
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

Project 1 Part II: Metaproduct PrimesProject 1 Part II: Metaproduct Primes
What you know

Basic BDD data structure and JAVA implementation
A little bit about these things called “metaproducts”

What you don’t know
All the tricks with metaproducts
Using these to do Prime Implicants

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

About MetaproductsAbout Metaproducts
Notation was created to support applications where we need to
preserve the structure of things like SOP expressions

…ie, if you really WANT to write x + x’
…and you want to represent and manipulate it as a BDD, what to do?

Metaproduct notation
Replace each variable “x” with a pair (rx, sx)
If you see x in a product, then you get (rx)(sx) in metaproduct
If you see x’ in a product, then you get (rx)(sx’) in metaproduct
If you don’t see any x or x’ at all, then you get (rx’) in metaproduct

In English
rx is the occurrence variable -> rx==1 says “x is here”, rx==0 says “no x”
sx is the sign variable -> sx==1 says “x is positive”, sx==0 “negative”

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Metaproduct ExampleMetaproduct Example
Suppose F(x,y) = x + xy’

This is really just == x, of course
Its BDD would be simply

As a metaproduct
Assume var ordering was x < y
Then new ordering is x < rx < sx < y < rx < sy
x becomes (rx)(sx)(ry’)
xy’ becomes (rx)(sx)(ry)(sy’)

x

0 1

rx

0 1

ry
sx

sy

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Metaproduct ExampleMetaproduct Example
You interpret this by looking at “satisfying paths” to “1” node

There are 2 paths from root to “1”, each makes a product term

Put the final products together for final answer: x + x’y

rx

0 1

ry
sx

sy

rx

0 1

ry
sx

sy

x is here…

x is pos…

y is not here.

Result: x

x is here…

x is pos…

y is here...

Result: xy’

y is neg...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Metaproduct ExampleMetaproduct Example
What happens if a variable is not present?

We already saw this, but its worth noting
In F(x,y) = x + xy’, consider “x” term
There’s no “y” in there, but we still have to deal with “y”
Rule is: if there’s no variable in there, you still have to include the
occurrence variables for the missing original vars, but you include them
in the negative polarity to note their absence

So, term “x” becomes (rx)(sx)(ry’)

If this was F(x,y,z,w) =x, what would happen?
We’d get (rx)(sx)(ry’)(rz’)(rw’)

Means “no y vars in here”

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Metaproduct PrimesMetaproduct Primes
Turns out you can represent Prime Implicants with
metaproduct notation

xy
zw

1 1
1 1

1
1

1

These are all
Primes – biggest
product terms
you can circle
in a Kmap for
your function

xy
zw

1 1
1 1

1
1

1

These are NOT all
Primes – not all biggest
product terms you can

Circle in this Kmap

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Metaproduct PrimesMetaproduct Primes
Like with Boolean functions, problem is SIZE

A function can have many many primes – way too many enumerate one
by one
This is why representing them with something like a BDD is attractive,
since its good at “compressing” Boolean functions
But this is also why we need a special notation, since we DON’T want
the BDD to CHANGE our function to its canonical form
We need to represent it in some SOP form

Biq question: how do we find Primes using metaproducts
Of course, it’s gotta be something recursive, right…?

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Metaproduct PrimesMetaproduct Primes
There’s another Shannon-style recursive decomposition

You start with a BDD in your original variables
You end up with a BDD in the (occurrence, sign) metaproduct variables
Final BDD represents, as SOP form, ALL the primes

Basic decomposition
Let P(BDD root of F) = metaproduct BDD for all PRIMES in function F

x

L H

P() = rx

sxP(L * H)

P(L) * P(L*H) P(H) * P(L*H)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Metaproduct PrimesMetaproduct Primes
…why does that work?

Roughly speaking –this is just the messy check for how to “reassemble”
primes when they get split up during a Shannon decomposition

xy
z

11
11

f(x,y,z) = x = 1 prime
= y fy + y’ fy’

= y (x) + y’ (x)

xy
z

11
1

f(x,y,z) = x’y + yz’ = 2 primes
= y fy + y’ fy’

= y (x’+z’) + y’ (0)

x
z

1
1

If we cofactor on y,
the Kmaps for fy , fy’
are shown at left.

This is what happens
to our 2 primes; new
question is how to

interpret these new pieces.

