
Lecture #4

Microcontroller
Instruction Set – 2

18-348 Embedded System Engineering
Philip Koopman

Monday, 25-Jan-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Example Application: Coriolis Mass Flow Meter

[Emerson Process Management]

CPU Module &
Network Interface

3

Vibrating The Tube Permits Flow Measurement
 Used to precisely measure viscous fluids and slurries

[http://en.wikipedia.org/wiki/Mass_flow_meter]

[www.isa.org]

4

Where Are We Now?
 REMINDER: Do Pre-Labs COMPLETELY ON YOUR OWN!

• Do not work with your lab partner (or anyone else)

• Do not talk about it with your lab partner until AFTER you BOTH hand in

 Where we’ve been:
• Embedded hardware

• Microcontroller Instruction Set – the basics

 Where we’re going today:
• Microcontroller Instruction Set – advanced

Note: you saw assembly stuff in 18-240, so we’re covering it pretty quickly

• If this stuff is confusing, go to office hours to get help

 Where we’re going next:
• Engineering process & design

• Embedded-specific C

• Coding hacks & multiprecision math

• …

5

Preview
 Stack usage

• Pushing & popping with stack

• Subroutine linkage

 Other assembler operations
• Position, memory, and other management

• Labels

• Macros

 More on timing
• Cycle-accurate simulation

6

The Stack – Concept & Implementation
 Concept:

 Implementation:
• Uses a pointer to memory

• The pointer moves up and down as top
of stack, not the memory contents!

• Points to top of stack

[Koopman]

[Valvano]

7

Pushing To The Stack
 “PSH” instructions – pushes a register onto the stack

• PSHA, PSHB, PSHD, PSHX, PSHY
• PSHC – condition codes (will get to that in a moment)

Example:
LDAA #1
LDAB #2
PSHA
PSHB
LDAA #3
PSHA

At end, A=3, B=2
• PSH doesn’t change register values

(On 6812, SP always points to top-most
element in use)

[Valvano]

End value:

8
[Freescale]

9

Pulling (“Popping”) From The Stack
 “PUL” instructions – pulls a register value from the stack

• PULA, PULB, PULD, PULX, PULY

• PULC – condition codes (will get to that in a moment)

Example:
PULA
PULB
PULB

At end, A=3, B=1
• PUL doesn’t erase memory values BUT

unsafe to access them after PUL due to
interrupts!!!

(On HC12, SP always points to top-most
element in use)

[Valvano]

Start:

End:

10[Freescale]

11

Stack Implementation
 Implementation of stack grows from top of memory down

$500 …. unused; start stack position …

$4FF “bottom” of stack (deepest byte)

$4FE …

…

$4B0 “top” of stack if there are $50 elements on it

$4AF … next unused element for stack …

…. expansion space for stack

…. expansion space for stack

… RAM data

$0000 start of RAM

SP

PULL

PUSH

“TOP”

“BOTTOM”

12

Hardware Support For Subroutines
 Allows use of a procedure (or method in Object Oriented terminology)

…
x = a + b;
c = dosomething(x,a);
y = c + d;
…
z = dosomething(w,k);

 What has to happen to make this work?
• Prepare parameters for use

– It isn’t always the same variables passed to the subroutine

• Unconditional branch to subroutine
• Execute subroutine
• Prepare return value

– The result doesn’t always go in the same output variable

• Return to calling point to resume caller execution
– How do we know where that is?

int dosomething(int a, int b)
{ ….

return(k);
}

13

Subroutine Calls
 Hardware support: JSR, BSR

• JSR – full, 16-bit address mode subroutine call

• BSR – REL mode branch (8-bit PC-relative address), otherwise same as JSR

• They pretty much do the same thing
– BSR saves a byte of memory for instruction…

… but still uses 2 bytes of stack space for return address

 JSR (and BSR) operations:
• PUSH current program counter onto stack (2-byte value)

• Put address of subroutine into the PC

• Start executing code at new PC value (the subroutine)

• This takes care of saving return address and the actual jump

• But, doesn’t help with parameter values

[Freescale]

15

Subroutine Returns
 Hardware support: RTS

• RTS – INH address mode (how do you know the return address?)

