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(Lec 18) Electrical Timing Issues:  The Elmore Delay Model(Lec 18) Electrical Timing Issues:  The Elmore Delay Model

What you know...
Lots of synthesis for logic and for geometry

Ditto for verification--for logic

Logical timing abstraction:  Static timing analysis, topological delay

What you don’t know...
How the geometric design of real, routed wires impacts delay

Electrical timing abstraction

We need to develop some usable notions of “delay” for use with layout 
algorithms:  models simpler than a full simulation, but accurate enough

(Thanks to Larry Pileggi, for many cool slides & ideas here...)
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Where Are We?Where Are We?
For more accurate timing, need electrical wire delay estimation
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Nominal Deadlines…Nominal Deadlines…

…and, this is clearly a bit extreme for the last week of class
Open to suggestions for moving some deadlines BACK some…

…but need to be careful not to mess up people with finals, early travel 
plans for break, etc
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HW5 6 PPT slide
paper review

Proj 3 demos

Last 760 lecture (probably…
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Timing Issues in LayoutTiming Issues in Layout
What’s the problem?

Delays on signals due to wires no longer negligible

Modern designs must meet tight timing specifications

Layout tools must guarantee these timing specifications

How have we addressed this so far in layout?
By ignoring it, mostly

Implicitly, qualitatively

We try to make layout area small

We try to make clusters close together

We try to make wires short

etc

All these are good things, but not the same as a guarantee...
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Timing Issues: Impact of InterconnectTiming Issues: Impact of Interconnect
IC technology trends

delay=85%

delay=15%
Mid 80s Scenario

Most of the input to output delay for 
1 level of logic is due to gate delay

Wire delay is a very small component
of the overall delay, ~18% here

delay=50% Mid 90s Scenario
Half of the input to output delay for 
1 level of logic is due to wire delay

delay=20%

delay=80% Today’s Scenario (example bad case)
Most of the input to output delay for 
1 level of logic is due to wire delay

delay=50%
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Timing Issues: Role of Layout ToolsTiming Issues: Role of Layout Tools
Unfortunately, easy for layout tools to screw up the timing 
properties that “upstream” tools try to achieve

Upstream tools
…may have no real, physical models for the placement or routing

Only have rough estimators to generate constraints on layout

High-level
description

+
Timing
Specs

Logic 
Synthesis

Physical
Design

Connected cells
with delay constraints

on signal paths

Placed cells
with real locations,

real connecting wires
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Basic Delay ModelingBasic Delay Modeling
Let’s focus in some detail on one important aspect of this 
overall timing optimization problem

Interconnect delay
You do a placement, it puts the pins at a certain distance apart

So, you have to route a wire, it has an input-to-output delay

Where does the delay come from?

How accurately can we predict this delay?

How efficiently can we model this delay for use in layout tool?

x
x

x

t=0

V

V

V
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Sources of Delay: Model 1Sources of Delay: Model 1
Delay = finite speed signal propagation through physical wires

Model == Length
Delay proportional to length

Shorter = better

Analysis
Pro:  This is really easy, qualitatively OK

Con:  Not quantitatively accurate, extremely crude

x
x

x Delay α  bounding box ∆x + ∆y
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Sources of Delay: Model 2Sources of Delay: Model 2
Add:   Delay also affected by circuit drive limitations 

Model == “Wire load”
Delay proportional to length, fanout, capacitance of the driven pins 

Actually called “wire load models”, usually model capacitance on a net 

Analysis
Pro:  Qualitatively better

Con:  Still focuses mostly on the pins, not on the wire; can be off by 3-5X

x
x

x

Delay =  F ( bounding box ∆x + ∆y,
                     fanout, capacitance of pins, ...)

fanout is 2, look at loading 
due to 2 pins
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Sources of Delay: Model 3Sources of Delay: Model 3
Add:   Delay comes from parasitic loading of the interconnect

Depends critically on exact shape of the wired net 

Model == Lumped Electrical Parameter
Interconnect must be modeled as a circuit, analyzed as a circuit

Why?

