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Where Are We Now?
 Where we’ve been:

• Memory bus  (back to hardware for a lecture)

 Where we’re going today:
• Economics / General Optimization / Fixed point

 Where we’re going next:
• Debug & test

• Serial ports

• Exam #1

4

Preview
 Basic economics

• Cost vs. price

• Recurring vs. non-recurring costs

• How much does a line of code cost?

 Optimizations
• A few very important optimization rules

• Knowing how much and where to optimize

• High level language optimization techniques (helping the compiler out)
– Some 15-213 material, but we’ve found it doesn’t stick for all students

– Some new material

 Fixed point math
• When integers aren’t enough, but you can’t afford floating point

• (Yes, floating point is cheap these days, but not $.10 cheap)
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Why Aren’t Embedded CPUs all 32 bits?
 The Intel 386 was 32 bits in 1985, with 275,000 transistors

• Now we can build billions of transistors on a single chip!

 First answer: fast chips are optimized for big programs, not embedded
• 4 MB on-chip cache for an Itanium takes 24 million transistors (assume 6T cell)

• Many, many transistors used for superscalar + out of order execution

• And, you can’t keep it cool in many embedded systems

Moore’s Law
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Embedded Chips Have To Be Small(er)
 Most embedded systems need a $1 to $10 CPU

• Can you afford a $500 CPU in a toaster oven?

 This means die size is smaller than a huge CPU
• Smaller die takes less wafer space, meaning more raw chips per wafer

• And smaller die gets better yield, meaning more good chips per wafer

• Let’s say a big CPU has 100 million transistors for $1000
– At an arm-waving approximation perhaps you can get 2 million transistors for $10

– This could fit an Intel 386 and 256 KB of on-chip memory,  BUT no I/O

 Embedded systems have to minimize total size and cost
• So real embedded systems combine CPU, memory, and I/O

• Common to have 8K to 64K of flash memory on-chip

• (Don’t really need more than an 8-bit processor if you only have 64KB of 
memory and are operating on 8-bit analog inputs!)
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How Embedded Microcontrollers Spend Transistors

 32-bit & 64-bit processors: optimize for speed – often $5 - $100

 8- & 16-bit processors: optimize for I/O integration
• Small memory, no operating system – often $0.50 - $10

 Low-end CPUs spend chip area to lower total system cost

PROCESSOR COREI/O – ALL
THE REST!PROCESSOR CORE I/O

MEMORY; PROTECTION &
CPU SUPPORT MEMORY

32-bit ARM CPU 8/16-bit TI CPU

[Cravotta05]
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CPU Size Trends – A prediction from 10 years ago
 Most of the market (by # units) is low cost; so small CPUs dominate
 16-bit crossover started when:

• 128 KB+ of flash is small enough to leave room for I/O
• Cost of chip is about $2
• Example: Nov 2009:  NXP 32-bit ARM chip with good I/O; only 32KB flash; $1

 16-bit CPU life has been extended by compilers that do large memories

>>?????
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Market Data From 2014
 But, many of these 32-bit 

chips also have multiple on-
chip 8/16-bit CPUs as helpers 
(e.g., smart peripherals)

http://eecatalog.com/8bit/2014/01/31/microcontrollers-make-waves-in-
automotive-and-internet-of-things/#

10

Charles Murray, Design News, Sept 2015

http://www.designnews.com/author.asp?doc_id=278431
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Bill of Materials (BOM)
 BOM is a list of all components in system

• “17 pieces  1K Ohm 5%  ¼ watt resistor”

• “3 pieces 74LS374”

• One circuit board

• Power supply

• ….

