Project 1 Part IIl: Metaproduct Primes

X 'What you know

» Basic BDD data structure and JAVA implementation
» A little bit about these things called “metaproducts”

N What you don’t know

» All the tricks with metaproducts
» Using these to do Prime Implicants

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

Copyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.

You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Page 1

About Metaproducts

N Notation was created to support applications where we need to
preserve the structure of things like SOP expressions
> ...ie, if you really WANT to write x + X’
» ...and you want to represent and manipulate it as a BDD, what to do?

N Metaproduct notation
» Replace each variable “x” with a pair (rx, sx)
» If you see x in a product, then you get (rx)(sx) in metaproduct
» If you see x’ in a product, then you get (rx)(sx’) in metaproduct
» If you don’t see any x or x’ at all, then you get (rx’) in metaproduct

In English

» rx is the occurrence variable ->rx==1 says “x is here”, rx==0 says “no x”’
» sx is the sign variable -> sx==1 says ‘“x is positive”, sx==0 “negative”

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Metaproduct Example

N Suppose F(x,y) = x + xy’

» This is really just == x, of course

» Its BDD would be simply G}I

W As a metaproduct
» Assume var ordering was x <y
» Then new ordering is x <rx <sx <y <rx <sy
» x becomes (rx)(sx)(ry’)
» xy’ becomes (rx)(sx)(ry)(sy’)

o o

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Page 2

Metaproduct Example

You interpret this by looking at “satisfying paths” to “1” node

» There are 2 paths from root to “I”’, each makes a product term

@ x is here...

Result: x Result: xy’

» Put the final products together for final answer: x + X’y

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Metaproduct Example

N'What happens if a variable is not present?
» We already saw this, but its worth noting
» In F(x,y) = x + xy’, consider “x’’ term
» There’s no “y” in there, but we still have to deal with “y”

» Rule is: if there’s no variable in there, you still have to include the
occurrence variables for the missing original vars, but you include them
in the negative polarity to note their absence

N So, term “x” becomes (rx)(sx)(ry’)

\

Means “no y vars in here”

UIf this was F(x,y,z,w) =x, what would happen?
» We'd get (rx)(sx)(ry’)(rz’)(rw’)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Page 3

Metaproduct Primes

N Turns out you can represent Prime Implicants with
metaproduct notation

Xy Xy
w w

-~

1! I () (1)
g)\
1) I
These are NOT all
Primes - not all biggest

product terms you can
Circle in this Kmap

These are all
Primes - biggest
product terms
you can circle
in a Kmap for
your function

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Metaproduct Primes

N Like with Boolean functions, problem is SIZE

» A function can have many many primes — way too many enumerate one
by one

» This is why representing them with something like a BDD is attractive,
since its good at “compressing’’ Boolean functions

» But this is also why we need a special notation, since we DON’T want
the BDD to CHANGE our function to its canonical form

» We need to represent it in some SOP form

N Biq question: how do we find Primes using metaproducts

» Of course, it’s gotta be something recursive, right...?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Page 4

Metaproduct Primes

N There’s another Shannon-style recursive decomposition

» You start with a BDD in your original variables
» You end up with a BDD in the (occurrence, sign) metaproduct variables

» Final BDD represents, as SOP form, ALL the primes

N Basic decomposition
» Let P(BDD root of F) = metaproduct BDD for all PRIMES in function F

P()

o
of
o

A P(L*H)

P(L)*P(L*H) P(H) * P(L*H)

.
"‘
.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Metaproduct Primes

N....why does that work?
» Roughly speaking —this is just the messy check for how to “reassemble”

primes when they get split up during a Shannon decomposition

Xy Xy
z z
YD
\ ALY
f(x,y,z) = X’y + yz’ = 2 primes f(x,y,z) = x = | prime
=y yf = yf+ yf,
1 = y(¥+z))+ y (0) 1= Y+ ¥y ()
X f X f, Ifwe cofactor ony x x
Z) , ’ f f, Cofact s
1\ D 2077 the Kmaps for f , f, Zy—y 2 yf\ oactor ony
1 1 Kmaps for f,, f,.
, MY A are shown at left. Vet
x A Y |} shown at left.
/ This is what happens A \/ | .
)[ssue is to
x interpret to

4] .
to our 2 primes; new

question is how to
interpret these new pieces.

z
reassemble primes

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Page 5

Metaproduct Primes

X “Reading” the decomposition

P() el
A i m
/ P(L) * P(LFH) P(H) * P(L*H)

If there’s no
“x” vars, then

get primes in If “ig “. x’ ". V“I‘_"’ If pos “ x ” var,
% et primes in . .

LA tiat F::u"e NOT in get primes in L

LoH that are NOT in

L*H

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Metaproduct Primes

N Let’s be a little more careful on the details of BDDs and ops
» Assumes you have AND and NOT (ie, “!”’) on BDDs
» Assumes P() calculated just like ITE, as a top-down recursion
» Assume var order is fixed: for varys x,y,..., its: x <rx <sx <y <ry <sy

P() = .

...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Page 6

Metaproduct Primes: Termination

N So we know the recursion is:

N...next question: what are the termination conditions for P()?