 RTS operations:
• POP top of stack and put it into PC

• Start executing program at that new PC value (back to calling program)

• This takes care of jumping back to calling program

• But, doesn’t help with parameter values

[Freescale]

17

How Do You Pass Parameters?
Multiple methods, all of which can be useful

 Put values in particular registers
• Example: sqrt(D) => D D register used as both input and output
• Fast, but very limited by number of registers!
• In the C language, it is very common to put the single return value in a register

 Hard-code addresses into subroutine
• Easy to do
• But, makes subroutine less flexible – need a different version for each data structure
• Can make sense when you are just saving space by avoiding duplicated code

 Pass parameters on stack
• Pass pointers to data structures
• Pass values of variables
• Flexible, usual method of passing parameters

 (Note: we’ll do stack frames and C variables in a later lecture …)

18

Example: Passing By Registers
LDAA #47

LDAB #63

BSR COMPUTE_AVERAGE

STAA Average_result

….

; note – the below code only works on unsigned numbers!

COMPUTE_AVERAGE:

ABA ; sum to A, assume both are non-negative

; top bit of A contains carry-out of add

LSRA ; divide by two for unsigned number sum

RTS ; result is in register A

19

Passing Parameters To A Subroutine (simple version)
1. PUSH parameters onto stack
2. CALL subroutine
3. Subroutine reads parameters from stack and does computations
4. RTS
5. Calling program deletes parameters from stack

• Why done here? (look at next slide to understand reason)

20

Example: Passing Via Stack (simple version)
; Assume SP value is $4FA at this point

LDAA #47
PSHA
LDAA #63
PSHA
JSR COMPUTE_AVERAGE
PULB ; discard second parameter (could also use INS, but that is 2 bytes)
PULB ; discard first parameter (could also use INS, but that is 2 bytes)
STAA Average_result

; SP is back to $4FA at this point

; only works on unsigned numbers!
COMPUTE_AVERAGE:

LDAA +2,SP ; second parameter
ADDA +3,SP ; first parameter
LSRA ; divide by two for non-negative
RTS ; result is in register A

$4FA
Address

Stack
Memory

47

...

invalid

invalid

$4F9

$4F8

$4F7

$4F6

$4F5

$4F4

63

RetLo

RetHiSP

21

Passing Parameters To A Subroutine (complete)
1. PUSH parameters onto stack
2. CALL subroutine
3. Save registers that are going to be modified by subroutine

• Avoids unexpected corruption of registers used by the calling program

4. Subroutine reads parameters from stack and does computations
5. Subroutine writes results back to parameters on stack
6. Restore registers modified by subroutine
7. RTS
8. Calling program PULLs parameters from stack

22

Passing Via Stack Example (complete version)
; Assume SP value is $4FA at this point

LDAA #47
PSHA
LDAA #63
PSHA
PSHA ; dummy push to make room for result; could also use DES
JSR COMPUTE_AVERAGE
PULA; result stored in third parameter
STAA Average_result
PULB ; discard second parameter
PULB ; discard first parameter

; SP is back to $4FA at this point

; only works on non-negative numbers!
COMPUTE_AVERAGE:

PSHA ; make sure A isn’t trashed
LDAA +4,SP ; second parameter
ADDA +5,SP ; first parameter
LSRA ; divide by two for non-negative number sum
STAA +3,SP ; store result in third parameter position
PULA ; restore register A
RTS ; result is on stack

$4FA
Address

Stack
Memory

47

...

invalid

$4F9

$4F8

$4F7

$4F6

$4F5

$4F4

$4F3

63

RetLo

Result

RetHi

SaveASP

23

Rules For Safe Stack Use
 PULL as many times as you PUSH

• Stack overflow will trash RAM

• Stack underflow will give invalid PULL values
– Very often it will also trash RAM

• Mismatched number results in invalid subroutine return address

 Don’t access stack memory after that value has been PULLed
• Interrupts can change the memory values at random times

