemptive & prioritized
« Usually designed to have low blocking time B

¢ Why isn’t plain Windows an RTOS?

e Example — Win NT (in all fairness, it was never supposed to be an RTOS!)

« 31 priority levels (not enough if you need one per task and one per resource)
— Round robin execution to all threads at same priority
— Probably want 256 or more for an RTOS

< Didn’t support priority inheritance

< Long blocking times on simple system calls (e.g., 670 usec+ on WinNT)

< Device drivers aren’t designed to guarantee minimum blocking time

e Virtual memory is assumed active (swap to disk is a timing problem!)

¢ It’s expensive for mass market products at $186+ per license

e Source: [http://www.dedicated-systems.com/magazine/97qg2/winntasrtos.htm]

15

So What Do You Need In An RTOS?

Source: [Hawley03] Selecting a Real-Time Operating System, Embedded.com

¢ Build vs. buy
e Don’tbuild it if you can buy it (“free” = “buy” for right now)
* More on this later

¢ Footprint
e How much memory does the RTOS take?
e Tasker can be very small, but there is more to an RTOS than that
e Libraries
— If you use one math function, does linker drag in all math functions?
— Or can linker just link functions you actually use?
« Feature subsetting
— Can you get RTOS to include only features you need to minimize footprint?

16

RTOS Features — 2

¢ Performance
¢ Real Time != Real Fast but Real Slow is no fun either
< Blocking time B is key!
¢ What is task switching time?
« What is maximum blocking time within supplied code?
< Does it get things such as device driver blocking right?
< Boot time — does your customer want to wait 5 minutes to boot a flashlight?
< Make sure you compare apples to apples — comparable CPUs and clock speeds

¢ Add-ons
¢ Does it come with support for web connectivity?

« Does it support domain-specific needs (e.g., MISRA C compiler for
automotive?)

¢ Tool support — comes with or supports other tools you need
e Compilers
< Debuggers

¢ Simulators, ICE, etc. .

RTOS -3

¢ Standards support
¢ Windows?
e POSIX (“Unix”)?
— Watch out for subsetting! Might support some functions but not even a command
prompt
— QNX and RT-Linux have a command prompt
— VxWorks is Posix compliant, but doesn’t support “fork”
« Safety certification, if required (domain specific)
— This is becoming more common for major players

¢ Technical support
« Will they answer the phone at 3 AM if your biggest customer is down?
e Training
e Examples

& Source code
< Some will provide you with source code outright so you can self-support

< Some will put source code in escrow in case they go out of business
18

RTOS -4

¢ RTOS features you need

e Mutex / semaphore
— Priority inheritance or priority ceiling

« Scheduling support: RMS (big RTOS) or static multi-rate (medium RTOS) or single-

rate cyclic exec (small RTOS)
* Processes (big RTOS) or just tasks (medium/small RTOS)
» Memory protection and memory management

¢ Licensing — how much does it cost?
« Bulk license — flat fee for unlimited copies
« Per-copy license — usually “runtime only” license is “cheap”
— Development license may be expensive
» Free software isn’t really free
— Support comes from somewhere — internal or 3 party

¢ Reputation
« Will the company be there for you?
— Will it still be there tomorrow (is it one guy in a garage?)
« Does its software actually work?

19

ThreadX is Field Proven!

With owver a billion deployments, ThreadX is industry proven and ready for your most demanding

requirements.
Small Footprint

Thread¥ is implemented as a C library. Only the features used by the application are brought into

the final image. The minimal footprint of Threadx is under 2K& on Microcontrollers.

Minimal Kernel Size: Under 2K bytes
Queue Services: 900 bytes
Semaphore Services: 450 bytes
Mutex Services: 1200 bytes

Block Memory Services: 550 bytes
Minimal RAM reguirement: 500 bytes
Minimal ROM requirement: 2K bytes

R)

* Measurements based on Threadx V5.1, cenfigured for minimal size
Fast Response

Threadx helps your application respond to external events faster than ever before. Threadx is
also deterministic. A high priority thread starts responding to an external event on the order of
the time it takes to perform a highly optimized ThreadX context switch.

= Boot Time: 300 cycles
« Context Switch Time: 20 cycles
» Semaphore Get: 30 cycles

* timing based on ThreadX V5.1, configured for maximum performance and minimal size.

Instant On

Threadx requires as little as 300 cycles to initialize and start scheduling application threads. This
iz hugely important for consumer and medical devices that simply can't afford a long boot time.

