

Where Are We Now?	
◆ REMINDER: Do Pre-Labs <u>COMPLETELY ON YOUR OWN!</u>	
• Do not work with your lab partner (or anyone else)	
• Do not talk about it with your lab partner until AFTER you BOTH hand	l in
Where we've been:	
Embedded hardware	
• Microcontroller Instruction Set – the basics	
Where we're going today:	
• Microcontroller Instruction Set – advanced	
Note: you saw assembly stuff in 18-240, so we're covering it pretty quickl	у
• If this stuff is confusing, go to office hours to get help	
Where we're going next:	
Engineering process & design	
Embedded-specific C	
Coding hacks & multiprecision math	
•	

Preview

Stack usage

- Pushing & popping with stack
- Subroutine linkage

Other assembler operations

- Position, memory, and other management
- Labels
- Macros

More on timing

• Cycle-accurate simulation

PSHA		Push A onto St	ack	PSHA
Operation:				
$(SP) - \$0001 \Rightarrow S$ $(A) \Rightarrow M_{(SP)}$	Р			
Description:				
Stacks the content is then stored at th	t of accumulato le address the \$	r A. The stack poin SP points to.	ter is decremented b	y one. The content of A
Push instructions a start of a subroutir registers just befor	are commonly u ne. Complemen re returning from	used to save the co tary pull instruction m the subroutine.	ontents of one or moi ns can be used to res	e CPU registers at the tore the saved CPU
CCR Detalls:	S X H 	INZV 	-	
Source Form	Address	Object Code	Acce	ss Detail
Sourceronn	Mode	object obde	HCS12	M68HC12
PSHA	INH	36	Os	Os
		[Freescale]		8

PULC	Pull Condi	tion Code Regis	ter from Stack	PULC
Operation:				
$(M_{(SP)}) \Rightarrow CCR$ $(SP) + $0001 \Rightarrow S$	Р			
Description:				
The condition code then incremented	e register is loa by one.	ded from the addre	ess indicated by the st	tack pointer. The SP is
Pull instructions ar registers that were	e commonly us pushed onto t	sed at the end of a he stack before sul	subroutine to restore proutine execution.	the contents of CPU
CCR Detalls:	s х н	INZV	0	
	$\Delta \Downarrow \Delta$	ΔΔΔΔ	7	
Condition codes ta from 0 to 1. Softwa be set only by a re	ke on the value are can leave th set or by recog	pulled from the sta ne X bit set, <u>leave</u> i nition of an XIRQ i	ck, except that the X r t cleared, or change it nterrupt.	nask bit cannot change t from 1 to 0, but it can
Source Form	Address	Object Code	Acces	ss Detail
	Mode	- Shield Gode	HCS12	M68HC12
PULC	INH	38	ufO	ufO
				[Freescale] 10

Subroutine Calls

Hardware support: JSR, BSR

- JSR full, 16-bit address mode subroutine call
- BSR REL mode branch (8-bit PC-relative address), otherwise same as JSR

13

- They pretty much do the same thing
 - BSR saves a byte of memory for instruction...
 - ... but still uses 2 bytes of stack space for return address

• JSR (and BSR) operations:

- PUSH current program counter onto stack (2-byte value)
- Put address of subroutine into the PC
- Start executing code at new PC value (the subroutine)
- This takes care of saving return address and the actual jump
- But, doesn't help with parameter values

JSR		Jump to Subrou	tine	JSR	
Operation:					
$(SP) - \$0002 \Rightarrow SRTN_H : RTN_L \Rightarrow N$ Subroutine Addre	SP M _(SP) : M _(SP + 1) ss ⇒ PC				
Description:					
Sets up conditions the address of the	s to return to no instruction follo	rmal program flow, owing the JSR as a	then transfers cor return address.	ntrol to a subroutine. Uses	
Decrements the S	P by two to allo	w the two bytes of	the return address	to be stacked.	
Stacks the return	address. The S	P points to the high	n order byte of the	return address.	
Calculates an effe	ctive address a	ccording to the rule	s for extended, dire	ect, or indexed addressing.	
Jumps to the loca	tion determined	by the effective ac	ldress.	-	
Subroutines are n from the stack.	ormally termina	ted with an RTS in	struction, which re	stores the return address	
CCR Detalls:	S X H 	INZV 	c -		
Source Form	Address	Object Code	Ac	cess Detail	
Source Form	Mode	Object Code	HCS12	M68HC12	
JSR opr8a	DIR	17 dd	SPPP	PPPS	
JSR opr16a	EXT	16 hh 11	SPPP	PPPS	
JSR oprx0_xysp	IDX	15 xb	PPPS	PPPS	
ISB opro16 yunn		15 XD II	FDDDC	PPPS	
JSR Opra ro, xysp		15 XD GG II 15 XD	fffDDDg	IPPPS fTfDDDG	
JSR [oprx16,xysp]	[IDX2]	15 xb ee ff	fIfPPPS	fIfPPPS	[Freescale]