• Software image rev 8.71.3

• …

 What’s the cost of this system?
• BOM component costs

• Cost of assembly, manufacture, test

• Cost for engineering and software

• There are inherent differences – some are per unit and some are per project

12

Software Costs
 “Firmware is the most expensive thing in the universe”

– Jack Ganssle
• $/per pound;  but amortized over 1 million units it might be nearly free

 Typical embedded firmware costs $20 - $50 per line of code
• Defense work with documentation is $100/line
• Space shuttle code perhaps $1000/line
• 10,000 lines of code is $150K - $1M for embedded or defense work!
• Includes all the engineering process, not just hacking “student-quality” demos

 Lines of code often cost the same, independent of language
• One line of C cost = one line of assembly code cost…

BUT, one line of C does about 4x to 5x as much…
SO, assembly programs are about 4x -5x (or more) times expensive

• Optimized code is more expensive than unoptimized code
– It is trickier to write
– It has more bugs and requires more maintenance
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Recurring & Non-Recurring Costs
 Recurring Expenses (RE)

– directly related to each unit produced
• Raw materials

• Manufacturing labor

• Shipping

 Non-Recurring Expenses (NRE)
– “one-time” costs to produce the first unit

• Engineering time

• Semiconductor masks

• Capital equipment (assuming equipment bought up-front)

• Software

14

Cost of Goods
 Cost of goods general calculation:

• Assumes amortization of NRE over number of items produced

 Example: 
• # Items: 100,000 units

• NRE: 5000 lines of source code @ $25/line = $125K + $50K other = $175K

• RE:   $1 CPU + $2 other electronics + $1 housing + $1 other costs = $5

• COST PER ITEM = $5 + ($175,000/100,000) = $5 + $1.75 = $6.75
$6.75 * 2x wholesale markup * 2x retail markup  => price = $27 retail

• Note that software cost can’t (shouldn’t be) ignored!









Items

NRE
REmCostPerIte

#
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Cost vs. Price
 Goods are sold with a “mark up” from cost, yielding a “margin”

• “Mark up” is amount you add to cost to get price
• “Margin” is fraction of price that is the mark up

• Let’s say BOM hardware is $10 and labor is $5; total = $15
• If you mark up $12, price is $15+12 = $27
• Margin is $12/$27 = 44.4%   (i.e., 44.4% of price is mark up)

 Is that all profit?
• Not at all … you still have to pay for:

– Engineering and research
– Cost of sales (sales commissions, marketing)
– Shipping
– Warranty returns
– Overhead (offices, lights, the CEO’s salary, …..)

• Computation of margin varies depending on assumptions 
– What’s included or excluded from the cost

• Retailers often buy goods at 50% discount from retail
– $10 cost with 50% wholesale margin => $20 wholesale => $40 retail(!)
– How much can you pay for a CPU in a $25 product?

16

Optimization – Getting Better Code
 “To define it rudely but not inaptly, engineering . . . Is

the art of doing that well with one dollar, 
which any bungler can do with two after a fashion”
• Arthur Mellen Wellington, 1847-1895, U.S. engineer, The Economic Theory of 

the Location of Railways (6th ed., 1900)   [asme.org]

 Optimize for:
• Speed – fewer clocks

• Space – fewer bytes

• Cost – less effort to write  (e.g., automatic code generators)

• Least likely to have defects (e.g., simple, traceable, and defensive code)

 Step one:
• Ask the compiler to optimize for you  (use the –O flags)
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Optimization Rule #1 – Turn On The Optimizer!

18

Optimization Rule #2: Optimize What Matters
 Speed

• Find the routines that take all the time, and optimize those first

• Find sequences of operations used everywhere that are slow, optimize them

 Size
• Find the biggest routines and work on them

• Find bulky code structures that are used in many places, and improve them

 Cost
• Find tools that will generate most of the code for you

• Find “bug farms” (lots of defects) and improve those first
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Amdahl’s Law

 Originally applied to parallel computation, but applies elsewhere
• What if you speed up half the computation by a factor of 10?

 Insight: zero execution time on  loop doesn’t help with rest of program!
• Optimizing a loop that is 10% of program, at most, improves total time by 10%

 Optimization Corollary (rule 2.5):  Make the common case fast
• But after a while it won’t be so common (in terms of time consumed)...

• … so optimizing is a game of diminishing returns with effort
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How Much Do You Optimize?
 Usually it makes no sense for everything to be optimized

• Don’t write code that is seldom executed in assembly language!