Er X
Green Hills Leading the Embedded World NIRERITY

SOFTWARE

i

Safety Critical Products: INTEGRITY®-178B RTOS

» Download INTEGRITY @-178B RTOS Datasheet (PDF)

Related Articles
The INTEGRITY®-178B operating system is the most secure operating system in

the world to have been certified by the NSA-managed NIAP lab to EALG+ High » INTEGRITY Security Overview

Robustness. No other commercial operating system has attained this level of = The Gold Standard for Operating System Security:
security. No other commercial operating system has entered into an evaluation at SKPP

EALG6+ High Robustness. s Secure Separation Architecture

Secure Partition 1 Secure Partition 2 Secure Partition 3 Secure Partition 4

INTEGRITY-178B
Ada Program C Program EC++ Program C Program

Safety Level: A Safety Level: A Safety Level: B Safety Level: D Safety critical runtime options
High| i Medi (Low)
(High) (High) HHcELn) Securely partitioned real-time operating system

Protection in both the time and space domains
Resource/I0 protection

ARINC-653-1 compliant APEX interface
Support for multiple levels of safety criticality
Support for Ada 95, C, and Embedded C++
Support for Rate Monotonic Analysis (RMA)
DO-178B Level A certification package

GMART
Ada run-time

NO EFFECT !

INTEGRITY-178B Kernel

Embedded Processor

21

Adopting A Free RTOS Can Be Tricky

¢ Example: Adopt a “free” RTOS
« Assume it’s “free” (source code available), popular, and pretty good
« Local engineers learn it and make some tweaks
* Now you have your own local code base and some expert engineers

¢ Isit really “free?”
¢ Engineers invested time learning it, but they’d do that for any RTOS
» Local code base has to be maintained — this is not free
— If bug fixes are published for initial code, have to adapt them to your version
— Maybe no big deal if a small fraction of engineer’s time
— Engineer was good at RTOS design already, so it’s a “free” skill

¢ But what is the organizational cost?
 If that engineer leaves, you need to hire someone else with RTOS skills!
— And convince them to move to whatever little town that company is in
« May or may not be able to benefit from later add-on tools
— May or may not be able to migrate to later major upgrades

22

Industry Concern: Open Source “Poisoning

< Industry projects have to be very careful about open source
e Some open source licenses are no big deal (probably Berkeley)
* Some open source licenses are toxic (especially GPL)
— GPL library code and using compilers is OK; rest can be a problem
e Some are in between

¢ Common concerns with open source
* Requirement to publish source code of “derivative works”
 Prohibition for fixed-function product “Tivo-ization” prohibited
« Tracking and publishing copyright attribution (an annoyance)
« Possibility of being sued for patent infringement by open source code

¢ How do you manage the risks?
« Use open source tracking tools that sniff out all open source code in a build
« Have explicit legal department sign-off on every open source component
— Sometimes you can’t use them because the legal issues are too tough

— And sometimes it’s OK ... depends upon product & company
23

Few Projects Are “Clean Sheet of Paper”

2015 UBM Electronics Embedded Markets Study

Does your current project reuse code from a previous
embedded project?

In 2015, 86% reused code.
In 2014, 86% reused code.
90% T In 2013, 86% reused code.
80% 7 18 S In 2012, 85% reused code.

In 2011, 87% reused code.

70% -

60% -| Note: Multiple choice for “Yes”
answers (a respondents can select

50% - mare than one type of reused code).

40% -

30% - 22 23252525

20% | 14 14 141513 ' 14 13151415

e Ll

9% |

No, all new Yes, reused code Yes, reused open- Yes, reused
software, no code developed in- source, shareware purchased code
reuse house code

2015 (N = 1,217) =2014 (N = 1,596) m2013 (N = 2,065) m2012 (N = 1,659) ®2011 (N = 1,862)
24

C & C++ Are Prevalent

2015 UBM Electronics Embedded Markets Study

My current embedded project is programmed mostly in:

C

C++

Assembly language |
Java

C#

MATLAB %"
LabVIEW |
Python
NET |
Other | ‘ﬁp

2015 (N =1.217)

2014 (N = 1,594)
#2013 (N =2,075)
=2012 (N = 1,678)
=2011 (N = 1,876)

http://webpages.uncc.edu/~jmconrad/ECGR4101-2015-
08/Notes/UBM%20Tech%202015%20Presentation%200f%20Embedded%20Markets%20Study%20World%20Day1.pdf

25

RTOS Selection Factors:

2014 Embedded Market Study

Which factors most influenced your decrs

B L0 use

a commercial operating system?