RIS	Re	eturn from Subre	outine	RTS
Operation:				
$(M_{(SP)}\colonM_{(SP+1)})$	$\Rightarrow PC_{H} : PC_{L}; (S$	SP) + \$0002 ⇒ SP		
Description:				
Restores context from the stack ar address restored	at the end of a s id increments the from the stack.	ubroutine. Loads t e stack pointer by t	he program counter wi two. Program executio	th a 16-bit value pulled n continues at the
CCR Detalls:	S X H	INZV	c -	
	Address		Acces	s Detail
Source Form	Address Mode	Object Code	Acces HCS12	s Detail M68HC12

How Do You Pass Parameters?

Multiple methods, all of which can be useful

• Put values in particular registers

- Example: sqrt(D) => D D register used as both input and output
- Fast, but very limited by number of registers!
- In the C language, it is very common to put the single return value in a register

• Hard-code addresses into subroutine

- Easy to do
- But, makes subroutine less flexible need a different version for each data structure
- Can make sense when you are just saving space by avoiding duplicated code

• Pass parameters on stack

- Pass pointers to data structures
- Pass values of variables
- Flexible, usual method of passing parameters

• (Note: we'll do stack frames and C variables in a later lecture ...)

Example	: Passing By Registers
LDAA	#47
LDAB	#63
BSR	COMPUTE_AVERAGE
STAA	Average_result
; note – the COMPUTE ABA	below code only works on unsigned numbers! _AVERAGE: ; sum to A, assume both are non-negative ; top bit of A contains carry-out of add
LSRA	; divide by two for unsigned number sum
RTS	; result is in register A
	18

- 1. PUSH parameters onto stack
- 2. CALL subroutine
- 3. Subroutine reads parameters from stack and does computations
- 4. **RTS**
- 5. Calling program deletes parameters from stack
 - Why done here? (look at next slide to understand reason)

Example: Passing Via Stack (simple version) ; Assume SP value is \$4FA at this point LDAA #47 PSHA LDAA #63 PSHA JSR COMPUTE AVERAGE ; discard second parameter (could also use INS, but that is 2 bytes) PULB PULB ; discard first parameter (could also use INS, but that is 2 bytes) STAA Average result ; SP is back to \$4FA at this point Stack Memory Address ; only works on unsigned numbers! \$4FA **COMPUTE AVERAGE:** \$4F9 47 LDAA +2,SP ; second parameter \$4F8 63 ADDA +3,SP ; first parameter \$4F7 RetLo LSRA ; divide by two for non-negative RTS ; result is in register A SP-> \$4F6 RetHi \$4F5 invalid \$4F4 invalid 20

Passing Parameters To A Subroutine (complete)

- 1. PUSH parameters onto stack
- 2. CALL subroutine
- 3. Save registers that are going to be modified by subroutine
 Avoids unexpected corruption of registers used by the calling program
- 4. Subroutine reads parameters from stack and does computations
- 5. Subroutine writes results back to parameters on stack
- 6. Restore registers modified by subroutine
- **7. RTS**
- 8. Calling program PULLs parameters from stack

Passing V	ia Stack Example (com	plete vers	sion)
; Assume SP value LDAA PSHA LDAA PSHA PSHA; dummy JSR COMPU PULA; result s	is \$4FA at this point #47 #63 push to make room for result; could also use DES TE_AVERAGE tored in third parameter	S	
STAA Average PULB; discard PULB; discard ; SP is back to \$4F4	_result second parameter first parameter A at this point	Address \$4FA \$4F9	Stack Memory
; only works on non COMPUTE_AVER PSHA LDAA +4,SP ADDA +5,SP LSRA STAA +3,SP PULA RTS	-negative numbers! AGE: ; make sure A isn't trashed ; second parameter ; first parameter ; divide by two for non-negative number sum ; store result in third parameter position ; restore register A ; result is on stack	\$4F8 \$4F7 \$4F6 \$4F5 \$P->\$4F4 \$4F3	63 <i>Result</i> RetLo RetHi <i>SaveA</i> <i>invalid</i>
			22

Rules For Safe Stack Use

<u>PULL as many times as you PUSH</u>

- Stack overflow will trash RAM
- Stack underflow will give invalid PULL values
 - Very often it will also trash RAM
- Mismatched number results in invalid subroutine return address