– We’ll talk about interrupts later in course

• The program will still work most of the time – very nasty bug to track down

 Beware of “stack smashing” attacks
• Frequent security vulnerability is someone intentionally over-running data

structure to modify return address

24

25

Assembler Pseudo-Ops
 Not everything in a program is “executable code”

• By end of this lecture, you should know what everything below is doing…

ROMStart EQU $C000 ; absolute address to place my code/constant data
RAMStart EQU $0 ; absolute address to place my variable data
RAMEnd EQU $03FF ; absolute address of last usable RAM byte

; variable/data section

ORG RAMStart
; Insert here your data definition.

Average_result DS.B 1

; code section
ORG ROMStart

Entry:
LDS #RAMEnd+1 ; initialize the stack pointer
CLI ; enable interrupts

LDAA #$47
PSHA
LDAA #$63
PSHA
JSR COMPUTE_AVERAGE

…
ORG $FFFE
DC.W Entry ; Reset Vector

26

Labels
 Labels are a convenient way to refer to a particular address

• Can be used for program addresses as well as data addresses
• You know it is a label because it starts in column 1 (“:” is optional)

 Assume you are currently assembling to address $4712
• (how you do that comes in a moment)

Mylabela:
ABA ; this is at address $4712

Mylabelb:
Mylabelc

PSHA ; this is at address $4713
• The following all do EXACTLY the same thing:

– JMP $4713
– JMP Mylabelb
– JMP Mylabelc
– JMP Mylabela+1

• And it is valid to say: LDDA Mylabelb (what does this do?)

27

ORG ; DS ; DC
 DS – define storage space, but don’t initialize (RAM usually)

– (“Define Space”)

DS.B 1 ; allocate 1 byte of storage
DS.W 1 ; allocate one word (2 bytes)
DS.B 370 ; 370 more bytes
DS.W 100 ; 200 more bytes

 DC – define storage space, and initialize with a value (ROM only)
– (“Define Constant”)

DC.B 13 ; one byte, with value $0D
DC.W 13 ; two bytes, with value $000D
DC.B 370 ; illegal – 8-bit value > 255

 ORG – start laying down bytes at this address (ROM or RAM)
– (“Origin”)

ORG $3000
; next instruction, DS, DC,... is at address $3000

28

EQU
 EQU is “equate” – means give this label a certain value

• This is a “compiler directive” – done at compile time, not at run time!

• No bytes are deposited in memory!

• Format: Label EQU Value

Foo EQU $C000

Bar EQU Foo

LDAA Foo ; same as LDAA $C000

LDAA Bar ; same as LDAA $C000

29

Labels vs. ORG vs .EQU
ORG $5000

Foo EQU $C000

DS.W $17

Baz DC.W $19

ORG Foo

DS.W $53

ORG Foo+$1000

DC.B $54

DC.W $5657

 Questions:
• What is the address of Baz?

• What address does the DS.W $53 start at? What value is stored there?

• What value is at address $D001 (high byte stored first)

• Note: don’t intermingle DS and DC in real programs – this is just an illustration
– DS is for RAM; DC is for ROM/Flash memory in our hardware

30

Does It Create Bytes?
 These DO NOT create bytes of data in memory

• Label – creates a value for use by the assembler, no run-time effect

• EQU – creates a value for use by the assembler, no run-time effect
– (Really, it’s just a more general way to create a “label” value)

• ORG – directs where the next byte goes

• DS.B; DS.W – allocates storage space, but doesn’t put in any values

 These DO create bytes of data in memory
• Instructions – these put opcode etc. for instructions in ROM

• DC.B, DC.W – these store a “constant” value (pre-initialized variable, etc.) in
ROM

31

Now Do We Know What All This Means?
ROMStart EQU $C000 ; absolute address to place my code/constant data
RAMStart EQU $0 ; absolute address to place my variable data
RAMEnd EQU $03FF ; absolute address of last usable RAM byte

; variable/data section

ORG RAMStart
; Insert here your data definition.