1

z’

x’

fy x
z fy’ x

z
1
1

fy
x
z

x

fy’

1
1

x

Cofactor on y,
Kmaps for fy , fy’

shown at left.
Issue is to

interpret to
reassemble primes

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Metaproduct PrimesMetaproduct Primes
“Reading” the decomposition

x

L H

P() = rx

sxP(L * H)

P(L) * P(L*H) P(H) * P(L*H)

If there’s no
“x” vars, then
get primes in

L*H
If neg “ x’ ” var,
get primes in L
that are NOT in

L*H

If pos “ x ” var,
get primes in L
that are NOT in

L*H

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Metaproduct PrimesMetaproduct Primes
Let’s be a little more careful on the details of BDDs and ops

Assumes you have AND and NOT (ie, “!”) on BDDs
Assumes P() calculated just like ITE, as a top-down recursion
Assume var order is fixed: for varys x,y,…, its: x < rx < sx < y < ry < sy
….

x

L H

P() = rx

sxP(AND[

L H

]),

AND[P(

L

), !P(AND[

L H

])], AND[P(

H

), !P(AND[

L H

])],

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Metaproduct Primes: TerminationMetaproduct Primes: Termination
So we know the recursion is:

…next question: what are the termination conditions for P()?
So, when can we quit, and return a known BDD node answer?
Easy case: P(0) = 0
Harder case: P(1) = a little messy…

x

L H

P() = rx

sxP(AND[

LL HH

]),

AND[P(

LL

), !P(AND[

LL HH

]), AND[P(

HH

), !P(AND[

LL HH

]),

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Metaproduct Primes: TerminationMetaproduct Primes: Termination
Suppose vars are: x,y,z,w, and we have this recursion

Intuition
P(0) means “you’re done – nothing more at all this prime term”
P(1) means “you’re done – but remember that these vars are absent”

x

L H

P() = rx

sxP(0)

Something that needs more
recursion happens here…

P(1)

This is just “0”

This is the product of
complements of all
occurrence vars later
in the order, ie, after sx

In this case: (ry’)(rz’)(rw’) =

ry
rz

rw

10

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Primes ExamplePrimes Example
xy
z

1
1
1

f(x,y,z) = x’ + y’z = 2 primes

1
1

x

1 0

y
z

Ordinary BDD with
var order: x < y < z

P() and note: x

1 0

y
z

x

L H

P() =

Apply recursion at root of f()

L

H

1

1 0

y
z

=

=

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Primes ExamplePrimes Example

P() = rx

sxP(AND[]),

AND[P(), !P(AND[])],

x

1 0

y
z

1 0

y
z

1

1 1

1 0

y
z

AND[P(), !P(AND[])],
1

1 0

y
z

1 0

y
z

Applying recursion at root of f()

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Primes ExamplePrimes Example

P() = rx

sxP()

AND[P(), !P()]

x

1 0

y
z

1 0

y
z

1

1 0

y
z

Do the obvious simplifications now (just to simplify for this manual example)

0

This was just
P(foo) * !P(foo) = 0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Prime ExamplePrime Example
OK, we need to do this one next

P() =

1 0

y
z

ry

syP(AND[]),

AND[P(), !P(AND[])],

0z

1 0

z

1 0

z

1 0

0
AND[P(), !P(AND[])],

z

1 0

00

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Prime ExamplePrime Example
Again, do obvious simplifications (just for this manual ex)

P() =

1 0

y
z

ry

syP() =

P()

0

z

1 0

0

0

P(0) * stuff = 0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Prime ExamplePrime Example
We have to do this one next – and its easy…

P() =
z

1 0

rz

szP(AND[]),

AND[P(), !P(AND[])],

0

0

1

0 1

AND[P(), !P(AND[])],
01 1

This is P(0) =
0

This is P(0)* stuff =
0

This is P(1)* !P(0) = P(1)*1 = P(1)

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Prime ExamplePrime Example
We have to do this one next – and its easy…

P() =
z

1 0

rz

sz
0

This is P(1) = product of complements
of the vars later in the order than sz.
Since sz is the LAST var in the order,
the rule is: this is just “1”

0

1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Prime ExamplePrime Example
Return results up recursive call tree…

P() =

1 0

y
z

ry

sy

P()
z

1 0

0

0

ry

sy

0

0

rz

sz
0

0 1

=

Note – I’m leaving in all the
separate “0” and “1” nodes
just to simplify the drawing –
it’s a REAL BDD, there’s only
a single “1” and a single “0”…

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Prime ExamplePrime Example
Return results up recursive call tree…

P() =
rx

sxP()

AND[P(), !P()]

x

1 0

y
z

1 0

y
z

1

1 0

y
z

0
ry

sy

0

0

rz

sz
0

0 1

= rx
sx

0

AND[P(), NOT()]
1 ry

sy

0

0

rz

sz
0

0 1

ry

sy

00

00

rz

sz
00

00 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Prime ExamplePrime Example
This one is next to recurse on

AND[P(), NOT()]
1 ry

sy

0

0

rz

sz
0

0 1

ry

sy

00

00

rz

sz
00

00 11

Since we know P(1) = product of complements
of vars below sx in the order, this is
supposed to be: (ry’)(rz’), so we get…