Don't access stack memory after that value has been PULLed

- Interrupts can change the memory values at random times – We'll talk about interrupts later in course
- The program will still work *most* of the time very nasty bug to track down

Beware of "stack smashing" attacks

• Frequent security vulnerability is someone intentionally over-running data structure to modify return address

Assembler Pseudo-Ops

```
    Not everything in a program is "executable code"

    • By end of this lecture, you should know what everything below is doing...
ROMStart
           EQU $C000 ; absolute address to place my code/constant data
RAMStart
           EQU $0 ; absolute address to place my variable data
RAMEnd
           EQU $03FF ; absolute address of last usable RAM byte
; variable/data section
           ORG RAMStart
; Insert here your data definition.
Average_result
                DS.B 1
; code section
          ORG ROMStart
Entry:
          LDS #RAMEnd+1
                               ; initialize the stack pointer
                               ; enable interrupts
          CLI
  LDAA #$47
  PSHA
  LDAA #$63
  PSHA
   JSR COMPUTE_AVERAGE
   ORG $FFFE
  DC.W Entry
                 ; Reset Vector
                                                                                    25
```

Labels		
 Labels ar Can be You kn Assume y (how yet) 	e a convenient used for program ow it is a label b ou are curren ou do that come	t way to refer to a particular address m addresses as well as data addresses because it starts in column 1 (":" is optional) tly assembling to address \$4712 s in a moment)
Mylabela:		
	ABA	; this is at address \$4712
Mylabelb:		
Mylabelc		
	PSHA	; this is at address \$4713
 The fol JMI JMI JMI JMI JMI And it is 	lowing all do E2 P \$4713 P Mylabelb P Mylabelc P Mylabela+1 is valid to say:	KACTLY the same thing: LDDA Mylabelb (what does this do?)

```
ORG ; DS ; DC
DS – define storage space, but don't initialize (RAM usually)
```

```
- ("Define Space")
 DS.B
           1
                 ; allocate 1 byte of storage
 DS.W
                 ; allocate one word (2 bytes)
           1
 DS.B
           370 ; 370 more bytes
 DS.W
                ; 200 more bytes
           100
• DC – define storage space, and initialize with a value (ROM only)
     - ("Define Constant")
                 ; one byte, with value $0D
 DC.B
           13
 DC.W
           13 ; two bytes, with value $000D
 DC.B
            370 ; illegal - 8-bit value > 255
• ORG – start laying down bytes at this address (ROM or RAM)
     - ("Origin")
   ORG $3000
; next instruction, DS, DC,... is at address $3000
                                                         27
```

EQ	U									
◆ EQ • •)U is "eq This is a No bytes Format:	uate" – "compile are depos	means ; r directiv sited in n Label	give re" – nemo EQ	this lab done at c ory! U Va	el a compilizione	ertain v e time, no	alue ot at run tir	me!	
Foo	EQU	\$C000								
Bar	EQU	Foo								
	LDAA	Foo		;	same	as	LDAA	\$C000		
	LDAA	Bar		;	same	as	LDAA	\$C000		
										28

Labels vs. ORG vs .EQU ORG \$5000 Foo \$C000 EQU DS.W \$17 Baz DC.W \$19 ORG Foo DS.W \$53 ORG Foo+\$1000 DC.B \$54 DC.W \$5657 • Questions: • What is the address of Baz? • What address does the DS.W \$53 start at? What value is stored there? • What value is at address \$D001 (high byte stored first) • Note: don't intermingle DS and DC in real programs – this is just an illustration - DS is for RAM; DC is for ROM/Flash memory in our hardware 29

Does It Create Bytes?

These <u>DO NOT</u> create bytes of data in memory

- Label creates a value for use by the assembler, no run-time effect
- EQU creates a value for use by the assembler, no run-time effect (Really, it's just a more general way to create a "label" value)
- ORG directs where the next byte goes
- DS.B; DS.W allocates storage space, but doesn't put in any values

• These **DO** create bytes of data in memory

- Instructions these put opcode etc. for instructions in ROM
- DC.B, DC.W these store a "constant" value (pre-initialized variable, etc.) in ROM

Now Do We Know What All This Means?

```
ROMStart
           EQU $C000 ; absolute address to place my code/constant data
RAMStart
           EQU
               $0
                       ; absolute address to place my variable data
           EQU \$03FF ; absolute address of last usable RAM byte
RAMEnd
; variable/data section
           ORG RAMStart
; Insert here your data definition.
Average_result
                DS.B 1
; code section
               ROMStart
           ORG
Entry:
          LDS #RAMEnd+1
                               ; initialize the stack pointer
          CLI
                                ; enable interrupts
  LDAA #$47
   PSHA
   LDAA #$63
   PSHA
   JSR
        COMPUTE_AVERAGE
   ORG $FFFE
   DC.W Entry
                 ; Reset Vector
```


