
Lecture #9

Economics,
Code Optimization
& Fixed Point Math

18-348 Embedded System Engineering

Philip Koopman

Wednesday, 10-Feb-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

[Carey07]
Original retail $99
2 years later: sells for $45
Display $6-$7
Image sensor ~?$5
~$30 total parts cost

[Amazon.com09]

3

Where Are We Now?
 Where we’ve been:

• Memory bus (back to hardware for a lecture)

 Where we’re going today:
• Economics / General Optimization / Fixed point

 Where we’re going next:
• Debug & test

• Serial ports

• Exam #1

4

Preview
 Basic economics

• Cost vs. price

• Recurring vs. non-recurring costs

• How much does a line of code cost?

 Optimizations
• A few very important optimization rules

• Knowing how much and where to optimize

• High level language optimization techniques (helping the compiler out)
– Some 15-213 material, but we’ve found it doesn’t stick for all students

– Some new material

 Fixed point math
• When integers aren’t enough, but you can’t afford floating point

• (Yes, floating point is cheap these days, but not $.10 cheap)

5

Why Aren’t Embedded CPUs all 32 bits?
 The Intel 386 was 32 bits in 1985, with 275,000 transistors

• Now we can build billions of transistors on a single chip!

 First answer: fast chips are optimized for big programs, not embedded
• 4 MB on-chip cache for an Itanium takes 24 million transistors (assume 6T cell)

• Many, many transistors used for superscalar + out of order execution

• And, you can’t keep it cool in many embedded systems

Moore’s Law

1K

10K

100K

1M

10M

100M

1G

10G

1970 1980 1990 2000 2010

Transistors in High-End Intel CPUs

8086

i486
Pentium

Pentium 4

Itanium 2

Six-Core Xeon 7400

8080

T
ra

ns
is

to
rs

Year

6

Embedded Chips Have To Be Small(er)
 Most embedded systems need a $1 to $10 CPU

• Can you afford a $500 CPU in a toaster oven?

 This means die size is smaller than a huge CPU
• Smaller die takes less wafer space, meaning more raw chips per wafer

• And smaller die gets better yield, meaning more good chips per wafer

• Let’s say a big CPU has 100 million transistors for $1000
– At an arm-waving approximation perhaps you can get 2 million transistors for $10

– This could fit an Intel 386 and 256 KB of on-chip memory, BUT no I/O

 Embedded systems have to minimize total size and cost
• So real embedded systems combine CPU, memory, and I/O

• Common to have 8K to 64K of flash memory on-chip

• (Don’t really need more than an 8-bit processor if you only have 64KB of
memory and are operating on 8-bit analog inputs!)

7

How Embedded Microcontrollers Spend Transistors

 32-bit & 64-bit processors: optimize for speed – often $5 - $100

 8- & 16-bit processors: optimize for I/O integration
• Small memory, no operating system – often $0.50 - $10

 Low-end CPUs spend chip area to lower total system cost

PROCESSOR COREI/O – ALL
THE REST!PROCESSOR CORE I/O

MEMORY; PROTECTION &
CPU SUPPORT MEMORY

32-bit ARM CPU 8/16-bit TI CPU

[Cravotta05]

8

CPU Size Trends – A prediction from 10 years ago
 Most of the market (by # units) is low cost; so small CPUs dominate
 16-bit crossover started when:

• 128 KB+ of flash is small enough to leave room for I/O
• Cost of chip is about $2
• Example: Nov 2009: NXP 32-bit ARM chip with good I/O; only 32KB flash; $1

 16-bit CPU life has been extended by compilers that do large memories

>>?????

9

Market Data From 2014
 But, many of these 32-bit

chips also have multiple on-
chip 8/16-bit CPUs as helpers
(e.g., smart peripherals)

http://eecatalog.com/8bit/2014/01/31/microcontrollers-make-waves-in-
automotive-and-internet-of-things/#

10

Charles Murray, Design News, Sept 2015

http://www.designnews.com/author.asp?doc_id=278431

11

Bill of Materials (BOM)
 BOM is a list of all components in system

• “17 pieces 1K Ohm 5% ¼ watt resistor”

• “3 pieces 74LS374”

• One circuit board

• Power supply

• ….

