
Lecture #23

Real Time
Operating Systems

18-348 Embedded System Engineering

Philip Koopman

Monday, April 11, 2016

© Copyright 2010-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Lighting

 It’s just a
light switch –
how hard
can it be?

http://www.lutron.com/Products/WholeHomeSystems/Homeworksqs/Pages/Components.aspx

3

Energy Savings

[Lutron]

Real time light dimming
• Occupancy Sensors
• Daylight Sensors
• Wireless & wired networking
• Provide constant illumination

across building
• Save by avoiding 100%-on

4

Where Are We Now?
 Where we’ve been:

• Interrupts

• Context switching and response time analysis

• Concurrency

• Scheduling

 Where we’re going today:
• RTOS and other related topics

• Priority inversion

• Why software quality matters (safety & security)

 Where we’re going next:
• Intro to embedded networks

• System booting, control, safety

• Test #2 on Wednesday April 20th, 2016

5

Preview
 Priority Inversion

• Combining priorities with a mutex leads to complications

• Priority inheritance & priority ceiling as solutions

 RTOS overview
• What to look for in an RTOS

• Market trends in RTOS

• General embedded design trends

6

Remember the Major Scheduling Assumptions?
 Five assumptions throughout this lecture

1. Tasks {Ti} are perfectly periodic

2. B=0

3. Pi = Di
4. Worst case Ci
5. Context switching is free

7

Overcoming Assumptions
 WHAT IF:

1. Tasks {Ti} are NOT periodic
– Use Sporadic techniques

2. Tasks are NOT completely independent
– Worry about dependencies

(lets talk about this one)

3. Deadline NOT = period
– Use Deadline monotonic

4. Worst case computation time ci isn’t known
– Use worst case computation time, if known
– Build or buy a tool to help determine Worst Case Execution Time (WCET)
– Turn off caches and otherwise reduce variability in execution time

5. Context switching is free (zero cost)
– Gets messy depending on assumptions
– Might have to include scheduler as task
– Almost always need to account for blocking time B

8

Reminder: Basic Hazards
 Deadlock

• Task A needs resources X and Y

• Task B needs resources X and Y

• Task A acquires mutex for resource X

• Task B acquires mutex for resource Y

• Task A waits forever to get mutex for resource Y

• Task B waits forever to get mutex for resource X

 Livelock
• Tasks release resources when they fail to acquire both X and Y, but…

just keep deadlocking again and again

 We’re not to solve these here… desktop OS designers have these too
• But there are related priority problems specific to real time embedded systems

9

Mutex + Priorities Leads To Problems
 Scenario: Higher priority task waits for release of shared resource

• Task L (low prio) acquires resource X via mutex

• Task H (high prio) wants mutex for resource X and waits for it

 Simplistic outcome with no remedies to problems (don’t do this!)
• Task H hogs CPU in an infinite test-and-set loop waiting for resource X

• Task L never gets CPU time, and never releases resource X

• Strictly speaking, this is “starvation” rather than “deadlock”

[Renwick04] modified

Waits for Mutex Forever

10

Bounded Priority Inversion
 An possible approach (BUT, this has problems…)

• Task H returns to scheduler every time mutex for resource X is busy

• Somehow, scheduler knows to run Task L instead
– If it is a round-robin preemptive scheduler, this will help

– In prioritized scheduler, task H will have to reschedule itself for later
» Can get fancy with mutex release re-activating waiting tasks, whatever ….

• Priority inversion is bounded – Task L will eventually release Mutex
– And, if we keep critical regions short, this blocking time B won’t be too bad

[Renwick04]

11

Unbounded Priority Inversion
 But, simply having Task H relinquish the CPU isn’t enough

• Task L acquires mutex X

• Task H sees mutex X is busy, and goes to sleep for a while; Task L resumes

• Task M preempts task L, and runs for a long time

• Now task H is waiting for task M  Priority Inversion
– Task H is effectively running at the priority of task L because of this inversion

[Renwick04]

12

Solution: Priority Inheritance
 When task H finds a lock occupied:

• It elevates task L to at least as high a priority as task H

• Task L runs until it releases the lock, but with priority of at least H

• Task L is demoted back to its normal priority

• Task H gets its lock as fast as possible; lock release by L ran at prio H

 Idea: since mutex is delaying task H, free mutex as fast as you can
• Without suspending tasks having higher priority than H!