Silicon
Insulator

First-level
metal wire

Interconnect geometry
is now large relative to
the devices themselves
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Interconnect Models:  RC TreesInterconnect Models:  RC Trees
Let’s see how to derive the most popular model used in layout 
applications for interconnect delay

First:   Interconnect -> Circuit

Silicon
height d

W

L

H Insul.Metal

Metal wire has resistance = R to current
flowing down its length

R a L / WH

current
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Toward RC TreesToward RC Trees
Interconnect -> Circuit

Silicon
height d

W

L

H Insul.Metal

Metal wire has capacitance to silicon
substrate, with insulator between 

C a WL / d

current

metal

silicon

insul.
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Note: this view is way simplistic
You really get capacitance between any pair of conducting surfaces
So, in a multi-layer metal process you get Caps between all the layers
Vertically adjacent conductors create Overlap Cap.
Laterally adjacent conductors (wires next to you) create Fringe Cap.

We won’t worry about all these different caps, just a single overlap cap

Aside:  Metal Layer CapacitanceAside:  Metal Layer Capacitance

M4

M5

M3

Fringe cap between 2 adjacent
wires on the same layer

Overlap cap between 2 adjacent
wires on the same layer

cross
section

view
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RC TreesRC Trees
Typical circuit model:  Π model  (“pi” model)

Accounts for the resistance  R  and the capacitance C of wire segment

Symmetric (which is why we split the capacitance)

Small model, only need 2 numbers

Silicon
height d

W

L

H Insul.Metal

R

1/2 C1/2 C

current

current
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RC TreesRC Trees
Of course, that’s just 1 segment of wire...

Each wire
segment creates
its own RC tree
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RC TreesRC Trees
Recall a simple rule from basic circuits (or physics)

Parallel capacitors can be replaced by 1 cap with Σ C

C1 C2 C3 =
C1+C2+C3

RC Tree

Note:  each of the Rs, Cs in this tree are probably different
numbers, since each depends on geometry of the segment
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RC TreesRC Trees
RC Tree general form

A tree of resistors (no loops)

Root of tree is where signal is input

Leaves of tree are the driven outputs

Capacitors to ground at all intermediate nodes of the tree

RC Tree

R
R

R

R
R

C C

C

C C

C

More
abstract form
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RC Trees:  Delay EstimationRC Trees:  Delay Estimation
OK, we can build them.  What are they good for?

Turns out one can do fast, approx. delay estimation for an RC tree

Scenario

Voltage source + resistor as input at root (this models driving gate)

Capacitor as load at each leaf (each models a driven gate)

R
R

R

R
R

C C

C

C C

C

+
-

t =0

V=1

V1
+

-

V2
+

-

V1

V2

Driving input

Driven load
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Summary:  Gates + Wires -> RC Tree CircuitsSummary:  Gates + Wires -> RC Tree Circuits

R
R

R

R
R

C C

C

C C

C

+
-t =0

V=1
V1
+

-

V2
+

-

V1

V2
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RC Trees:  The Elmore DelayRC Trees:  The Elmore Delay
Famous delay formula called the “Elmore” delay

Derived originally in the 40s for circuits applications

Resurrected in 80s by Penfield, Rubenstein, Horowitz for RC trees

Usually presented as a “magic formula” over the Rs and Cs...

Our goal

Give the basic delay result, and explain how it’s calculated and used

Apply the formula to a few illustrative examples

[Aside:  Show how to derive the basic result--briefly-- since it’s the most 
useful formula in the performance-based layout business  (appendix)]
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RC Trees:  Labeling ConventionRC Trees:  Labeling Convention
Observe

We combine (“lump”)  load capacitance with 1/2C from last segment
In RC tree, each R and each C may be different
Give each a name: Ri feeds into node i, Ci hangs off node i
Label currents thru Ri as Ii

i

current

node in RC tree

ground

R

C
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RC TreesRC Trees
So, let’s label our little example this way...

First the nodes (numbered 0 - 5)

Then all the currents thru the resistors (I0 - I5)

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

I1

I4

I5

I2

I3

I0

© R. Rutenbar 2001,                       CMU 18-760, Fall01  24

RC Trees:  Elmore DelayRC Trees:  Elmore Delay
What do we really want to get?

Approximate output waveforms, V4(t), V5(t), as efficiently as possible

What do we know how to do?  Can write Kirchhoff eqns here…

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

I1

I4

I5

I2

I3

I0

Vin - R0•I0 - R1•I1 - R2•I2 - R4•I4 - V4 = 0

Vin

Example: KVL around the loop from Vin to V4 to gnd
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
Common patterns of resistor values in all these eqns

Can define some notation:  R0k(i)
R0k(i) is the sum of resistors you see walking back up the tree from node “k” to 
the root, that are ALSO on the path from root to node i
Called “upstream resistance” for node “k”