• Software image rev 8.71.3

• …

 What’s the cost of this system?
• BOM component costs

• Cost of assembly, manufacture, test

• Cost for engineering and software

• There are inherent differences – some are per unit and some are per project

12

Software Costs
 “Firmware is the most expensive thing in the universe”

– Jack Ganssle
• $/per pound; but amortized over 1 million units it might be nearly free

 Typical embedded firmware costs $20 - $50 per line of code
• Defense work with documentation is $100/line
• Space shuttle code perhaps $1000/line
• 10,000 lines of code is $150K - $1M for embedded or defense work!
• Includes all the engineering process, not just hacking “student-quality” demos

 Lines of code often cost the same, independent of language
• One line of C cost = one line of assembly code cost…

BUT, one line of C does about 4x to 5x as much…
SO, assembly programs are about 4x -5x (or more) times expensive

• Optimized code is more expensive than unoptimized code
– It is trickier to write
– It has more bugs and requires more maintenance

13

Recurring & Non-Recurring Costs
 Recurring Expenses (RE)

– directly related to each unit produced
• Raw materials

• Manufacturing labor

• Shipping

 Non-Recurring Expenses (NRE)
– “one-time” costs to produce the first unit

• Engineering time

• Semiconductor masks

• Capital equipment (assuming equipment bought up-front)

• Software

14

Cost of Goods
 Cost of goods general calculation:

• Assumes amortization of NRE over number of items produced

 Example:
• # Items: 100,000 units

• NRE: 5000 lines of source code @ $25/line = $125K + $50K other = $175K

• RE: $1 CPU + $2 other electronics + $1 housing + $1 other costs = $5

• COST PER ITEM = $5 + ($175,000/100,000) = $5 + $1.75 = $6.75
$6.75 * 2x wholesale markup * 2x retail markup => price = $27 retail

• Note that software cost can’t (shouldn’t be) ignored!









Items

NRE
REmCostPerIte

#

15

Cost vs. Price
 Goods are sold with a “mark up” from cost, yielding a “margin”

• “Mark up” is amount you add to cost to get price
• “Margin” is fraction of price that is the mark up

• Let’s say BOM hardware is $10 and labor is $5; total = $15
• If you mark up $12, price is $15+12 = $27
• Margin is $12/$27 = 44.4% (i.e., 44.4% of price is mark up)

 Is that all profit?
• Not at all … you still have to pay for:

– Engineering and research
– Cost of sales (sales commissions, marketing)
– Shipping
– Warranty returns
– Overhead (offices, lights, the CEO’s salary, …..)

• Computation of margin varies depending on assumptions
– What’s included or excluded from the cost

• Retailers often buy goods at 50% discount from retail
– $10 cost with 50% wholesale margin => $20 wholesale => $40 retail(!)
– How much can you pay for a CPU in a $25 product?

16

Optimization – Getting Better Code
 “To define it rudely but not inaptly, engineering . . . Is

the art of doing that well with one dollar,
which any bungler can do with two after a fashion”
• Arthur Mellen Wellington, 1847-1895, U.S. engineer, The Economic Theory of

the Location of Railways (6th ed., 1900) [asme.org]

 Optimize for:
• Speed – fewer clocks

• Space – fewer bytes

• Cost – less effort to write (e.g., automatic code generators)

• Least likely to have defects (e.g., simple, traceable, and defensive code)

 Step one:
• Ask the compiler to optimize for you (use the –O flags)

17

Optimization Rule #1 – Turn On The Optimizer!

18

Optimization Rule #2: Optimize What Matters
 Speed

• Find the routines that take all the time, and optimize those first

• Find sequences of operations used everywhere that are slow, optimize them

 Size
• Find the biggest routines and work on them

• Find bulky code structures that are used in many places, and improve them

 Cost
• Find tools that will generate most of the code for you

• Find “bug farms” (lots of defects) and improve those first

19

Amdahl’s Law

 Originally applied to parallel computation, but applies elsewhere
• What if you speed up half the computation by a factor of 10?

 Insight: zero execution time on loop doesn’t help with rest of program!
• Optimizing a loop that is 10% of program, at most, improves total time by 10%

 Optimization Corollary (rule 2.5): Make the common case fast
• But after a while it won’t be so common (in terms of time consumed)...