• For previous slide picture, L would execute with higher prio than M

[Renwick04]

13

Priority Inheritance Pro/Con
 Pro: it avoids many deadlocks and starvation scenarios!

• Only elevates priority when needed (only when high prio task wants mutex)

 Run-time scheduling cost is perhaps neutral
• Task H burns up extra CPU time to run Task L at its priority

• Blocking time B costs per the scheduling math are:
– L runs at prio H, which effectively increases H’s CPU usage

– But, H would be “charged” with blocking time B regardless, so no big loss

 Con: complexity can be high
• Almost-static priorities, not fully static

– But, only changes when mutex encountered, not on every scheduling cycle

• Nested priority elevations can be tricky to unwind as tasks complete

• Multi-resource implementations are even trickier

 If you can avoid need for a mutex, that helps a lot
• But sometimes you need a mutex; then you need priority inheritance too!

14

Mars Pathfinder Incident (Sojourner Rover)
 July 4, 1997 – Pathfinder lands on Mars

• First US Mars landing since Vikings in 1976
• First rover to land (vs. crash) on Mars
• Uses VxWorks RTOS

 But, a few days later…
• Multiple system resets occur

– Watchdog timer saves the day!
– System reset to safe state instead of unrecoverable crash

• Reproduced on ground; patch uploaded to fix it
– Developers didn’t have Priority Inheritance turned on!
– Scenario pretty much identical to H/M/L picture a couple slides back
– Rough cause: “The data bus task executes very frequently and is time-critical -- we

shouldn't spend the extra time in it to perform priority inheritance” [Jones07]

15

RTOS Selection
 RTOS = Real Time Operating System

• An OS specifically intended to support real time scheduling
– Usually, this means ability to meet deadlines

• Can support any scheduling approach, but often is preemptive & prioritized
• Usually designed to have low blocking time B

 Why isn’t plain Windows an RTOS?
• Example – Win NT (in all fairness, it was never supposed to be an RTOS!)
• 31 priority levels (not enough if you need one per task and one per resource)

– Round robin execution to all threads at same priority
– Probably want 256 or more for an RTOS

• Didn’t support priority inheritance
• Long blocking times on simple system calls (e.g., 670 usec+ on WinNT)
• Device drivers aren’t designed to guarantee minimum blocking time
• Virtual memory is assumed active (swap to disk is a timing problem!)
• It’s expensive for mass market products at $186+ per license
• Source: [http://www.dedicated-systems.com/magazine/97q2/winntasrtos.htm]

16

So What Do You Need In An RTOS?
Source: [Hawley03] Selecting a Real-Time Operating System, Embedded.com

 Build vs. buy
• Don’t build it if you can buy it (“free” = “buy” for right now)

• More on this later

 Footprint
• How much memory does the RTOS take?

• Tasker can be very small, but there is more to an RTOS than that

• Libraries
– If you use one math function, does linker drag in all math functions?

– Or can linker just link functions you actually use?

• Feature subsetting
– Can you get RTOS to include only features you need to minimize footprint?

17

RTOS Features – 2
 Performance

• Real Time != Real Fast … but Real Slow is no fun either
• Blocking time B is key!
• What is task switching time?
• What is maximum blocking time within supplied code?
• Does it get things such as device driver blocking right?
• Boot time – does your customer want to wait 5 minutes to boot a flashlight?
• Make sure you compare apples to apples – comparable CPUs and clock speeds

 Add-ons
• Does it come with support for web connectivity?
• Does it support domain-specific needs (e.g., MISRA C compiler for

automotive?)

 Tool support – comes with or supports other tools you need
• Compilers
• Debuggers
• Simulators, ICE, etc.

18

RTOS – 3
 Standards support

• Windows?
• POSIX (“Unix”)?