Vin - R0•I0 - R1•I1 - R2•I2 - R4•I4 - V4 = 0

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

R0 0 1

2

3

4

5

R04(4) = (R0 + R1 + R2 + R4)
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
More complex example of R0k(i)

Only R0 and R1 are on both paths:  from root->4, and from root->3

Turns out the derivation focuses on paths the charging currents take 
from driver (root) to the individual leaf nodes (load caps)

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

R0 0 1

2

3

4

5

R04(3) = (R0 + R1)
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Aside:  Stream AnalogyAside:  Stream Analogy
Think of current like real water, flowing in tree

From  any component of tree, if you look at what is happening back up 
toward the root, it’s UPSTREAM

Look toward leaves, its DOWNSTREAM

current in

current out

current out

current out

current out

upstream

downstream

(from driver gate)

(charging caps
in driven gate)
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What Does Elmore Delay Try to Model?What Does Elmore Delay Try to Model?
Recall: Apply a voltage step to a circuit with a capacitor...

Current starts to flow...eventually cap charges up, current stops flowing

Cap charges up to V0 here

Elmore tries to model output voltages with a single-time-constant 
exponential ramp voltage;  trick is estimate a good “RC” for accuracy

+
-

R

V
+

-
CV0

KVL:                    V0 - R•C•dV/dt - V = 0

Solve diff. eq:     V(t) = V0 ( 1 - e -t / RC ) 

V(t)

V0

time t
RC

V0 (1-e-1)
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What Does Elmore Delay Try to Model?What Does Elmore Delay Try to Model?
We want an accurate time constant “τ” for each output

Can depend only on the Rs, Cs we know from the RC tree

Different for each output--a unique feature for Elmore model

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

R0 0 1

2

3

4

5

V4

V5

V4
+

-

V5
+

-

V0 ( 1 - e -t / 
τ1 ) 

V0 ( 1 - e -t / 
τ2 ) 
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RC Trees:  The Elmore DelayRC Trees:  The Elmore Delay
This is the magic formula that we can derive

τ  is “the Elmore Delay”; recall:
We asked this:   what does this RC tree leaf voltage Vi(t) look like?
We assumed this:  apply V0 step at t=0

We also assumed:   can model voltage Vi(t) as 1 time constant,  1 - e - t/τ

Can derive this: τ = Σk R0k•Ck 

Note
A general formula for the time constant for the response at any leaf

Assume one time constant τ  is a good approx for the actual delay

Vi(t) = V0(1 - e - t/τ) τ = Σ R0k•Ck
Nodes k

in RC tree
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ObservationsObservations
Note

Basically says we can model the output at 1 leaf of an RC tree with an 
“equivalent circuit” that looks like 1 equivalent R, 1 eqv. C

We don’t really know the R or the C though, just that RC = τ
Called a “one time constant” model  (makes sense, eh?)

Analysis
PRO:  Easy to compute (can do it recursively by walking tree)

PRO:  Gives you a unique delay for each output of the tree

PRO:  Accounts for all the parasitics Rs, Cs of the interconnect

CON:  It’s still only a one time constant model; sometimes need > 1
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Trick to Compute Elmore Delay FastTrick to Compute Elmore Delay Fast
Do this:

Set τ = 0;  start walking down tree to the leaf node  (arrow)
At each resistor, do τ += R • Σ (all caps downstream)

1

2

2 1

1

31
4

1

1
35

Delay =?
+

v(t)
-

delay(root->leaf) =   Σ Ri • (Σ downstream caps)
nodes i

from root
to leaf
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Now What?Now What?
The Elmore delay formulas are immensely useful

SImple enough for layout folks to use them in algorithms

Accurate enough that they beat simple length-based schemes

(Unfortunately, not so accurate that you can avoid later verification 
with what are called “higher order” models that incorporate more than 
one time constant)

Applications
Let’s look at a simple example and see how layout decisions affect actual 
delay, as measured with Elmore
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Elmore ExampleElmore Example
Simple tree with 4 leaf nodes

Normalized parameters:   r = 1 ,  c = 2

Just assume that for a segment, total R = r • L / W,  C = c  • W • L

W=1, L = 20

W=1, L = 5

W=1, L = 2
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Elmore ExampleElmore Example
RC Tree for the interconnect alone

Remember to add up caps each hanging off same node of ckt

W=1, L = 20

W=1, L = 5

W=1, L = 2

20

5 5

2 2 2 2

20

30

9 9

2      2     2       2
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Elmore ExampleElmore Example
Add driver and driven gates

W=1, L = 20

W=1, L = 5

W=1, L = 2

R0 = 20 20

20

5 5

2 2 2 2

20

30

9 9

2+1 = 3
Cload = 1
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Elmore ExampleElmore Example
OK: what’s the delay to each leaf ?