 General procedure (“Pareto approach” – start with biggest payoff)
1. Measure system to find part that matters the most  (speed, size)

2. Optimize that part only (e.g., rewrite C code; move to assembly language)

3. If good enough, stop; else go to step 1

• Note: this approach isn’t necessarily optimal, but it is usually good enough

 Rest of lecture will concentrate on speed
• That’s the usual, and more difficult, optimization goal



21

How Do You Know What Matters?
 Basic idea – profiling tool

• Measure program execution (simulated or otherwise)

• Find the “hot spots” where program spends all its time

• Create a “profile” (bar chart of time spent in each loop, routine, etc.)

• Work on the highest bar of the profile chart first

• Example – gprof for Unix systems

 General approaches
• Simulation

– Have simulator record each instruction executed

• Instrumentation
– Automatically add code everywhere to record execution

• Statistical:
– Periodically interrupt execution

– Record where Program Counter happened to be

– Repeat until enough samples are taken to be representative

22

How Small A Profiling Bin?
 Depends on situation

• Per routine – usually easy

• Per loop – often loops are where time is spent

• Per basic block  (code with no branch in; no branch out) – usually good

• Per instruction – usually overkill

 Do it yourself profiling is sometimes required on small systems

… do some stuff …

if (x > 17)

{  pcount[29]++;

… do the if part …

} else

{  pcount[30]++;

… do the else part …

}

// pcount track # of executions (usually “long long int”)
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An Auxiliary Profiling Method – The NOP Trick
 You think you know the hot spot – but you want to be sure

• You could optimize the code and see how much faster it gets

• Alternative – add nops and see how much slower it gets overall

• Saving one clock cycle is about the same time as adding a wasted cycle
– If you add a nop and can’t see a speed difference, saving a clock cycle similarly 

won’t matter

LDAA #$FF

Start_loop: … do stuff … 

NOP ; time with a couple no-ops

NOP ; see how much slower it goes

DBNE A,Start_loop

24

Now You Know The Hot Spots – What Next?
 Optimization RULE NUMBER 3:

A better algorithm (almost) always beats tighter code

 Example: searching in a 1024-page dictionary
• Sequential search – on average 512 pages O(N)

• Binary subdivision search – 10 pages O(log2 N)

 Example: sorting one thousand 8-bit integer values
• “Bubble Sort” – 1000 elements takes ~1,000,000 operations   O(N2)

• “Quick Sort” – 1000 elements takes ~ 10,000 operations O(N log2 N)

• “Radix Sort” – 1000 elements takes ~ 1000 operations O(N)

 Want to know more?
• Take an algorithms course – a good investment for writing faster code
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High Level Code Optimization
 If possible, optimize your C code – don’t write assembly code

• Optimization Rule 4: Write the least assembly language possible
• Assembly code is 400% – 500%+ as expensive – and not portable
• Optimized C code will run (perhaps slowly) on another processor

 In fantasy land … all compilers optimize everything perfectly
• but we don’t live in a fantasy land!

 Every compiler has optimization strengths and weaknesses
• To write fast code, find out what your compiler “likes” to compile
• For other things, you get to play “human optimizer”

• Example:  our class compiler likes pointers and doesn’t like subscripts
(this is very common for embedded compilers)

 To learn more about these tricks take a course on compilers
• Concentrating on optimizations and “back-ends” more than formal languages
• This is in part a review of some 15-213 content

26

Common Subexpression Elimination
 Find a common partial result and save instead of duplicating:

a = (b*c*d) + (b*c*e);

 a = (b*c)*(d + e);

• watch out for numeric overflow etc… but usually works OK

 Also works on memory addressing and other places
a = x[i+j+1];  b = y[i+j+1];

 temp = i+j+1;

a = x[temp];  b = y[temp];

 Many compilers do some of this automatically
• But sometimes they need help

• CW does OK at this
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Common Subexpression Example
From CW compiler:

21:  for (i = 0; i < MAX-10; i++)
0004 6981         [2]     CLR   1,SP
22:    { for (j = 0; j < MAX-10; j++)

0006 6980         [2]     CLR   0,SP
23:      { a = v[i+j+3];

0008 e681         [3]     LDAB  1,SP
000a eb80         [3]     ADDB  0,SP  ; Breg = i+j
000c ce0000       [2]     LDX   #v:3
000f a6e5         [3]     LDAA  B,X ; v[i+j+3]
0011 6a83         [2]     STAA  3,SP
24:        b = w[i+j+7];