– Watch out for subsetting! Might support some functions but not even a command
prompt

– QNX and RT-Linux have a command prompt
– VxWorks is Posix compliant, but doesn’t support “fork”

• Safety certification, if required (domain specific)
– This is becoming more common for major players

 Technical support
• Will they answer the phone at 3 AM if your biggest customer is down?
• Training
• Examples

 Source code
• Some will provide you with source code outright so you can self-support
• Some will put source code in escrow in case they go out of business

19

RTOS – 4
 RTOS features you need

• Mutex / semaphore
– Priority inheritance or priority ceiling

• Scheduling support: RMS (big RTOS) or static multi-rate (medium RTOS) or single-
rate cyclic exec (small RTOS)

• Processes (big RTOS) or just tasks (medium/small RTOS)
• Memory protection and memory management

 Licensing – how much does it cost?
• Bulk license – flat fee for unlimited copies
• Per-copy license – usually “runtime only” license is “cheap”

– Development license may be expensive
• Free software isn’t really free

– Support comes from somewhere – internal or 3rd party

 Reputation
• Will the company be there for you?

– Will it still be there tomorrow (is it one guy in a garage?)
• Does its software actually work?

21

22

Adopting A Free RTOS Can Be Tricky
 Example: Adopt a “free” RTOS

• Assume it’s “free” (source code available), popular, and pretty good

• Local engineers learn it and make some tweaks

• Now you have your own local code base and some expert engineers

 Is it really “free?”
• Engineers invested time learning it, but they’d do that for any RTOS

• Local code base has to be maintained – this is not free
– If bug fixes are published for initial code, have to adapt them to your version

– Maybe no big deal if a small fraction of engineer’s time

– Engineer was good at RTOS design already, so it’s a “free” skill

 But what is the organizational cost?
• If that engineer leaves, you need to hire someone else with RTOS skills!

– And convince them to move to whatever little town that company is in

• May or may not be able to benefit from later add-on tools
– May or may not be able to migrate to later major upgrades

23

Industry Concern: Open Source “Poisoning”
 Industry projects have to be very careful about open source

• Some open source licenses are no big deal (probably Berkeley)

• Some open source licenses are toxic (especially GPL)
– GPL library code and using compilers is OK; rest can be a problem

• Some are in between

 Common concerns with open source
• Requirement to publish source code of “derivative works”

• Prohibition for fixed-function product “Tivo-ization” prohibited

• Tracking and publishing copyright attribution (an annoyance)

• Possibility of being sued for patent infringement by open source code

 How do you manage the risks?
• Use open source tracking tools that sniff out all open source code in a build

• Have explicit legal department sign-off on every open source component
– Sometimes you can’t use them because the legal issues are too tough

– And sometimes it’s OK … depends upon product & company

24

Few Projects Are “Clean Sheet of Paper”

25

C & C++ Are Prevalent

http://webpages.uncc.edu/~jmconrad/ECGR4101-2015-
08/Notes/UBM%20Tech%202015%20Presentation%20of%20Embedded%20Markets%20Study%20World%20Day1.pdf

26

RTOS Selection Factors:

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

27

RTOS Popularity

http://bd.eduweb.hhs.nl/es/2014-embedded-market-study-then-now-whats-next.pdf

1

1© 2016 Edge Case Research LLC

EMBEDDED SOFTWARE QUALITY CRISIS:
Avoid Betting Your

Company’s Future on
Bad Software

Philip Koopman, Ph.D.

Edge Case Research LLC
Carnegie Mellon University

2© 2016 Edge Case Research LLC

Step #1: Admit you have a problem
 Software problems are pervasive
 Are you going to wait until you’re on CNN to do something?

Act as if your company lives or dies by its software
 Software is a core competency, whether you like it or not

Business as usual isn’t going to work
 Stakes are increasing, and software is getting more complex
 Testing doesn’t turn bad software into good software

 Follow the path toward better software
 People, processes, comprehensive quality assurance

Overview

2

3© 2016 Edge Case Research LLC

Step #1:
Admit You Have A Problem

01010101010101010101010101010101010
10101010101010101010101010101010100
01010101010101010101010101010101010
10101010101010101110101010101010100
01010101010101010101010101010101010
10101010101010101010101010101010100