Since symmetric, only need to compute 1 path

Remember the trick:

1. Set  τ = 0, walk from root to leaf

2. At each resistor, do
τ += R • Σ (all caps downstream)

20

20

5 5

2 2 2 2

20

30

9 9

2+1 = 3
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New Elmore ExampleNew Elmore Example
What can layout (ie, placement, routing) do to wiring?

Change the length of a wire

Change the width of a wire (a very recent degree of freedom to use...)

Try example:  change L on 1 segment

W=1, L = 20

W=1, L = 40

W=1, L = 2

R0 = 20

Cload = 1

R=40

40=C/2

40=C/2

R & C increase for longer wire
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New Elmore ExampleNew Elmore Example
OK, now what is delay to each leaf?

20

20

5 40

2 2 2 2

20

65

9 44

3 3 3 3

Right side:
τ=7606

Left side:
τ=5681

Note:
Extra C of longer
wire even loads the
left side of tree,
upping the delay

left right
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New Elmore Example, version 2New Elmore Example, version 2
How about instead we change W=width on 1 segment?

W=1, L = 20

W=10, L = 5

W=1, L = 2

R0 = 20

Cload = 1

20

20

5 0.5

2 2 2 2

20

75

9
54

3 3 3 3τ=5481 τ=6336

R smaller, C bigger
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Elmore ApplicationsElmore Applications
Do people really use this delay metric?

Yes!   

Verification
It’s easy to compute, gives a semi-real delay to each leaf node in an RC 
tree, allows us to see how wire “shape” affects per-leaf delay

So, can use it for verification

Synthesis (of layout)
Since it is easy to see how length change of width change affect per-leaf 
delay, this becomes an optimizable “degree of freedom” in some apps

Good example:  clock trees
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Clock Trees:  ~Same Delay To Each LeafClock Trees:  ~Same Delay To Each Leaf
Clock is huge global net (1000s of leaf nodes)

Each leaf is a latch, want ~same delay from root->latch;  
max(arrival time difference at latches) is called “skew”, want this small

Global clock distribution

Sample (1mm2) local distrib.

Source: IBM 
Size: 16,818 latches
Tech: 0.35 um
Freq: 200 MHz (T=5 ns)
Skew: 500 ps



Page 22

© R. Rutenbar 2001,                       CMU 18-760, Fall01  43

Clock Tree Routing Clock Tree Routing 
It’s a very specialized kind of routing, to optimize skew

Basically a recursive process, which tries to match delays to each 
subtree of the clock

clock

latch site i

latch site j

clock root

latch site leaves
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Clock Tree RoutingClock Tree Routing
Example:  bottom-up construction

c lock clock clock

clock clock clock

0. Latch placement 1. Route local pairs 2. Pick “tap” points

3. Route local pairs 4. Pick “tap” points 5. Continue…
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Delay Optimization ProblemDelay Optimization Problem
Proper location of “tap” points to balance delay to sub-trees

You have 2 routed clock “subtrees”.  You want to connect them, so you 
route a wire between them.  

But, where do you put the connection--the “tap” point--on this wire, so 
that delay down each each subtree is matched?

where? where?

an RC tree

an RC tree

1 segment of
wire with its
own RC  
π model
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Example: Bad Tap Point LocationExample: Bad Tap Point Location

A bad tap point location gives
unequal delays down each side
of the clock, into each subtree

Route 
this wire

to connect
2 subtrees

Locate
Tap pt

Delay
to here
= small

Delay
to here
= big
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This is a Geometric/Delay Optimization TaskThis is a Geometric/Delay Optimization Task
Let us redraw for clarity

You already have 2 complete RC trees going down to latches

You have decided to “match” the local “roots” of these 2 trees

You will connect with a straight wire (you hope)

Problem:  Where to put the tap point to equalize the Elmore delay
on each side?

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

local root
of RC tree

on left local root
of RC tree
on right

connecting wire
that “matches”

tap point:
where do we 

put it?
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Nice Solution:  Exact Zero Skew AlgorithmNice Solution:  Exact Zero Skew Algorithm
Look closely at an RC model of this situation

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

L units long

xL (1-x)L

Wire L units long has
an R C π model R

C/2 C/2

Since both R, C directly proportional
to length L, it’s easy to model the 
left segment of len xL, and right segment
of len (1-x) L also as 2 π models

xR

xC/2 xC/2

(1-x)R

(1-x)C/2 (1-x)C/2
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Exact Zero SkewExact Zero Skew
So what have we got?