Processor or hardware compatibility
Real-time capability

Good software tools

Support for processor & drivers
Technical support

Ease of future maintenance
Documentation

Overall cost

Royalty-free

Code size/memory usage
Supplier's reputation
Networking capability
Scheduling efficiency

Context switch time

(Top 14 choices.)

— 43%

35%

— 42%
44%

_

5%
35%

I 345
| 8%

— 32%
26%
— 0%

' 32%

7%
—26§=
— 26%
20%

— 25%

24%
— 24‘3&%
e

9
— 18 1%
— 16%
15%

16%
13%

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

W 2014 (N =327)
2013 (N =479)

26

RTOS Popularity

2014 Embedded Market Study
Please select ALL of the operating systems you are.considering
using in the next 12 months.

Android

Hib,
FreeRTOS — 26%
Inhouse/custor E— (5%
Ubuntu q%ﬂ%
Micrium (UC/OS-II, ||l) | ———— 12%
Debian (Linux) ﬂ 10%
Microsoft (Win Embedded 7/Standard) |Se——— o
Texas Instruments RTQS |Se———— 0
Microsoft (Win 7 Compact) —[e— 75
Freescale MQY [Se——{
Wind River (Vx\Works) [e————— 7%
Texas Instruments (DSP/BIOS) [Ee—— 70
Keil (RTX) |—co
Mentor Graphics (Nucleus/Linux) | 55
QNX (QNX) ~|— 50
Angstrom (Linuyx) [Se—— 5%
Wind River (Linuy) S—— 4%, = 2014 (N =1,031)
Red Hat (IX Linux) [Se—4% 2013 (N = 1,572)

Express Logic (Threadx) e 4
eCos 4%

Base: Those who are

3% considering an operating
Wittenstein (OpenRTOS/SAFERTOS) [4% system in any project in the

Analog Devices (VDK) _:1;.% next 12 months

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

27

EMBEDDED SOFTWARE QUALITY CRISIS:

Avoid Betting Your
Company’s Future on
Bad Software

Philip Koopman, Ph.D.

Edge Case Research LLC
Carnegie Mellon University

Edge
Case
ResearCh © 2016 Edge Case Research LLC 1

Edge
Eﬁ:{ Case
Researc

Overview

m Step #1: Admit you have a problem
e Software problems are pervasive
e Are you going to wait until you're on CNN to do something?
m Act as if your company lives or dies by its software
e Software is a core competency, whether you like it or not
®m Business as usual isn’t going to work
e Stakes are increasing, and software is getting more complex
e Testing doesn't turn bad software into good software

m Follow the path toward better software
e People, processes, comprehensive quality assurance

© 2016 Edge Case Research LLC 2

Step #1:
Admit You Have A Problem

01010101010101010101010101010101010
10101010101010101010101010101010100
01010101010101010101010101010101010
10101010101010101110101010101010100
01010101010101010101010101010101010
10101010101010101010101010101010100

© 2016 Edge Case Research LLC 3

One Software Mistake Is All It Takes

m Bad software can tarnish the brand...or kill the company

@4

“Diesel-Gate”

http://www.telegraph.co.uk/finance/newsbysector/industry/engineering/12020564/
Volkswagen-shares-to-double-as-dieselgate-crisis-abates-says-analyst.html

he Knight Capital Group announced on Thursday that it lost $440
million when it sold all the stocks it accidentally bought Wednesday hitp:/idealbook nytimes.com/2012/08/02/knight-capital-

morning because a computer glitch. says-trading-mishap-cost-it-440-million/?_r=0 © 2016 Edge Case Research LLC 4

Some Code Seems Pervasively Bad
TOYOTA’S SPAGHETTI CODE Toyota's killer firmware: Bad design and

3. Software assembly for power train ECU TovmpLosssz21o | ILS consequences
After the 4" Steering Committee, rebuilding of engine control and actions for software assembly were Michael Dunn -October 28, 2013

tarted On Thursday October 24, ruled against Toyota in a case of unintended
(1) ; hi : eleration that Lead th of one parits. Central to the trial was the Engine

chievements

L Identification of current issues with software assembly - Ongomg L s electronic throtrle contral system (ETCS] ode s of unreasonable qualiry.
* There are C sources for which there is no specification document. (e.g., communication L ode is defective and contains b
related)

+ Specification document and C source do not correspond one-to-one. (e.g., cruise,

communication related)

2) Activities to improve the spaghetti-like status of engine control application were started. i . o
(Control structure reform ha; already started in Engine Div. In coordination with this, gﬁﬁﬁmiﬂ?ﬁiﬁ/ﬁiﬂﬂfﬁ? e zE Ty dlertimuere
software structure reform will be carried out. As a first step, it has been decided to transfer
two employees from Engine Div. and carry out trial with purge control.)

ors of Toyota's ETCS are a cause of UA.