0013 ce0000       [2]     LDX   #w:7
0016 a6e5         [3]     LDAA  B,X ; w[i+j+7]
0018 6a82         [2]     STAA  2,SP

Why are there zeros for LDX values? – linker changes them later

28

Subroutine Inlining
 Substitute a small piece of code in-line

• a = average (b,c);

…

inline uint8 average (uint8 a, uint8 b) {  return((a+b)/2); }

38:    result = usaverage(a,b);

… main code …

0034 a684         [3]     LDAA  4,SP  ; get a

0036 ab80         [3]     ADDA  0,SP  ; get b

0038 6a83         [2]     STAA  3,SP  ; store result

003a 6483         [3]     LSR   3,SP  ; result >>= 1

… main code …

• (Note that the compiler also knows the >>1 trick for unsigned numbers)



29

Strength Reduction
 From previous lecture – use simple operation instead of complex one

• A = A * 3;  A = A + (A<<1);
• A = A / 2;  A = A >> 1;   // only for unsigned

 What does the CW compiler do with signed integer division by two?
44:    r2 = (m + n) / 2;  

004e b764         [1]     TFR   Y,D
0050 8480         [1]     ANDA  #128
0052 2605         [3/1]   BNE   *+7 ;abs = 0059
0054 b764         [1]     TFR   Y,D
0056 49           [1]     LSRD    ; shift if pos
0057 2009         [3]     BRA   *+11 ;abs = 0062
0059 ce0002       [2]     LDX   #2
005c b764         [1]     TFR   Y,D
005e 1815         [12]    IDIVS   ; divide if neg
0060 b751         [1]     TFR   X,B
0062 6b85         [2]     STAB  5,SP

30

Can We Help Division By Two In C?
inline int8 mydiv2(int8 a)

{ if (a & 0x80) { a++; }     // or could use a<0

return(a>>1);

}

• Note:  “>>” is undefined in C standard for neg numbers; check your compiler

 The CW compiler doesn’t know the whole “divide by 2” trick
• Avoids 12-clock signed division for negative number – better is:

66:    r2 = mydiv2(m);  

00a6 a682         [3]     LDAA  2,SP   ; load m

00a8 6a83         [2]     STAA  3,SP    

00aa 8480         [1]     ANDA  #128   ; test hi bit

00ac 2702         [3/1]   BEQ   *+4 ;abs = 00b0

00ae 6283         [3]     INC   3,SP   ; inc if neg

00b0 a683         [3]     LDAA  3,SP

00b2 47           [1]     ASRA         ; shift right

00b3 6a80         [2]     STAA  0,SP
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Loop Unrolling
 Do multiple iterations of loop as in-line code

• To reduce per-loop overhead (e.g., do two iterations at once; halves overhead)
• To eliminate loop overhead for a small constant number of loops
• CW does this one

71:    for (i = 1; i < 3; i++)
72:    { v[a+b+i] = w[a+b+i];
00ba 1806         [2]     ABA   ;  compute a+b
00bc ce0000       [2]     LDX   #w:1  ; i=1
00bf e6e4         [3]     LDAB  A,X
00c1 ce0000       [2]     LDX   #v:1
00c4 6be4         [2]     STAB  A,X
00c6 ce0000       [2]     LDX   #w:2  ; i=2
00c9 e6e4         [3]     LDAB  A,X
00cb ce0000       [2]     LDX   #v:2
00ce 6be4         [2]     STAB  A,X
73:    }   ;  no loop overhead at all!