Complete RC model for the 2 subtrees, and the connecting (match) wire

In terms of a variable x that we don’t know, that tells us where to tap

Goal:  Elmore delay down to left latch sites == Elmore delay to right

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

xR

xC/2 xC/2

(1-x)R

(1-x)C/2
(1-x)C/2
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Elmore HackingElmore Hacking
Recall

Delay (RC) from root to leaf in an RC tree was calculated like this:

Can also define delay from root to an internal node j
Delay (RC) from root to internal node j is similar:

delay(root->leaf) =   Σ Ri • (Σ downstream capacitance = Cdi)
nodes i

from root
to leaf

delay(root -> j) =   Σ Ri • (Σ downstream capacitance = Cdi)
nodes i

from root
to j
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Elmore HackingElmore Hacking
Delay root -> 8?

Delay root to 6?1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

R1

C1
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Exact Zero SkewExact Zero Skew
So, we can now write delays for our 2 matched trees

Assume delay for left tree from its root is t1,  for right tree = t2

Assume total cap inside left tree = C1,  for right tree C2

leaf nodes = latches

leaf nodes = latches

xR

xC/2 xC/2

(1-x)R

(1-x)C/2
(1-x)C/2

t1
t2

downstream cap
inside = C1 downstream cap

inside = C2

Delay to left:

Delay to right:

xR(xC/2 + C1) +t1

(1-x)R[ (1-x)C/2 + C2)] + t2
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Exact Zero SkewExact Zero Skew
What do we want to accomplish here?

Delay to the left = delay to the right

So, we equate the 2 delays, and we get 1 equation in 1 unknown, x

Can solve this analytically, get a unique x solution

xR(xC/2 + C1) +t1  = (1-x)R[ (1-x)C/2 + C2)] + t2

x  =     (t2 - t1)  +  R[ C2 + C/2)

R( C + C1 + C2)
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Exact Zero SkewExact Zero Skew
Interpretation

Value of x tells us where to put the tap point on the matching wire

If we put xL units of wire on left, (1-x)L on right, then Elmore delays 
balance -- assuming that Elmore delays inside each subtree, from
subtree root to each leaf in each subtree, also balance

Can get “exact zero skew” this way -- hence name of algorithm

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

xL (1-x)L
Correct tap point
location to balance
Elmore delay on
each side of tree
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Exact Zero Skew:  One Complication…Exact Zero Skew:  One Complication…
You want x to come out  0 <= x <= 1

But it might not…!

Why not?  If the trees are too unbalanced there IS NO tap point that 
will balance the Elmore delay!

RC tree
leaf nodes = latches

leaf nodes = latches

RC tree

xL (1-x)L

X >1 will result

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

xL (1-x)L

X < 0 will result
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Exact Zero SkewExact Zero Skew
Interpretation

The trees are so unbalanced that a minimum length wire connecting 
the 2 roots of the subtrees is NOT LONG ENOUGH to balance delays

X<0 or X>1 tells us:  add more wirelength (more C, really) to balance trees.

RC tree
leaf nodes = latches

leaf nodes = latches

RC tree

xL (1-x)L
X >1

RC tree
leaf nodes = latches

leaf nodes = latches

RC tree

You need a wire
of len L’ > L to add 
enough delay on the 
left to get balance

tap point
is all the
way to right
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Exact Zero SkewExact Zero Skew
Ditto for X < 0

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

xL (1-x)L

X < 0

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

You need a wire
of len L’ > L to add 
enough delay on the 
right to get balance

tap point
is all the

way
to left
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Exact Zero SkewExact Zero Skew
New problem

If 0 < x < 1, you put in a minimum length straight wire to connect to 2
subtree roots, and then you solve for x fraction for where to tap it

If not, you have to solve for the new L’ > L that adds enough extra delay 
so that the delays balance.