Toyota Says It's Settled 338 Cases So
Far In Acceleration MDL

By Aebra Coe

Without care, systems can
quickly get 100 big and

complex, and like dinosaurs,
will eventually go extinct.

. Because structure design is not being
implement, a "spaghetti” state arises] both

i TMC and suppliers struggle to confirm
overall situation

23 TOY-MDLO04983219

Law380, New York (July 22, 2015, 11:37 AM ET) - Atterneys on both sides of
multidistrict litigation over deaths and injuries caused by alleged unintended
acceleration in Toyota Moter Corp. vehicles told a California federal judge on
Tuesday that the settlement process continues to hum along, with deals reached in
338 cases, up from 289 in March

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf http://www.law360.com/articles/681915/toyota-says-it-s-settled-338-cases-so-
far-in-acceleration-md|

TOY-MDL04983253

© 2016 Edge Case Research LLC 5

But It Only Takes One Bad Line of Code

®m This is the bad line How Heartbleed Works: The Code Behind the
of code for Internet's Security Nightmare

Eric Limer http://gizmodo.com/how-heartbleed-works-the-code-
behind-the-internets-se-1561341209

Heartbleed:
memcpy(bp, pl, payload);

e Classic buffer overflow
vulnerability
— Copies “payload” bytes
from pl to bp

’ By now you've surely heard of Heartbleed, the hole in the internet's security
— Reads other user’s data, :
. . that exposed countless encrypted transactions to any attacker who knew how
|nCIUd|ng Secret keyS, to abuse it. But how did it actually work? Once you break it down, it's actually

If payload Val ue |S too b|g incredibly simple. And a little hilarious. But mostly terrifying.

© 2016 Edge Case Research LLC 6

There Are Too Many Examples @ ..

®m And probably many more that aren’t public

S — DD ON To keep a Boeing Dreamliner flying,
HACKERS REMOTELY KILL A JEEP ON THE
MGIWAY =W ITH VE INTT ittt el
\

http:/iwww.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/

1991.: Patriot System Misses a Scud Missile Due To
Software Defect: 28 Americans Dead

http:/Awww.fas.org/spp/starwars/gao/im92026.htm
https://en.wikipedia.org/wiki/MIM-104_Patriot#/media/File:Patriot_missile_launch_b.jpg © 2016 Edge Case Research LLC 7

How Bad Can It Possibly Be?

®m For YOUR product, what is the worst possible outcome:

e For a software bug? K
— People killed or injured? |
— Property damage?
— Cost to deploy a fix?

_]| YOU WILL BEKILLED
— Loss of brand reputation and .; BY ROBOTS

customer confidence?

https://www:.flickr.com/photos/sylvar/3119015160/in/photolist-5KBLxs-4xLkY f
CC BY 2.0 (cropped and contrast enhance)

e For a malicious attack (assume an attack succeeds)?

e Hint: The answer is the same for both bugs and attacks

© 2016 Edge Case Research LLC 8

Act As If Your Products Live
Or Die By Their Software

Software
0% of BOM cost
90% of product

differentiation Mechanical System

90% of BOM cost
Mostly commodity

Electronic Controller
10% of BOM cost

Mostly commodity

BOM = Bill Of Materials

© 2016 Edge Case Research LLC 9

Software Differentiates Products [

m Software is a huge value-add. Take it seriously.

100M (a7 huro

20 NAVIGATION SYSTEM IN 2009
M 5-CLASS MERCEDES-BENZ 10M

IOM AVERAGE 2010
FORD AUTO LINES OF SOFTWARE
CODE IN FORD VEHICLES
6 w BOEING 787 (MILLIONS)
ee» M OREAMLINER

2.4M
U.5. AIR FORCE F-35
517)[JOINT STRIKE FIGHTER

U.S. AIR FORCE
g M F-22 rapoR JeT

https://hbr.org/resources/images/article_assets/hbr/1006/F1006A_B_lg.gif

SOURCES IEEE; AUTOMOTIVE DESIGNLINE

© 2016 Edge Case Research LLC 10

Edge

Case

Large Scale Production = Big Problems
Toyota recalls 625k Prius models for faulty hybrid]
| theguardian

software
: Samsung keyboard bug leaves 600m
Andmld cle\nces exposed to hackers

http:/www.autoblog.com/2015/07
/15/toyota-recalls-625k-prius-
faulty-hybrid-software/