32

Code Hoisting
 Sometimes there is a computation in a loop that is redundant

• Move it (“hoist it”) to before start of loop

• Think of it as common subexpression elimination to outside of loop

• CW compiler misses this one:   (33 clocks per loop)
77:    { v[a+b+c] += w[a+b+c];        // why recompute

00dd e682         [3]     LDAB  2,SP ; a+b+c for each loop  

00df eb83         [3]     ADDB  3,SP

00e1 eb8d         [3]     ADDB  13,SP

00e3 ce0000       [2]     LDX   #v

00e6 a6e5         [3]     LDAA  B,X

00e8 cd0000       [2]     LDY   #w

00eb abed         [3]     ADDA  B,Y

00ed 6ae5         [2]     STAA  B,X

00ef 6284         [3]     INC   4,SP

00f1 e684         [3]     LDAB  4,SP

00f3 e182         [3]     CMPB  2,SP

00f5 25e6         [3/1]   BCS   *-24 ;abs = 00dd

78:    }
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Code Hoisting Example
 Rewrite as: d = a + b + c;

for (i = 1; i < a; i++)

{ v[d] += w[d]; }

(25 clocks per loop)

81:    d = a + b + c;

; compute d outside loop

00f6 e682   [3]     LDAB  2,SP

00f8 eb83   [3]     ADDB  3,SP

00fa eb87   [3]     ADDB  7,SP

00fc 6b88   [2]     STAB  8,SP

; loop initialization

82:    for (i = 1; i < a; i++)

00fe c601   [1]     LDAB  #1

0100 6b84   [2]     STAB  4,SP

0102 2010   [3]     BRA   *+18 
;abs = 0114

; main loop body 

83:    { v[d] += w[d];

0104 e688   [3]     LDAB  8,SP

0106 ce0000 [2]     LDX   #v

0109 a6e5   [3]     LDAA  B,X

010b cd0000 [2]     LDY   #w

010e abed   [3]     ADDA  B,Y

0110 6ae5   [2]     STAA  B,X

0112 6284   [3]     INC   4,SP

0114 e684   [3]     LDAB  4,SP

0116 e182   [3]     CMPB  2,SP

0118 25ea   [3/1]   BCS   *-20 
;abs = 0104

84: }
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Use Pointers Instead Of Arrays
 C compilers sometimes favor pointers instead of arrays

• Maps more cleanly into index registers

• Lots of legacy code already uses pointers, so compilers concentrate on that

 Sometimes the CW compiler switches to pointers
• But usually only for simple loops over static arrays

• Usually, using pointers generates faster code

int8 x[100]; int8 x[100];

int8 a; int8 a;  int8 *p;

a = x[17];  p = &x[17];
a = *p;

 Lab involves changing a loop from indices to pointers.
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Loop Optimization
 Some MCUs have special instructions and addressing modes

 For example, count-down loops
• “for (i = 100; i >0; i--)”

– Might compile into a decrement and test for zero assembly instruction

– DBNE instruction does this, right?

• Thus, it is often faster than: “for (i = 1; i <=100; i++)”
– Requires increment and compare

36

Use Minimal Data Types
 Don’t use a 16-bit int when an 8-bit int will do!

• This assumes the CPU “likes” 8 bit data values, which is true of our CPU

• Memory size aside, often get best speed by matching data sizes to hardware 
word size

 … we’ve already discussed data types, but don’t forget to do this! …
• int8 uint8

• int16 uint16
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A Word About Compiler Bugs(!)
 Many compilers have bugs …

and many of those bugs show up in infrequently used features …
such as:
• Extended precision arithmetic   (e.g., long long shifting on some workstations)

– Or anything that is used infrequently in production code

• Very high optimization levels  (e.g., “-O4” optimization)

• That having been said, the CW tools are remarkably clean

 If you have strange problems with your software …
• … try reducing optimizations and see if problems go away

• Alternately, check the compiled output and see if it is correct

38

Optimization Via Special Hardware
 DSP – Digital Signal Processor chip

• Has hardware multiplier & hardware multi-bit shift (barrel shifter)
– (These might be the same array of AND gates used two ways)

• Often has hardware support for FFT butterfly operand access
• Used for signal processing
• Traditionally integer, but newer ones have floating point

 FPGA – Field Programmable Gate Array
• Can program chip to have any hardware you like (Verilog => HW synthesis)
• Can implement a CPU in a large FPGA plus other logic
• Can have a fixed CPU (smaller die area) with FPGA around it
• Much more expensive per gate than ASIC or ASSP

 ASIC – Application Specific IC = your own custom chip
 ASSP – Application Specific Standard Product 

• Someone else’s idea of a chip tailored to your application area
• Standard product, but with hardware support (e.g., CRC hardware; Fuzzy logic 

support)
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Fixed Point Math
 Floating point math is very expensive!

