18-345 Introduction to Telecommunication Networks

Project #1: Basics of Client/Server Communications

September 8, 1999

Due September 19, 1999

Introduction:

This project will introduce you to the basic concepts of Client/Server Networks. Anytime you access the Internet, you are running a client with your web browser and accessing a web server (ex. Yahoo). The information you are receiving is transmitted across the network as a sequence of packets. The purpose of this project is to allow you to run a server on one machine, a client on another machine, and transmit a single packet between them.

You will be provided with code to implement the server and the client. However, we encourage you to examine this code carefully because you will be using this code for future projects. By fully exploring the code, you will gain a better understanding of the underlying technology. The code is composed of the following functions:

Functions:

int init_sock(int mode)

This will take care of some initial housekeeping, such as binding the socket address for your host. Call this function once at the beginning of your program. To help facilitate development on a single machine, the init_sock routine must know if it is operating is server mode or client mode. The parameter mode can take either the value SERVER_MODE (for server operation), or CLIENT_MODE for client operation.

The server listens on one port (SERVER_PORT) for data and control packets, and the client listens on a different port (CLIENT_PORT) for response and acknowledgment packets. This allows both the server and the client to be operating on the same machine. Both SERVER_PORT and CLIENT_PORT are defined in sock.h. If the server and client are on separate machines, then SERVER_PORT and CLIENT_PORT can have the same value. The function returns a value to be assigned to the static int sock. This variable is already defined in the code. REMEMBER TO ASSIGN THE RESULT OF “init_sock” FUNCTION TO THE VARIABLE “sock” (or it won’t work!!!).

unsigned get_addr_by_name(char *hostname)

Given a null-terminated string representing a hostname (so it won’t look like 128.2.232.1), this function will return the corresponding IP address of the machine, with host byte-ordering. If unsuccessful, get_addr_by_name will return 0xFFFFFFFF.). It takes a host name (the client/server computer’s internet name) as its argument (ex. stealth.weh.andrew.cmu.edu).

int send_packet(char *p_data, int p_length, unsigned address)

Send_packet will attempt to send p_length bytes from the array pointed to by p_data to the destination address. Note that address is in host byte ordering. Possible return values are:

0: No error occurred

-1: Some error occurred
int recv_packet(char *p_data, int *p_length, float t_out)

Recv_packet will wait for up to t_out seconds to receive a packet. If a packet is received, the contents of the packet will be placed in p_data, and the length of the packet will be placed in the integer pointed to by p_length. The value pointed to by p_length should be initially set to the size of the buffer that is available at address p_data. Possible return values are:

0: No error occurred

-1: Some error occurred

2: receive timed out

Assigment:

Download the source code, sock.c and sock.h, from the course webpage

http://www.ece.cmu.edu/~ece345

You should write two main functions, one for the server and one for the client. The server should listen for a short message sent by the client (ex. “Hello There”) and output it to the screen. Include one at the bottom of sock.c and save it as server.c. Include the other at the bottom of sock.c and save it as client.c.

You can compile and run your code on any andrew machine. Use the following command line to include the correct library:

gcc –lsocket server.c

or

gcc –lsocket client.c

You must submit your source code (server.c and client.c). We will be setting up a depot shortly and will be announced next Monday. Please include any comments or feedback in an additional text file. The submission method will be announced next week. No late projects will be accepted!
 Note: There are many ways to implement a socket communication. These functions were written for educational purposes and to make your life easier. This may not be the most efficient way to implement a client/server connection.

Anticipated Questions

Q:
How do I get my host address?

A:
Use the function gethostname(2) to get your hostname, then use the provided get_addr_by_name function to find its address.

Q:
How do I contact the T.A. when I get stuck?

A:
Refer to the course syllabus for T.A.’s office hours and email addresses.

Q:
When is this due?

A:
The due date is Sunday, September 19, 11:59 PM.

Q:
What machines will the provided functions work on?

A:
The provided functions should work on any UNIX workstations that implement BSD sockets, which is every workstation that I am aware of on campus.

PAGE
1