AND[, NOT()]
ry

sy

0

0

rz

sz
0

0 1

ry

sy

00

00

rz

sz
00

00 11

ry
rz

10

…which is just ordinary BDD ops

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Prime ExamplePrime Example
BDD ops give this

AND[, NOT()]
ry

sy

0

0

rz

sz
0

0 1

ry

sy

00

00

rz

sz
00

00 11

ry
rz

10

ry

rz

01

=

sy

sz

rz

Bug fix on
this lo-child

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Prime ExamplePrime Example
Return results up recursive call tree…

P() =x

1 0

y
z ry

sy

0

0

rz

sz
0

0 1

rx
sx

0

AND[P(), NOT()]
1 ry

sy

0

0

rz

sz
0

0 1

ry

sy

00

00

rz

sz
00

00 11

=

ry

sy

0

0

rz

sz
0

0 1

rx
sx

0

ry

rz

01

sy

sz

rz

bugfix

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

..and, that’s the Final Metaproduct for Prime()..and, that’s the Final Metaproduct for Prime()
Look for paths from root to “1”

ry

sy

0

0

rz

sz
0

0 1

rx
sx

0

ry

rz

01

sy

sz

rz

x is not here

y is here

y is negative

z is here

z is positive

This prime is y’z

bugfix

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Final PrimesFinal Primes
More paths

ry

sy

0

0

rz

sz
0

0 1

rx
sx

0

ry

rz

01

sy

sz

rz

x is here

This prime is x’

x is negative

y is not here

…can ignore y sign

z is not here

…can ignore z sign

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Final PrimesFinal Primes
…hey, there’s another one…?

ry

sy

0

0

rz

sz
0

0 1

rx
sx

0

ry

rz

01

sy

sz

rz

x is here

This prime is also x’

x is negative

y is not here

…can ignore y sign

z is not here
An unfortunate fact about
metaproducts: they can be
redundant about primes.
You don’t get the wrong
ones – but you can get right
ones several times.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Metaproduct PrimesMetaproduct Primes
So what did we do?

xy
z

11
1

f(x,y,z)

1
1

x

1 0

y
z

Ordinary BDD with
var order: x < y < z

BDD for Primes(f) in
metaproduct form

xy
z

1
1
1

Primes = {x’ , yz’)

1
1

Primes = paths
from root to “1”.
Can be redundant.

ry

sy

0

0

rz

sz
0

0 1

ry

sy

00

00

rz

sz
00

00 11

rx
sx

00

ry

rz

01

sy

sz

rz

bugfix

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

…back to 18-760 Project 1 Part 2…back to 18-760 Project 1 Part 2
What do we want?

We want you to add P(BDD for function f) as an operator to your JAVA
BDD package
Do it exactly like we showed here

Just like ITE: you descend the starting BDD for f, and you
recursively “trace out” the BDD for P(f)
Assume you have all the vars defined in the right initial order. This
means if the real vars are x, y, YOU have x, rx, sx, y, ry ,sy in order

You have 2 basic goals
To be able to transform a BDD for function f into Prime(f)
To print out some interesting “info” about these primes

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Prime() DetailsPrime() Details
Things to be careful about

Before doing anything, you probably want to build the function:
(rx’)(ry’)(rz’)…(rlast’) for ALL your vars. And make an array of pointers
to the nodes, so that when you need P(1) = product of complemented
occurrence nodes below me – you can just look it up
You still need to call FindOrCreateNode()on the 2 new nodes you
make. You want to build rx and its children first, call
FindOrCreatNode(rx), then finish the recursion on rx, then call
FindOrCreatNode(rx).
Do you want to do something like a different OPS table for the Prime
computation? (It’s not required…but think about it)
You will want to write a “printprime” routine that walks the paths to
the “1” node, and prints out sensible product terms. DO NOT worry
about the redundancy issue – not your problem.
You also want to build a “numprimes” routine that just prints out the
number of paths to the “1” node. Think about it – you don’t have to
walk them all to do this, it’s a very simple recursion if you know
numprimes(hichild) and numprimes(lochild),
and numprimes(1)=1 and numprimes(0)=0

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

Metaproduct Primes: Summary Metaproduct Primes: Summary
Interesting, sort of funky BDD application

Twists the usual interpretation of “canonical BDD form” around a lot
Works fine, a bit arcane

(This is a simplification of how people really do it. There are a
bunch of other optimizations to get rid of those redundancies that
make it a lot faster. Not worth the grief to go thru them all…they
violate a lot of BDD rules.)

For Project 1
Implement Prime(f)
Look on the /afs/ece/class/ee760/proj1 directory for more details, and for
some info about benchmarks to run
Ask TA and Prof questions if there are any issues at all on this one