4© 2016 Edge Case Research LLC

One Software Mistake Is All It Takes
Bad software can tarnish the brand…or kill the company

http://dealbook.nytimes.com/2012/08/02/knight-capital-
says-trading-mishap-cost-it-440-million/?_r=0

http://www.telegraph.co.uk/finance/newsbysector/industry/engineering/12020564/
Volkswagen-shares-to-double-as-dieselgate-crisis-abates-says-analyst.html

“Diesel-Gate”

3

5© 2016 Edge Case Research LLC

Some Code Seems Pervasively Bad

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--
Bad-design-and-its-consequences

http://www.law360.com/articles/681915/toyota-says-it-s-settled-338-cases-so-
far-in-acceleration-mdl

6© 2016 Edge Case Research LLC

 This is the bad line
of code for
Heartbleed:

memcpy(bp, pl, payload);

 Classic buffer overflow
vulnerability
– Copies “payload” bytes

from pl to bp

– Reads other user’s data,
including secret keys,
if payload value is too big

But It Only Takes One Bad Line of Code

http://gizmodo.com/how-heartbleed-works-the-code-
behind-the-internets-se-1561341209

4

7© 2016 Edge Case Research LLC

And probably many more that aren’t public

There Are Too Many Examples

1991: Patriot System Misses a Scud Missile Due To
Software Defect: 28 Americans Dead

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/

http://www.fas.org/spp/starwars/gao/im92026.htm
https://en.wikipedia.org/wiki/MIM-104_Patriot#/media/File:Patriot_missile_launch_b.jpg

8© 2016 Edge Case Research LLC

 For YOUR product, what is the worst possible outcome:

 For a software bug?
– People killed or injured?

– Property damage?

– Cost to deploy a fix?

– Loss of brand reputation and
customer confidence?

 For a malicious attack (assume an attack succeeds)?

 Hint: The answer is the same for both bugs and attacks

How Bad Can It Possibly Be?

https://www.flickr.com/photos/sylvar/3119015160/in/photolist-5KBLxs-4xLkYf
CC BY 2.0 (cropped and contrast enhance)

5

9© 2016 Edge Case Research LLC

Act As If Your Products Live
Or Die By Their Software

Mechanical System
90% of BOM cost
Mostly commodity

Electronic Controller
10% of BOM cost

Mostly commodity

Software
0% of BOM cost
90% of product
differentiation

BOM = Bill Of Materials

10© 2016 Edge Case Research LLC

Software is a huge value-add. Take it seriously.

Software Differentiates Products

https://hbr.org/resources/images/article_assets/hbr/1006/F1006A_B_lg.gif

6

11© 2016 Edge Case Research LLC

Large Scale Production = Big Problems

http://jalopnik.com/honda-yes-honda-
recalls-175-000-cars-for-unintended-a-
1603215615

http://www.theguardian.com/technology/2015/jun/17/samsung-keyboard-bug-android-hack

http://www.autoblog.com/2015/07
/15/toyota-recalls-625k-prius-
faulty-hybrid-software/

12© 2016 Edge Case Research LLC

Embedded software is not free!
 1,000 lines of code  $40,000
 10,000 lines of code  $400,000
 100,000 lines of code $4,000,000
 1,000,000 lines of code $40,000,000

Big software needs to be managed as if it matters
 It provides differentiation
 It’s expensive to develop, and difficult to get right
 It’s even more expensive if a big field failure happens
 It should be a first class citizen in skills and project management

Software Is A Core Competency

$15-$50
per line of

source code

7

13© 2016 Edge Case Research LLC

Customers expect embedded
SW to be essentially perfect
 Upgrades can be painful to deploy
 Bugs can lead to class action lawsuits

Severe technical challenges
 Limited hardware resources
 Real-time operation
 Interaction with system-specific

sensors and actuators

Embedded Software Is Difficult

http://www.theguardian.com/technology/2011/
nov/07/myford-touch-problems-upgrade

14© 2016 Edge Case Research LLC

Uncontrolled release of energy is a safety issue
 As products have more control authority, they control more energy

– Release of energy directly (e.g., electricity from batteries)

– Control of mechanical systems (e.g., control of combustion engine)

 If your system turned on all its
actuators full-force, what happens?
– How do you know there is no

bug that causes this to happen?