32

BEQ		Branch if Equ	al	BEQ
Operation: If Z = 1, then (PC) Simple branch	+ \$0002 + Rel	\Rightarrow PC		
Description: Tests the Z status See 3.8 Relative A	bit and branch ddressing Mod	es if Z = 1. de for details of bra	nch execution.	
CCR Details:	S X H 	I N Z V 	c -	
Source Form	Address Mode	Object Code	HCS12	Access Detail M68HC12
BEQ rel8	REL	27 rr	PPP/P ⁽¹⁾	PPP/P ⁽¹⁾
1. PPP/P indicates this instruc fetch cycle if the branch is i	tion takes three c not taken.	voles to refill the instru	ction queue if the l	Franch is taken and one program
				[Freescale] 35

DBr	١E	Decre	ment a	and Bra	nch if No	ot Equal t	o Zero	DE	BNE
Operation:									
(Coun If (Cou	ter) – 1 ⇒ unter) not =	Counter = 0, then (PC) + \$	\$0003 +	Rel ⇒ PC				
Description	:								
Subtra not be instruc +255 I IBNE a rather which	act one from en decrem ction is end locations fr and TBNE than being operation	n the spe ented to 2 oded into om the sta instruction decreme is to be pe	cified ca ero, ex three b art of th as are s inted. B erforme	ounter re recute a bytes of i ne next ir similar to Bits 7 and d.	egister A, E branch to t machine co struction). DBNE exc d 6 of the in	3, D, X, Y, the specific ode includi cept that th nstruction	or SP. If ed relativ ng a 9-b e counte postbyte	the counter 'e destination it relative offs r is increment are used to	register has h. The DBNE set (–256 to nted or tested determine
CCR Details		с х	ц	I N	7 V (,			
			-	- -	- - -	-			
Source	Form	Add	ess	Object	Code ⁽¹⁾		Ace	cess Detail	
Source	Form	Addi Mo	ess de	Objec	Code ⁽¹⁾	но	Acc S12	cess Detail Mé	8HC12
Source	Form s, rel9	Addi Mo RE	ess de L	Objec 04 lb	t Code ⁽¹⁾	HC PPP/PPO	Acc S12	cess Detail Mé	8HC12
Source DBNE abdxys 1. Encoding for or not zero (Form s, rel9 1b is summ DBNE - 1) v	Addi Mo RE arized in the ersions, and	ress de L following I bit 4 is t	Objec 04 1b g table. Bit the sign bi	t Code ⁽¹⁾ rr 3 is not used t of the 9-bit	HC PPP/PPO (don't care), relative offse	Acc S12 bit 5 selec t. Bits 7 ar	ts branch on zer d 6 would be 0	8HC12 PPP ro (DBEQ - 0) :0 for DBNE.
Source DBNE abdxys 1. Encoding for or not zero (Form s, rel9 r1b is summ DBNE - 1) v Count Register	Addi Mo RE arized in the ersions, and Bits 2:0	ress de L following I bit 4 is t Source	Objec 04 1b g table. Bit the sign bi ce Form	t Code ⁽¹⁾ TT 3 is not used t of the 9-bit Object (If Offset is	HC PPP/PPO (don't care), relative offse t Code s Positive)	Acc S12 bit 5 selec t. Bits 7 ar Obj (If Offse	ts branch on zer d 6 would be 0 ect Code t is Negative)	18HC12 PPP ro (DBEQ - 0) :0 for DBNE.
Source DBNE abdxys 1. Encoding for or not zero (Form s, rel9 r1b is summ DBNE - 1) v Count Register A	Add Mo RE arized in the ersions, and Bits 2:0 000	ess de L following I bit 4 is t Sourc DBNE	Objec 04 1b g table. Bit the sign bi ce Form A, <i>rel9</i>	t Code ⁽¹⁾ rr 3 is not used t of the 9-bit Object (If Offset is 04 20 rr	HC PPP/PPO (don't care), relative offse t Code s Positive)	Acc S12 bit 5 selec t. Bits 7 ar Obj (If Offse 04 30 5	ts branch on zei d 6 would be 0 ect Code t is Negative)	BHC12 PPP ro (DBEQ - 0) :0 for DBNE.