• … so optimizing is a game of diminishing returns with effort

 
SPEEDUP

FRACTION
FRACTION

SPEEDUPENHANCED
ENHANCED

ENHANCED


 











1

1

 
SPEEDUP

 









1

1 05
05

10

182
.

.
. times faster

20

How Much Do You Optimize?
 Usually it makes no sense for everything to be optimized

• Don’t write code that is seldom executed in assembly language!

 General procedure (“Pareto approach” – start with biggest payoff)
1. Measure system to find part that matters the most (speed, size)

2. Optimize that part only (e.g., rewrite C code; move to assembly language)

3. If good enough, stop; else go to step 1

• Note: this approach isn’t necessarily optimal, but it is usually good enough

 Rest of lecture will concentrate on speed
• That’s the usual, and more difficult, optimization goal

21

How Do You Know What Matters?
 Basic idea – profiling tool

• Measure program execution (simulated or otherwise)

• Find the “hot spots” where program spends all its time

• Create a “profile” (bar chart of time spent in each loop, routine, etc.)

• Work on the highest bar of the profile chart first

• Example – gprof for Unix systems

 General approaches
• Simulation

– Have simulator record each instruction executed

• Instrumentation
– Automatically add code everywhere to record execution

• Statistical:
– Periodically interrupt execution

– Record where Program Counter happened to be

– Repeat until enough samples are taken to be representative

22

How Small A Profiling Bin?
 Depends on situation

• Per routine – usually easy

• Per loop – often loops are where time is spent

• Per basic block (code with no branch in; no branch out) – usually good

• Per instruction – usually overkill

 Do it yourself profiling is sometimes required on small systems

… do some stuff …

if (x > 17)

{ pcount[29]++;

… do the if part …

} else

{ pcount[30]++;

… do the else part …

}

// pcount track # of executions (usually “long long int”)

23

An Auxiliary Profiling Method – The NOP Trick
 You think you know the hot spot – but you want to be sure

• You could optimize the code and see how much faster it gets

• Alternative – add nops and see how much slower it gets overall

• Saving one clock cycle is about the same time as adding a wasted cycle
– If you add a nop and can’t see a speed difference, saving a clock cycle similarly

won’t matter

LDAA #$FF

Start_loop: … do stuff …

NOP ; time with a couple no-ops

NOP ; see how much slower it goes

DBNE A,Start_loop

24

Now You Know The Hot Spots – What Next?
 Optimization RULE NUMBER 3:

A better algorithm (almost) always beats tighter code

 Example: searching in a 1024-page dictionary
• Sequential search – on average 512 pages O(N)

• Binary subdivision search – 10 pages O(log2 N)

 Example: sorting one thousand 8-bit integer values
• “Bubble Sort” – 1000 elements takes ~1,000,000 operations O(N2)

• “Quick Sort” – 1000 elements takes ~ 10,000 operations O(N log2 N)

• “Radix Sort” – 1000 elements takes ~ 1000 operations O(N)

 Want to know more?
• Take an algorithms course – a good investment for writing faster code

25

High Level Code Optimization
 If possible, optimize your C code – don’t write assembly code

• Optimization Rule 4: Write the least assembly language possible
• Assembly code is 400% – 500%+ as expensive – and not portable
• Optimized C code will run (perhaps slowly) on another processor

 In fantasy land … all compilers optimize everything perfectly
• but we don’t live in a fantasy land!

 Every compiler has optimization strengths and weaknesses
• To write fast code, find out what your compiler “likes” to compile
• For other things, you get to play “human optimizer”

• Example: our class compiler likes pointers and doesn’t like subscripts
(this is very common for embedded compilers)

 To learn more about these tricks take a course on compilers
• Concentrating on optimizations and “back-ends” more than formal languages
• This is in part a review of some 15-213 content

26

Common Subexpression Elimination
 Find a common partial result and save instead of duplicating:

a = (b*c*d) + (b*c*e);

 a = (b*c)*(d + e);

• watch out for numeric overflow etc… but usually works OK

 Also works on memory addressing and other places
a = x[i+j+1]; b = y[i+j+1];

 temp = i+j+1;

a = x[temp]; b = y[temp];