Regulation likely to increase
 IEC 60730 safety standard

required for European appliances

Safety Concerns Are Increasing

http://www.motortrend.com/news/google-self-
driving-cars-begin-tests-on-city-roads-this-summer/

8

15© 2016 Edge Case Research LLC

Everything on the Internet is being attacked 24x7
 Security in every industry will soon get its 15 minutes of fame

Embedded Security Is A Huge Deal

http://www.wired.com/2015/06/hackers-can-send-fatal-doses-hospital-drug-pumps/

“a big fat button
lets you shut off
a turbine”
(No login credentials
required)

http://money.cnn.com/gallery/technology/security/2013/
05/01/shodan-most-dangerous-internet-searches/4.html

www.shodan.io

16© 2016 Edge Case Research LLC

Security Matters for Industrial Systems!

http://www.bbc.com/news/technology-30575104

http://www.securityweek.com/attacks-against-scada-systems-doubled-2014-dell

Personal info theft isn’t the only security issue:

http://www.bbc.com/news/technology-35297464

9

17© 2016 Edge Case Research LLC

Business As Usual Isn’t
Going To Work

FAULT
OR

ATTACK

SOFTWARE
FAILURE

“SWISS CHEESE”
FAILURE MODEL

SOFTWARE
DEFECTS

18© 2016 Edge Case Research LLC

 Testing bad software
simply makes it less bad
 Testing cannot produce good

software all on its own

One third of faults take
more than 5000 years to
manifest
Adams, N.E., "Optimizing preventive service of software
product," IBM Journal of Research and Development,
28(1), p. 2-14, 1984. (Table 2, pg. 9, 60 kmonth column)

 Do you test for more than
5000 years of use?

 Your customers will regularly
experience bugs that you will
not see during testing

Product Testing Won’t Find All Bugs

O
P

E
R

AT
IO

N
A

L
S

C
E

N
A

R
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

10

19© 2016 Edge Case Research LLC

Security testing, at best, finds
currently known problems
 Some problems known but not

publicly announced
 More problems will be discovered

after you ship

Attacks will likely increase
over time
 How will you respond to
 emergent threats?

Security Testing Isn’t Enough

http://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-
zero-days-an-price-list-for-hackers-secret-software-exploits/

20© 2016 Edge Case Research LLC

You can’t test in quality, safety, or security

 The cheapest, smartest way to fix
bad software is to throw it away
and start over
 There’s never time to do it right…

– And usually it seems like there’s
no time to do it over

 But … incremental improvement strategies can work
– Requires cultural change

– Requires commitment to good software at all levels of organization

– Commitment must survive a “but we have to ship next week” crisis

You Can’t Fix Bad Software

11

21© 2016 Edge Case Research LLC

1. Software time estimates are driven top-down
2. Process steps skipped during schedule crunches
3. Software development is simply “coding” plus “testing”
4. Poor traceability from product test to requirements
5. Bugs due to poor code style & complexity
6. Bugs in software fault detection/recovery
7. No dependability plan (security + safety)
8. Tester:Developer ratio is less than about 1 : 1
9. More than about 5-10% of bugs are found in product test
10. Fewer than 50% of defects are found by peer review

Top 10 Embedded SW Warning Signs

!

22© 2016 Edge Case Research LLC

The Path To Good Software

CAPABLE PEOPLE

GOOD
SOFTWARE

ROBUST PROCESS

BAKED-IN QUALITY
+

12

23© 2016 Edge Case Research LLC

People
 Good skills; trained on process and technical skills
 Full time software professionals, regardless of formal education

Process
 Robust, methodical, well defined engineering process
 Good technical practices, especially embedded-specific issues
 Project management that appreciates the cost + benefit of software

Quality
 Checks and balances to ensure quality is baked in
 Emphasizes good engineering, not just testing

Requires a Multi-Prong Approach

24© 2016 Edge Case Research LLC

Skills check-up
 Do your people have the skills and tools they need?
 Look at a recent project and see how things look

Process evaluation and improvement
 Is your process the right level of rigor and formality?
 Look at your process and see if there are big gaps

Software Quality Health Check
 Are your checks and balances in place and working?
 Look at your bug track record and see if it looks OK

Next Steps