Source DBNE abdxys 1. Encoding for or not zero (Form s, rel9 r1b is summ DBNE - 1) v Count Register A B	Add Mo RE arized in the ersions, and Bits 2:0 000 001	ess de L following I bit 4 is t Source DBNE	Objec 04 1b g table. Bit the sign bi ce Form A, <i>rel9</i> B, <i>rel9</i>	Code ⁽¹⁾ rr 3 is not used t of the 9-bit Object (If Offset is 04 20 rr 04 21 rr	HC PPP/PPO (don't care), relative offse t Code s Positive)	Acc 2512 bit 5 selec t. Bits 7 ar (If Offse 04 30 1 04 31 1	ts branch on zei d 6 would be 0 ect Code t is Negative)	BHC12 PPP ro (DBEQ - 0) :0 for DBNE.
Source DBNE abdxya 1. Encoding for or not zero (Form s, rel9 r1b is summ DBNE - 1) v Count Register A B D	Addi Mo RE arized in the ersions, and Bits 2:0 000 001 100	ess de L following bit 4 is t DBNE DBNE DBNE	Object 04 1b g table. Bit the sign bi ce Form A, rel9 B, rel9 D, rel9	Code ⁽¹⁾ rr 3 is not used t of the 9-bit (If Offset is 04 20 rr 04 21 rr 04 24 rr	HC PPP/PPO (don't care), relative offse t Code s Positive)	Acc 2512 bit 5 select t. Bits 7 ar 0bj (If Offse 04 30 1 04 31 1 04 34 1	ts branch on zei d 6 would be 0 ect Code t is Negative) cr cr	88HC12 PPP ro (DBEQ - 0) :0 for DBNE.
Source DBNE abdxys 1. Encoding for or not zero (Form s, rel9 Tb is summ DBNE - 1) v Count Register A B D X X	Addin Mo RE arized in the ersions, and Bits 2:0 000 001 100 101	ess de L following bit 4 is t DBNE DBNE DBNE DBNE	Objec 04 1b g table. Bit the sign bi ce Form A, rel9 D, rel9 D, rel9 X, rel9	Code ⁽¹⁾ rr 3 is not used t of the 9-bit (If Offset is 04 20 rr 04 21 rr 04 24 rr 04 25 rr 04 25 rr	HC PPP/PPO (don't care), relative offse t Code s Positive)	Acc 2512 bit 5 select t. Bits 7 ar 0bj (If Offse 04 30 1 04 31 1 04 35 1 04 35 1 04 25 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ts branch on zer d 6 would be 0 ect Code t is Negative) cr cr cr	18HC12 PPP ro (DBEQ - 0) :0 for DBNE.
Source DBNE abdxyg 1. Encoding for or not zero (Form s, rel9 r1b is summ DBNE - 1) v Count Register A B D X Y SP	Addi Mo arized in the ersions, and Bits 2:0 000 001 100 101 110	ess de L following bit 4 is t DBNE DBNE DBNE DBNE DBNE DBNE	Objec 04 1b g table. Bit the sign bi ce Form A, rel9 B, rel9 D, rel9 X, rel9 SP, rel9 SP, rel9	1 Code ⁽¹⁾ 1 T 3 is not used t of the 9-bit 1 (If Offset is 04 20 rr 04 21 rr 04 25 rr 04 26 rr 04 26 rr 04 27 rx	HC PPP/PPO (don't care), relative offse t Code s Positive)	Acc S12 bit 5 select t. Bits 7 ar Obj (If Offse 04 30 1 04 31 2 04 35 2 04 35 2 04 35 2 04 36 2 04	ts branch on zer d 6 would be 0 ect Code t is Negative) cr cr cr cr cr	18HC12 PPP ro (DBEQ - 0) :0 for DBNE.

Advance Processors & Timing Prediction

• Fancy CPUs and systems have practically unpredictable timing

- Speculative execution
- Cache memory
- Virtual memory
- Variable timing on multiplication and division
- DRAM refresh delays
- System-level interrupts
- Operating system latencies
- ...

• Timing analysis for complex systems is a tough problem

• Something to NOT do - "run loop 1 million times and divide by 1 million"

40

• Why?

Review

Stack usage

- Pushing & popping with stack
- Subroutine calls
- Parameter passing to/from subroutines
- SP-relative loads and stores

Other assembler operations

- · Position, memory, and other management
- Labels
- Differences among label, EQU, DS, DC, ORG

More on timing

- Cycle-accurate simulation
- Nop timing loop

Lab Skills

• Register-based subroutine interface

• Write a program that uses registers to pass values

• Stack-based subroutine interface

• Write a program that uses the stack to pass values

Timing

- Hand compute timing
- Simulation-based timing
- Stop-watch based timing