 Many compilers do some of this automatically
• But sometimes they need help

• CW does OK at this

27

Common Subexpression Example
From CW compiler:

21: for (i = 0; i < MAX-10; i++)
0004 6981 [2] CLR 1,SP
22: { for (j = 0; j < MAX-10; j++)

0006 6980 [2] CLR 0,SP
23: { a = v[i+j+3];

0008 e681 [3] LDAB 1,SP
000a eb80 [3] ADDB 0,SP ; Breg = i+j
000c ce0000 [2] LDX #v:3
000f a6e5 [3] LDAA B,X ; v[i+j+3]
0011 6a83 [2] STAA 3,SP
24: b = w[i+j+7];

0013 ce0000 [2] LDX #w:7
0016 a6e5 [3] LDAA B,X ; w[i+j+7]
0018 6a82 [2] STAA 2,SP

Why are there zeros for LDX values? – linker changes them later

28

Subroutine Inlining
 Substitute a small piece of code in-line

• a = average (b,c);

…

inline uint8 average (uint8 a, uint8 b) { return((a+b)/2); }

38: result = usaverage(a,b);

… main code …

0034 a684 [3] LDAA 4,SP ; get a

0036 ab80 [3] ADDA 0,SP ; get b

0038 6a83 [2] STAA 3,SP ; store result

003a 6483 [3] LSR 3,SP ; result >>= 1

… main code …

• (Note that the compiler also knows the >>1 trick for unsigned numbers)

29

Strength Reduction
 From previous lecture – use simple operation instead of complex one

• A = A * 3;  A = A + (A<<1);
• A = A / 2;  A = A >> 1; // only for unsigned

 What does the CW compiler do with signed integer division by two?
44: r2 = (m + n) / 2;

004e b764 [1] TFR Y,D
0050 8480 [1] ANDA #128
0052 2605 [3/1] BNE *+7 ;abs = 0059
0054 b764 [1] TFR Y,D
0056 49 [1] LSRD ; shift if pos
0057 2009 [3] BRA *+11 ;abs = 0062
0059 ce0002 [2] LDX #2
005c b764 [1] TFR Y,D
005e 1815 [12] IDIVS ; divide if neg
0060 b751 [1] TFR X,B
0062 6b85 [2] STAB 5,SP

30

Can We Help Division By Two In C?
inline int8 mydiv2(int8 a)

{ if (a & 0x80) { a++; } // or could use a<0

return(a>>1);

}

• Note: “>>” is undefined in C standard for neg numbers; check your compiler

 The CW compiler doesn’t know the whole “divide by 2” trick
• Avoids 12-clock signed division for negative number – better is:

66: r2 = mydiv2(m);

00a6 a682 [3] LDAA 2,SP ; load m

00a8 6a83 [2] STAA 3,SP

00aa 8480 [1] ANDA #128 ; test hi bit

00ac 2702 [3/1] BEQ *+4 ;abs = 00b0

00ae 6283 [3] INC 3,SP ; inc if neg

00b0 a683 [3] LDAA 3,SP

00b2 47 [1] ASRA ; shift right

00b3 6a80 [2] STAA 0,SP

31

Loop Unrolling
 Do multiple iterations of loop as in-line code

• To reduce per-loop overhead (e.g., do two iterations at once; halves overhead)
• To eliminate loop overhead for a small constant number of loops
• CW does this one

71: for (i = 1; i < 3; i++)
72: { v[a+b+i] = w[a+b+i];
00ba 1806 [2] ABA ; compute a+b
00bc ce0000 [2] LDX #w:1 ; i=1
00bf e6e4 [3] LDAB A,X
00c1 ce0000 [2] LDX #v:1
00c4 6be4 [2] STAB A,X
00c6 ce0000 [2] LDX #w:2 ; i=2
00c9 e6e4 [3] LDAB A,X
00cb ce0000 [2] LDX #v:2
00ce 6be4 [2] STAB A,X
73: } ; no loop overhead at all!