Honda, Yes Honda, Recalls 175,000 Cars For
Unintended Acceleration

http:/Avww.theguardian.com/technology/2015/jun/17/samsung-keyboard-bug-android-hack

o0 reports that all n be id Henda Fit subcompact and Vezel small
crossover models sold in Japar e last will be recalled due oftware http://jalopnik.com/honda-yes-honda-
problem with the engine control system. They did not elaborate, but said the recalls-175-000-cars-for-unintended-a-
problem could lead to unintended acceleration. 1603215615 ©2016 Edge Case Research LLC 11

Software Is A Core Competency [l

B Embedded software is not free!
e 1,000 lines of code = $40,000 $15-$50

e 10,000 lines of code < $400,000 per line of
e 100,000 lines of code = $4,000,000 source code
e 1,000,000 lines of code = $40,000,000

m Big software needs to be managed as if it matters

e |t provides differentiation

e It's expensive to develop, and difficult to get right

e It's even more expensive if a big field failure happens

e It should be a first class citizen in skills and project management

© 2016 Edge Case Research LLC 12

Research

Embedded Software Is Difficult e

m Customers expect embedded {\;EzfgliggiTouchproblems: Ford toissue
SW to be essentially perfect
e Upgrades can be painful to deploy
e Bugs can lead to class action lawsuits

m Severe technical challenges
e Limited hardware resources

e Real-time operation @
N . . Charles Arthur and agencies Monday 7 November 2011 0351 E5T
- The motor company Ford has discovered belatedly that touchscreens don't make
® I n te raCtI 0 n WI t h SySte m S p e C I fl C a great replacement for the knobs and buttons of a dashboard - espedally if the
Se nSO rS an d actu ato rs touchscreens are plagued with software glitches.

The company says it will send memaory sticks to 250,000 customers in the US
offering a software upgrades for its glitch-prone MyFord Touch system, which
replaces the standard dashboard knobs and buttons with a touchscreen.

http://www.theguardian.com/technology/2011/ @ 2016 Edge Case Research LLC 13
nov/07/mvford-touch-problems-uparade

Safety Concerns Are Increasing @

Researc

m Uncontrolled release of energy is a safety issue

e As products have more control authority, they control more energy
— Release of energy directly (e.g., electricity from batteries)
— Control of mechanical systems (e.g., control of combustion engine)

e If your system turned on all its
actuators full-force, what happens?

— How do you know there is no %
bug that causes this to happen?

®m Regulation likely to increase

e IEC 60730 safety standard GOOGLE SELFDRIVING CARS BEGIN TESTS ON CITY

) : ROADS THIS SUMMER
required for European appliances g -y

http:/www.motortrend.com/news/google-self-

driving-cars-begin-tests-on-city-roads-this-summer/ © 2016 Edge Case Research LLC 14

Edge

Embedded Security Is A Huge Deal @ ..

m Everything on the Internet is being attacked 24x7

e Security in every industry will soon get its 15 minutes of fame

HACKER CAN SEND FATAL DOSE TO Map of Industrial Control Systems on the Internet
HOSPITAL DRUG PUMPS RN WA A i

; #% SHODAN |

www.shodan.io

Ahydroelectricplant s

mnneG)

French electric companies apparently

“abig fat button

like to put their hydroglectric plants s paljer

anline. Tentler found three of them -1

= lets you shut off
This sne has a big fat button that lets — . ”

you shut off a turbine. But what's T — a_ tu rb I n e

58.700 Watts between friends. right? - . .

1P noeust Franca that has a prblem T (No login credentials
The LS. Department of Homeland L[L q .

Securitycommissioned researchers o required)

last year to see if they could find
industrial control systems for nuclear power plants using Shodan, They found several

http://money.cnn.com/gallery/technology/security/2013/
05/01/shodan-most-dangerous-internet-searches/4.html

© 2016 Edge Case ResearchLLC 15

Tentler told DHS about all the power plants he found - actually, DHS called him after he

accessed one of their control systems.