» So, when can we quit, and return a known BDD node answer?
» Easy case: P(0)=0
» Harder case: P(1) = alittle messy...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Metaproduct Primes: Termination

N Suppose vars are: x,y,z,w, and we have this recursion

PC Q) =
A P(0) |
This is jast “0” -
P(1) :
This is the product of Something that needs more.é
complements of all i recursion happens here... :

occurrence vars later
in the order, ie, after sx

@.
In this case: (ry’)(rz’)(rw’) = ‘//@
N Intuition m III

» P(0) means “you’re done — nothing more at all this prime term”
» P(1) means “you’re done — but remember that these vars are absent”

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Page 7

Primes Example

Xy Ordinary BDD with

var order: x<y <z

I S
Yo
4

=

~

f(x,y,z) = x’ + y’z = 2 primes

Apply recursion at root of f()

PR =

2l

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Primes Example

Applying recursion at root of f()

i AND[P(;), 'P(AND[

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Page 8

Primes Example

Do the obvious simplifications now (just to simplify for this manual example)

AND[PI(_i_i,lp()] |_£L| '
Q‘ This was just
. P(foo) * IP(foo) = 0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Prime Example

N OK, we need to do this one next

AND[, IP(AND[’ri—l])] | AND[Pl(ﬁ’ ‘PCANDL ,Ii.l])j?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Page 9

Prime Example

W Again, do obvious simplifications (just for this manual ex)

.
.
.
.
.
.
"‘-
.
.
.
.
.
.

o
o
o
o
o
o
.
S
o
K
e
o
o
S
o
tS
o
o

o
o
.

i
o e

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Prime Example

X We have to do this one next — and its easy...

_________________ P(AND[I'EI'IlLI])
""T'i;};'i;'ié'('aj";'"l_lLl' """""""
AND[pﬁp(AND[m """" 1 AND[PﬁiP(AND[mm])]
This is P(0)* stuff =|—£l-| This is P(1)* !P(0) = P(1)*1 = P(l)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Page 10

Prime Example

X We have to do this one next — and its easy...

This is P(1) = product of complements :
of the vars later in the order than sz.
Since sz is the LAST var in the order,
the rule is: this is just “1”

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Prime Example

N Return results up recursive call tree...

Note - I’m leaving in all the
separate ‘“0”’ and “1”’ nodes
just to simplify the drawing —
it’s a REAL BDD, there’s only
a single “1”’ and a single “0”...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Page 11

Prime Example

N Return results up recursive call tree...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Prime Example

N This one is next to recurse on

(Since we know P(1) = product of complementj
: of vars below sx in the order, this is
‘\u . supposed to be: (ry’)(rz’), so we get...
[1 .
0 & 7 AND[, NOT(,)]
mo é @

...which is just ordinary BDD ops

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Page 12

Prime Example

N BDD ops give this

""" AND[NOT(,)] """""" @ Bug fix on

é. &"l @EL/this lo-child

v N @
o ‘i'__? @\\\

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Prime Example

N Return results up recursive call tree...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Page 13

..and, that’s the Final Metaproduct for Prime()

N Look for paths from root to “1”

X is not here «

.

.

.

.

y is here
y is negative

z is here

z is positive

This prime is Y’Z

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Final Primes

N Motre paths

X is here

—> y is not here

————» ...can ignore y sign

z is not here

...can ignore z sign

This prime is x’

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Page 14

Final Primes

N....hey, there’s another one...?

x is here

y is not here

...can ignore y sign

An unfortunate fact about
metaproducts: they can be
redundant about primes.
You don’t get the wrong

z is not here

ones - but you can get right
ones several times. This prime is also x’

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Metaproduct Primes

N So what did we do?

BDD for Primes(f) in
metaproduct form

Ordinary BDD with
Xy var order: x<y <z

f(x,y,z)
Xy
Primes = paths z
from root to “I”. I
Can be redundant. | !} |

L =3
Primes = {x’, yz’)
©R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Page 15

...back to 18-760 Project 1 Part 2

N What do we want?

» We want you to add P(BDD for function f) as an operator to your JAVA
BDD package

» Do it exactly like we showed here

> Just like ITE: you descend the starting BDD for f, and you
recursively “trace out” the BDD for P(f)

> Assume you have all the vars defined in the right initial order. This
means if the real vars are x, y, YOU have x, rx, sx, y, ry ,sy in order

» You have 2 basic goals
> To be able to transform a BDD for function f into Prime(f)
> To print out some interesting “info’” about these primes

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

Prime() Details

N Things to be careful about

» Before doing anything, you probably want to build the function:
(r’)(ry’)(rz’)...(rlast’) for ALL your vars. And make an array of pointers
to the nodes, so that when you need P(1) = product of complemented
occurrence nodes below me - you can just look it up

» You still need to call FindOrCreateNode()on the 2 new nodes you
make. You want to build rx and its children first, call
FindOrCreatNode(rx), then finish the recursion on rx, then call
FindOrCreatNode(rx).

» Do you want to do something like a different OPS table for the Prime
computation? (It’s not required...but think about it)

» You will want to write a “printprime” routine that walks the paths to
the “1”’ node, and prints out sensible product terms. DO NOT worry
about the redundancy issue — not your problem.

» You also want to build a “numprimes’ routine that just prints out the
number of paths to the “1”” node. Think about it — you don’t have to
walk them all to do this, it’s a very simple recursion if you know
numprimes(hichild) and numprimes(lochild),
and numprimes(1)=1 and numprimes(0)=0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Page 16

Metaproduct Primes: Summary

nteresting, sort of funky BDD application
» Twists the usual interpretation of “canonical BDD form” around a lot
» Works fine, a bit arcane

> (This is a simplification of how people really do it. There are a
bunch of other optimizations to get rid of those redundancies that
mabke it a lot faster. Not worth the grief to go thru them all...they
violate a lot of BDD rules.)

X For Project 1
» Implement Prime(f)

» Look on the /afs/ece/class/ee760/projl directory for more details, and for
some info about benchmarks to run

» Ask TA and Prof questions if there are any issues at all on this one

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

Page 17