32

Code Hoisting
 Sometimes there is a computation in a loop that is redundant

• Move it (“hoist it”) to before start of loop

• Think of it as common subexpression elimination to outside of loop

• CW compiler misses this one: (33 clocks per loop)
77: { v[a+b+c] += w[a+b+c]; // why recompute

00dd e682 [3] LDAB 2,SP ; a+b+c for each loop

00df eb83 [3] ADDB 3,SP

00e1 eb8d [3] ADDB 13,SP

00e3 ce0000 [2] LDX #v

00e6 a6e5 [3] LDAA B,X

00e8 cd0000 [2] LDY #w

00eb abed [3] ADDA B,Y

00ed 6ae5 [2] STAA B,X

00ef 6284 [3] INC 4,SP

00f1 e684 [3] LDAB 4,SP

00f3 e182 [3] CMPB 2,SP

00f5 25e6 [3/1] BCS *-24 ;abs = 00dd

78: }

33

Code Hoisting Example
 Rewrite as: d = a + b + c;

for (i = 1; i < a; i++)

{ v[d] += w[d]; }

(25 clocks per loop)

81: d = a + b + c;

; compute d outside loop

00f6 e682 [3] LDAB 2,SP

00f8 eb83 [3] ADDB 3,SP

00fa eb87 [3] ADDB 7,SP

00fc 6b88 [2] STAB 8,SP

; loop initialization

82: for (i = 1; i < a; i++)

00fe c601 [1] LDAB #1

0100 6b84 [2] STAB 4,SP

0102 2010 [3] BRA *+18
;abs = 0114

; main loop body

83: { v[d] += w[d];

0104 e688 [3] LDAB 8,SP

0106 ce0000 [2] LDX #v

0109 a6e5 [3] LDAA B,X

010b cd0000 [2] LDY #w

010e abed [3] ADDA B,Y

0110 6ae5 [2] STAA B,X

0112 6284 [3] INC 4,SP

0114 e684 [3] LDAB 4,SP

0116 e182 [3] CMPB 2,SP

0118 25ea [3/1] BCS *-20
;abs = 0104

84: }

34

Use Pointers Instead Of Arrays
 C compilers sometimes favor pointers instead of arrays

• Maps more cleanly into index registers

• Lots of legacy code already uses pointers, so compilers concentrate on that

 Sometimes the CW compiler switches to pointers
• But usually only for simple loops over static arrays

• Usually, using pointers generates faster code

int8 x[100]; int8 x[100];

int8 a; int8 a; int8 *p;

a = x[17];  p = &x[17];
a = *p;

 Lab involves changing a loop from indices to pointers.

35

Loop Optimization
 Some MCUs have special instructions and addressing modes

 For example, count-down loops
• “for (i = 100; i >0; i--)”

– Might compile into a decrement and test for zero assembly instruction

– DBNE instruction does this, right?

• Thus, it is often faster than: “for (i = 1; i <=100; i++)”
– Requires increment and compare

36

Use Minimal Data Types
 Don’t use a 16-bit int when an 8-bit int will do!

• This assumes the CPU “likes” 8 bit data values, which is true of our CPU

• Memory size aside, often get best speed by matching data sizes to hardware
word size

 … we’ve already discussed data types, but don’t forget to do this! …
• int8 uint8

• int16 uint16

37

A Word About Compiler Bugs(!)
 Many compilers have bugs …

and many of those bugs show up in infrequently used features …
such as:
• Extended precision arithmetic (e.g., long long shifting on some workstations)

– Or anything that is used infrequently in production code

• Very high optimization levels (e.g., “-O4” optimization)

• That having been said, the CW tools are remarkably clean

 If you have strange problems with your software …
• … try reducing optimizations and see if problems go away

• Alternately, check the compiled output and see if it is correct

38

Optimization Via Special Hardware
 DSP – Digital Signal Processor chip

• Has hardware multiplier & hardware multi-bit shift (barrel shifter)
– (These might be the same array of AND gates used two ways)

• Often has hardware support for FFT butterfly operand access
• Used for signal processing
• Traditionally integer, but newer ones have floating point

 FPGA – Field Programmable Gate Array
• Can program chip to have any hardware you like (Verilog => HW synthesis)
• Can implement a CPU in a large FPGA plus other logic
• Can have a fixed CPU (smaller die area) with FPGA around it
• Much more expensive per gate than ASIC or ASSP

 ASIC – Application Specific IC = your own custom chip
 ASSP – Application Specific Standard Product

• Someone else’s idea of a chip tailored to your application area
• Standard product, but with hardware support (e.g., CRC hardware; Fuzzy logic

support)

39

Fixed Point Math
 Floating point math is very expensive!