• Usually no hardware for floating point on small microcontrollers

• Software support is big (lots of code space) and slow (lots of clock cycles)

 General approach to reduce cost: use fixed point math
• Use an integer with some digits of a fraction already put in

– E.g., for 16-bit machine value can interpret as 8 bits integer and 8 bits fraction

• Or, change units fractional units “1/10 of one degree” for temperature
– 80710 = 80.7 degrees, etc

– But, usually math is more efficient if you use binary radix
can use shift instead of divide to align results of * and /

 Addition and subtraction easy – just use integer add subtract

 Division and multiplication difficult – need to do “scaling” to line up decimal

8 8
INTEGER   FRACTION

40

Fixed Point Add and Subtract
 Implementation: no different than multi-precision add/subtract

• Radix point stays in same position in result as in operands

• Two’s complement still works as it does for integers

244.6
125.3+

---------
369.9

1.A6B
3.2FC-
---------
-1.891
---------
E.76F

–

8 bits

8

24 bits

24
INTEGER

INTEGER

INTEGER

FRACTION

FRACTION

FRACTION

24 bits

24

8 bits

8

INTEGER FRACTION

INTEGER FRACTION

INTEGER FRACTION

+
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Fixed Point Multiply
 Basic multiplication is same as for integers

• Radix point shifts to the left

• Same number of total bits to right and left as sum of bits 
in operands

• E.g.:   8.24 x 8.24 =>  16.48 bits

 Result alignment option #1:
• Re-align radix point

• Discard high order integer bits

• Discard low order fraction bits
8 bits

8 bits

16
8 24

24 bits

24 bits

48

x

INTEGER

INTEGER

INTEGER

FRACTION

FRACTION

FRACTION

INTEGER FRACTION

2.4A6
1.C53x

---------
0 9D24.0E0

4.0E0

42

Fixed Point Multiply – 2
 Result alignment option #2:

• Keep integer bits and as many fraction bits as will fit

• Discard all low order bits

• Whether you do this depends on how many significant 
integer bits you predict you will have

8 bits

16 bits

16
16 16

24 bits

16 bits

48

x

INTEGER

INTEGER

INTEGER

FRACTION

FRACTION

FRACTION

INTEGER FRACTION

2.4A6
1.C53x

---------
09D204.0E

04.0E
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Fixed Point Divide
 Create Dividend with twice as many bits before & after radix point

• Then, execute normal integer division

• Quotient will have correct format

• Think of formatting as the reverse of multiply

• Non-negative example below:

8 bits 24 bits

÷

INTEGER FRACTION

4 bits
“0” “000”

12 bits

4 bits 12 bits
INTEGER FRACTION

4 bits 12 bits

QuotientINTEGER FRACTION

INTEGER FRACTION

__________1.5BA  1.5BA  
0 0007.4A67.4A6

5.5E7

÷
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Keeping Track of the Radix Point
 Main practical differences between fixed & floating point:

• Fixed point is faster in absence of floating point hardware
– Bit-by-bit alignment is expensive in hardware (requires a barrel shifter)

• More digits of precision (don’t “waste” bits on exponent)

• Programmer has to manually keep track of the radix point and align as needed
– Arguments to fixed point math need not have homogeneous radix point formats

24A.6
1.B4Cx

---------------
0 3483E8.6

24.A6
.1B4Cx

--------------------
0 3 E 8 6 3 4 8

???
.

244.6
1.446+

-----------
245.A



45

How Is Floating Point Different?
 Uses scientific notation (exponent plus mantissa)

 Single precision is:
• 1 bit sign (applies to sign of number, not sign of exponent)

• 8 bit exponent (range -126 to +127); ~ 1037

• 24 bit mantissa, aligned with “1” in first bit, which is implicit; ~ 7 decimal digits

• A number of special bit patterns, e.g.:
– NaN = “not a number” – result of numerical error propagated to outputs

– Infinity

 Double precision is 64 bits – bigger exponent; bigger mantissa

1 bit

8 bits

23 bits  (with implicit leading 1.)