Average_result DS.B 1

; code section
ORG ROMStart

Entry:
LDS #RAMEnd+1 ; initialize the stack pointer
CLI ; enable interrupts

LDAA #$47
PSHA
LDAA #$63
PSHA
JSR COMPUTE_AVERAGE

…
ORG $FFFE
DC.W Entry ; Reset Vector

32

Other Info
 http://www.ece.utep.edu/courses/web3376/Directives.html

• (“essential code warrior syntax” for assembly)

 Codewarrior documentation is available on the course web site
• http://www.ece.cmu.edu/~ece348/reading/index.html

• Assembler manual

• C compiler manual

• Build tools manual

• Debugger manual

33

Be Careful of RAM/ROM In C

34

Cycle Counting for Branches
 Some instructions have variable execution times – especially branches

 Branch timing cases:
• Branch not taken

– Just continues along as if it were a no-op

• Branch taken
– Must refill instruction prefetch queue to get back to normal operation

– (Remember, small microcontrollers don’t have cache memory, don’t speculate, etc.)

35[Freescale]

36

Lab Cycle-Accurate Simulator
 The IDE simulator provides several

useful capabilities
• Run code without a module

• Easy single-step debugging

• Count CPU cycles

 Generally a simulator is the only way to get exact CPU cycle counts
• But only if the simulator is actually accurate (a problem on complex CPUs)

• And only if the actual run-time environment matches the simulation

[Code Warrior Screenshots]

37

Simulator vs. Real Hardware vs. Hand Counting
 Motivation: need to know execution time for real time scheduling

 Hand counting
• Doesn’t require fancy tools

• Is tedious

• Is OK for “best case” but often humanly impossible for worst case
– in critical systems worst case is the important case!

 Simulator
• If you have a simulator (luckily we do!) counting isn’t so bad

– Single-step through program and subtract start count from end count

– Can use “break points” (covered in debugging lecture)

 Real hardware
• Can use hardware timers to assist (covered in counter/timer lecture)

• Can use a stopwatch if timing is repeatable

• Other approaches (covered in debugging lecture)

• Issue: hard to get really precise and accurate times

38

NOP Timing Loops
What if your CPU doesn’t even have a timer?
What if you need just a few microseconds of delay?

°

 Sometimes (and frequently in old systems) => NOP Timing Loops
LDAA #$FF

Start_loop:

NOP

NOP

NOP

DBNE A,Start_loop ; Cool loop instruction

 Number of NOP instructions and index values used to tune time
• Very commonly used in 1980s era embedded systems

– BUT – really a problem if you have cache memory, interrupts, etc. etc.

– What happens if you start using a new chip that is faster/different timing?

• We still use it in this class until you know more advanced techniques
– BUT – dangerous to use in production systems unless you are really sure it is OK!

[Freescale]

40

Advance Processors & Timing Prediction
 Fancy CPUs and systems have practically unpredictable timing

• Speculative execution

• Cache memory

• Virtual memory

• Variable timing on multiplication and division

• DRAM refresh delays

• System-level interrupts

• Operating system latencies

• …

 Timing analysis for complex systems is a tough problem
• Something to NOT do – “run loop 1 million times and divide by 1 million”

• Why?

41

Intel 80386 Timing For Simple Loop
 Interrupt Service Routine that puts bytes into a queue

• “Memory sweeper” task running in foreground, including Virtual Memory

Clock Cycles 900
[Koopman]

42

Review
 Stack usage

• Pushing & popping with stack

• Subroutine calls

• Parameter passing to/from subroutines

• SP-relative loads and stores

 Other assembler operations
• Position, memory, and other management

• Labels

• Differences among label, EQU, DS, DC, ORG

 More on timing
• Cycle-accurate simulation

• Nop timing loop

43

Lab Skills
 Register-based subroutine interface

• Write a program that uses registers to pass values

 Stack-based subroutine interface
• Write a program that uses the stack to pass values

 Timing
• Hand compute timing

• Simulation-based timing

• Stop-watch based timing