• Usually no hardware for floating point on small microcontrollers

• Software support is big (lots of code space) and slow (lots of clock cycles)

 General approach to reduce cost: use fixed point math
• Use an integer with some digits of a fraction already put in

– E.g., for 16-bit machine value can interpret as 8 bits integer and 8 bits fraction

• Or, change units fractional units “1/10 of one degree” for temperature
– 80710 = 80.7 degrees, etc

– But, usually math is more efficient if you use binary radix
can use shift instead of divide to align results of * and /

 Addition and subtraction easy – just use integer add subtract

 Division and multiplication difficult – need to do “scaling” to line up decimal

8 8
INTEGER FRACTION

40

Fixed Point Add and Subtract
 Implementation: no different than multi-precision add/subtract

• Radix point stays in same position in result as in operands

• Two’s complement still works as it does for integers

244.6
125.3+

369.9

1.A6B
3.2FC-

-1.891

E.76F

–

8 bits

8

24 bits

24
INTEGER

INTEGER

INTEGER

FRACTION

FRACTION

FRACTION

24 bits

24

8 bits

8

INTEGER FRACTION

INTEGER FRACTION

INTEGER FRACTION

+

41

Fixed Point Multiply
 Basic multiplication is same as for integers

• Radix point shifts to the left

• Same number of total bits to right and left as sum of bits
in operands

• E.g.: 8.24 x 8.24 => 16.48 bits

 Result alignment option #1:
• Re-align radix point

• Discard high order integer bits

• Discard low order fraction bits
8 bits

8 bits

16
8 24

24 bits

24 bits

48

x

INTEGER

INTEGER

INTEGER

FRACTION

FRACTION

FRACTION

INTEGER FRACTION

2.4A6
1.C53x

0 9D24.0E0

4.0E0

42

Fixed Point Multiply – 2
 Result alignment option #2:

• Keep integer bits and as many fraction bits as will fit

• Discard all low order bits

• Whether you do this depends on how many significant
integer bits you predict you will have

8 bits

16 bits

16
16 16

24 bits

16 bits

48

x

INTEGER

INTEGER

INTEGER

FRACTION

FRACTION

FRACTION

INTEGER FRACTION

2.4A6
1.C53x

09D204.0E

04.0E

43

Fixed Point Divide
 Create Dividend with twice as many bits before & after radix point

• Then, execute normal integer division

• Quotient will have correct format

• Think of formatting as the reverse of multiply

• Non-negative example below:

8 bits 24 bits

÷

INTEGER FRACTION

4 bits
“0” “000”

12 bits

4 bits 12 bits
INTEGER FRACTION

4 bits 12 bits

QuotientINTEGER FRACTION

INTEGER FRACTION

__________1.5BA 1.5BA
0 0007.4A67.4A6

5.5E7

÷

44

Keeping Track of the Radix Point
 Main practical differences between fixed & floating point:

• Fixed point is faster in absence of floating point hardware
– Bit-by-bit alignment is expensive in hardware (requires a barrel shifter)

• More digits of precision (don’t “waste” bits on exponent)

• Programmer has to manually keep track of the radix point and align as needed
– Arguments to fixed point math need not have homogeneous radix point formats

24A.6
1.B4Cx

0 3483E8.6

24.A6
.1B4Cx

0 3 E 8 6 3 4 8

???
.

244.6
1.446+

245.A

45

How Is Floating Point Different?
 Uses scientific notation (exponent plus mantissa)

 Single precision is:
• 1 bit sign (applies to sign of number, not sign of exponent)

• 8 bit exponent (range -126 to +127); ~ 1037

• 24 bit mantissa, aligned with “1” in first bit, which is implicit; ~ 7 decimal digits

• A number of special bit patterns, e.g.:
– NaN = “not a number” – result of numerical error propagated to outputs

– Infinity

 Double precision is 64 bits – bigger exponent; bigger mantissa

1 bit

8 bits

23 bits (with implicit leading 1.)