EXPONENTS MANTISSA

IEEE Floating Point Format
Single Prec ision: 32 bits total
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Floating Point Pitfalls #1 & #2 – Comparisons 
 Besides being slow/expensive, there are times when floating point can 

burn you!

 Problem #1: comparisons might not be meaningful
• What is wrong with this code fragment?
if (MyFloatA == MyFloatB) . . .

 Problem #2: sometimes comparisons fail
• Consider, for example, a speed limit on a system

– Simple control loop: if speed is too fast, reduce commanded speed by 10%
– (For example, perhaps you are going down a hill and picking up speed from gravity)

• When will this code NOT work as expected?
#define SPEEDLIMIT 3.0
double SpeedCommand, SpeedActual;
. . . 
if (SpeedActual > SPEEDLIMIT) {SpeedCommand *= 0.9;}
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Floating Point Pitfall #3 – Roundoff
 What output does this program produce?

#include <stdio.h>

int main(void)
{

union  { float fv;  int iv; } count;
long i;

for (i = 0; i < 0x00FFFFF8; i++)
{ count.fv += 1;
}

for (i = 0; i < 16; i++)
{ count.fv += 1;

printf(" + 1 = %8.0f   0x%08X\n", count.fv, count.iv);
}

return;
}
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Floating Point Roundoff Error
 If you increment floating point, 

at some point it stops 
incrementing(!)
• This happens a lot sooner than you 

might think

• Effective size of mantissa is only 24 
bits = 16777216

• Always use an int or long for time!

1 bit

8 bits

23 bits  (with implicit leading 1.)

EXPONENTS MANTISSA

IEEE Floating Point Format
Single Prec ision: 32 bits total
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Floating Point Pitfall #3 part II – Float32 Time
 Say you are counting 1/100th of seconds as a time tick

• 32-bit count rolls over in about 16 months

• So, let’s use 32-bit floating point instead   (bad idea, but why?)

 Floating point format: 8 bit exponent 24 bit mantissa
• Increment number by 1/100th for every time tick

• First problem   1/100th is an imprecise number in floating point – roundoff error

• But, might still work OK for a while

• As number gets bigger, roundoff error for increment gets bigger
– Fewer of the fractional bits in 1/100 actually “count” in the additions

– By 224 / 100 seconds (47 hours) – the time won’t increment at all! 

– With 32-bit floating point  224 + 1 = 224 (the +1 is lost in rounding error)
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Would Anyone Use Float Time?
 Patriot Missile incident

• 1991: Scud kills 28 American (Desert Storm)

• http://www.fas.org/spp/starwars/gao/im92026.htm
“after about 20 hours, the inaccurate time calculation
becomes sufficiently large to cause the radar to look in the wrong place”

– “Range gate” used to look where target is predicted to be next

– Target track is lost if range gate is wrong, resulting in a miss

– The incident happened 100 hours after the last system reset

 What was the root cause mistake?
• Scud missiles travel at Mach 5 (3750 mph) – Patriot designed to track aircraft

• Time was represented in 10ths of a second as an integer
– Then converted to 24-bit fractional value for calculation

– 0.1 seconds is not an “even number” = 0.0001100110011001100110011001100…

– At 100 hours, resultant round-off is 0.000000095 decimal    
[http://www.ima.umn.edu/~arnold/455.f96/disasters.html]

• Even that small round-off error when doing distance = velocity * time
with large base time and high velocity leads to a failure

– After 100 hours error was 0.344 seconds = 697 meters error   (per GAO report)
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[GAO/IMTEC-92-26]
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Review
 Basic economics

• Markup, margin
• NRE vs. RE
• How much does firmware cost per line?

 Optimization
• Optimization Rules – memorize them (there are only 4 ½ of them)

– Numbered: 1, 2, 2.5, 3, 4

• Amdahl’s law
– Be able to apply (know the formula, but not required to write it down)

• Profiling techniques
– Know different profiling strategies

• Basic optimization techniques –
if we give you some C code, can you apply a technique we tell you to apply?

 Fixed point
• Understand how to put the radix point in the right place in operands and result
• Understand floating point pitfalls