Edge

Security Matters for Industrial Systems! eses
m Personal info theft isn’t the only security issue:

Hack attack causes 'massive damage' at steel works

Attacks Against SCADA Systems Doubled in2014: Dell

By Mike Lennan an April 13, 2015
Dell SonicWALL saw global SCADA attacks increase against its customer base from 91,676 in
January 2012 to 163,228 in January 2013, and 675,186 in January 2014,

Key SCADA Attack Methods 4
Source: 2015 Dell Annual Security Report

165%
Forgery 2.48%

0.85%

0.83% Improper Access Contro

http://ww.bbc.com/news/technology-30575104
Hackers caused power cut in western Ukraine

http://www.securityweek.com/attacks-against-scada-systems-doubled-2014-dell

A power cut in westam Ukraine last month was caused by a type of hacking known as http:/A bbe.com/news/technology-35297464 © 2016 Edge Case Research LLC 16

~spear-phishing”, says the US Department of Homeland Security (DHS).

Business As Usual Isn’t
Going To Work

SOFTWARE
DEFECTS

“SWISS CHEESE”
FAILURE MODEL
SOFTWARE
FAILURE
© 2016 Edge Case ResearchLLC 17

Product Testing Won’t Find All Bugs

m Testing bad software
simply makes it less bad

e Testing cannot produce good
software all on its own

TOO MANY
POSSIBLE

OPERATIONAL
SCENARIOS

TIMING AND SEQUENCING

® One third of faults take
more than 5000 years to
manifest

Adams, N.E., "Optimizing preventive service of software
product," IBM Journal of Research and Development,
28(1), p. 2-14,1984. (Table 2, pg. 9, 60 kmonth column)

e Do you test for more than
5000 years of use?

e Your customers will regularly
experience bugs that you will
not see during testing

© 2016 Edge Case Research LLC 18

Security Testing Isn’t Enough @ ...

m Security testing, at best, finds Forbes

currently known problems Shopping For Zero-Days:
y P A Price List For Hackers' Secret
e Some problems known but not

) Software Exploits #erenters
publicly announced

. . ADOBE READER $5,000-$30,000
e More problems will be discovered pp T
after you ship ANDROID $30,000-860,000
o) FLASH OR JAVA BROWSER PLUG-INS $40,000-$100,000
m Attacks will likely increase MICROSOFT WORD §50,000-$100,000
over tl me WINDOWS $60,000-$120,000
_ FIREFOX OR SAFARI $60,000-$150,000
e How will you respond to CHROME OR INTERNET EXPLORER $80,000-$200,000
e emergent threats? 108 $100,000-§250,000

http:/Awww.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-
zero-days-an-price-list-for-hackers-secret-software-exploits/

© 2016 Edge Case Research LLC 19

You Can’t Fix Bad Software @ ...

® You can’t test in quality, safety, or security

®m The cheapest, smartest way to fix
bad software is to throw it away
and start over
e There’s never time to do it right...

— And usually it seems like there’s
no time to do it over

e But ... incremental improvement strategies can work
— Requires cultural change
— Requires commitment to good software at all levels of organization
— Commitment must survive a “but we have to ship next week” crisis

© 2016 Edge Case Research LLC 20

10

Edge

Top 10 Embedded SW Warning Signs [

Software time estimates are driven top-down

Process steps skipped during schedule crunches
Software development is simply “coding” plus “testing”
Poor traceability from product test to requirements

Bugs due to poor code style & complexity

Bugs in software fault detection/recovery

No dependability plan (security + safety)
Tester:Developer ratio is less than about 1 : 1

More than about 5-10% of bugs are found in product test
10. Fewer than 50% of defects are found by peer review

© 2016 Edge Case Research LLC 21

© N Ok wWwNRE

The Path To Good Software

N7 CAPABLE PEOPLE
N ~

ROBUST PROCESS —>+ — , GooD

SOFTWARE
BAKED-IN QUALITY/

© 2016 Edge Case Research LLC 22

11

Edge

Requires a Multi-Prong Approach e

m People
e Good skills; trained on process and technical skills
e Full time software professionals, regardless of formal education

m Process
e Robust, methodical, well defined engineering process
e Good technical practices, especially embedded-specific issues
e Project management that appreciates the cost + benefit of software

m Quality
e Checks and balances to ensure quality is baked in
e Emphasizes good engineering, not just testing

© 2016 Edge Case Research LLC 23

Next Steps @ ...

m Skills check-up
e Do your people have the skills and tools they need?
e Look at a recent project and see how things look

m Process evaluation and improvement
e Is your process the right level of rigor and formality?
e Look at your process and see if there are big gaps

m Software Quality Health Check
e Are your checks and balances in place and working?
e Look at your bug track record and see if it looks OK

© 2016 Edge Case Research LLC 24

12