EXPONENTS MANTISSA

IEEE Floating Point Format
Single Prec ision: 32 bits total

46

Floating Point Pitfalls #1 & #2 – Comparisons
 Besides being slow/expensive, there are times when floating point can

burn you!

 Problem #1: comparisons might not be meaningful
• What is wrong with this code fragment?
if (MyFloatA == MyFloatB) . . .

 Problem #2: sometimes comparisons fail
• Consider, for example, a speed limit on a system

– Simple control loop: if speed is too fast, reduce commanded speed by 10%
– (For example, perhaps you are going down a hill and picking up speed from gravity)

• When will this code NOT work as expected?
#define SPEEDLIMIT 3.0
double SpeedCommand, SpeedActual;
. . .
if (SpeedActual > SPEEDLIMIT) {SpeedCommand *= 0.9;}

47

Floating Point Pitfall #3 – Roundoff
 What output does this program produce?

#include <stdio.h>

int main(void)
{

union { float fv; int iv; } count;
long i;

for (i = 0; i < 0x00FFFFF8; i++)
{ count.fv += 1;
}

for (i = 0; i < 16; i++)
{ count.fv += 1;

printf(" + 1 = %8.0f 0x%08X\n", count.fv, count.iv);
}

return;
}

48

Floating Point Roundoff Error
 If you increment floating point,

at some point it stops
incrementing(!)
• This happens a lot sooner than you

might think

• Effective size of mantissa is only 24
bits = 16777216

• Always use an int or long for time!

1 bit

8 bits

23 bits (with implicit leading 1.)

EXPONENTS MANTISSA

IEEE Floating Point Format
Single Prec ision: 32 bits total

49

Floating Point Pitfall #3 part II – Float32 Time
 Say you are counting 1/100th of seconds as a time tick

• 32-bit count rolls over in about 16 months

• So, let’s use 32-bit floating point instead (bad idea, but why?)

 Floating point format: 8 bit exponent 24 bit mantissa
• Increment number by 1/100th for every time tick

• First problem 1/100th is an imprecise number in floating point – roundoff error

• But, might still work OK for a while

• As number gets bigger, roundoff error for increment gets bigger
– Fewer of the fractional bits in 1/100 actually “count” in the additions

– By 224 / 100 seconds (47 hours) – the time won’t increment at all!

– With 32-bit floating point 224 + 1 = 224 (the +1 is lost in rounding error)

50

Would Anyone Use Float Time?
 Patriot Missile incident

• 1991: Scud kills 28 American (Desert Storm)

• http://www.fas.org/spp/starwars/gao/im92026.htm
“after about 20 hours, the inaccurate time calculation
becomes sufficiently large to cause the radar to look in the wrong place”

– “Range gate” used to look where target is predicted to be next

– Target track is lost if range gate is wrong, resulting in a miss

– The incident happened 100 hours after the last system reset

 What was the root cause mistake?
• Scud missiles travel at Mach 5 (3750 mph) – Patriot designed to track aircraft

• Time was represented in 10ths of a second as an integer
– Then converted to 24-bit fractional value for calculation

– 0.1 seconds is not an “even number” = 0.0001100110011001100110011001100…

– At 100 hours, resultant round-off is 0.000000095 decimal
[http://www.ima.umn.edu/~arnold/455.f96/disasters.html]

• Even that small round-off error when doing distance = velocity * time
with large base time and high velocity leads to a failure

– After 100 hours error was 0.344 seconds = 697 meters error (per GAO report)

51

[GAO/IMTEC-92-26]

52

Review
 Basic economics

• Markup, margin
• NRE vs. RE
• How much does firmware cost per line?

 Optimization
• Optimization Rules – memorize them (there are only 4 ½ of them)

– Numbered: 1, 2, 2.5, 3, 4

• Amdahl’s law
– Be able to apply (know the formula, but not required to write it down)

• Profiling techniques
– Know different profiling strategies

• Basic optimization techniques –
if we give you some C code, can you apply a technique we tell you to apply?

 Fixed point
• Understand how to put the radix point in the right place in operands and result
• Understand floating point pitfalls