Example:

leaf nodes = latches

leaf nodes = latches

so let L’ > L,  L’ = (1+y)L

tap point

t1
C1

t2
C2

leaf nodes = latches

leaf nodes = latches

len = L won’t work;
get x < 0, L too short

t1
C1

t2
C2
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Exact Zero SkewExact Zero Skew
Look at R, C for the 2 different segments

leaf nodes = latches

leaf nodes = latches

so let L’ > L,  L’ = (1+y)L

tap point

t1
C1

t2
C2

leaf nodes = latches

leaf nodes = latches

len = L won’t work;
get x < 0, L too short

t1
C1

t2
C2

this turns
into R, C

this turns
into (1+y)R, (1+y)C
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Exact Zero SkewExact Zero Skew
Can again do this analytically

leaf nodes = latches

leaf nodes = latches

so let L’ > L,  L’ = (1+y)L

t1
C1

t2
C2

this turns
into (1+y)R, (1+y)C

Get delay on left;

get delay on right;

equate:  

solve for (y)

(DO it – not too hard)

t1  =  (1+y)R [ (1+y)C/2 + C2] + t2
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Exact Zero SkewExact Zero Skew
Can similarly solve for when x>1...

Basically the same answer, with t1 and t2, C1 and C2 switched

Utility
If you use a recursive, bottom up approach to geometrically route tree…

Cool idea is :  at every point where you make a wiring/tapping decision, you 
strive for perfectly balanced Elmore delay to both subtrees.  Can solve 
analytically for this.

If all the Elmore delays perfectly balanced, you get:  Exact Zero Skew

© R. Rutenbar 2001,                       CMU 18-760, Fall01  62

Clock Balancing: By Wire WideningClock Balancing: By Wire Widening
Picking right tap point, maybe adding wire is not only way 

Alternative:  wire widening

RC tree

leaf nodes = latches

leaf nodes = latches

RC tree

local root
of RC tree

on left local root
of RC tree
on right

widen wire on the “long” side,
wider = less resistance
= decreased delay on this side
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Widening in a Clock TreeWidening in a Clock Tree
Summary of qualitative effects

R7

0

1 2

3

R9

5

7

4 6

8 9 10 11 12 13 14

R8 R10

R+∆R

C+∆C

Delay gets smaller:
R got smaller

Delay gets bigger:
C got bigger

Delay gets bigger,
but by less:

C got bigger
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SummarySummary
Interconnect increasingly responsible for chip speed

Technology is scaling to smaller sizes

Chips are being designed to run faster

Layout tools responsible for part of timing guarantee
Upstream tools handle levels of logic, etc

Physical design tools responsible for partitioning, placement, routing

All of these impact wire length and distribution

Individual wires modeled as complex circuits
From a layout view, RC tree is the nicest, most useful model

Elmore delay is easiest to compute delay estimator for 1 in->out

Can get the Elmore delay with a little very basic circuits

There are sophisticated estimators beyond Elmore...

Can use for both verification, and for layout optimizations (eg clock)
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Appendix:  Why the Delay Trends?Appendix:  Why the Delay Trends?
Qualitative answer

Signals propagate through the physical materials of gates, wires with 
finite delay

Wires, gates getting physically smaller, but interactions of the low-level 
technology parameters is complicated...

Signals
are faster

Gate
resistance

scaling down Metal resistance
per unit length

scaling up

Chips are bigger, worst-case 
long wire is now longer
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Deriving the Elmore DelayDeriving the Elmore Delay
From first principles

Avoid complex linear system theoretic math

Want to do this with plain old Kirchhoff laws and some basic circuit 
analysis, and some simple calculus

Turns out to be not too hard
Though it does turn on a few representation tricks for the algebra that 
are not obvious…
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RC Trees:  Back to Circuit BasicsRC Trees:  Back to Circuit Basics
How resistors work

V = IR

How capacitors work
I = C dV/dt

Kirchhoff’s current law
Current is conserved,  
Σ(current into node) = 
Σ(current out of node)

Kirchhoff’s voltage law

Σ (voltage drop around 
closed circuit loop) = 0

R

+     V     -

I

+     V     -

I

C

node

V1 V2

V3

© R. Rutenbar 2001,                       CMU 18-760, Fall01  68

RC Trees:RC Trees:
Observe

Combine (“lump”)  load capacitance with 1/2C from last segment
In RC tree, each R and each C may be different
Give each a name: Ri feeds into node i, Ci hangs off node i
Label currents thru Ri as Ii

i

current

node in RC tree

ground

R

C
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RC TreesRC Trees
So, let’s label our little example this way...
first the nodes

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1
2 4

53
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RC TreesRC Trees
Now, let’s label all the currents thru resistors too

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

I1

I4

I5

I2

I3

I0
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
What do we really want to get?

Approx. output waveforms, V4(t), V5(t), as efficiently as possible

First:  write KVL from input to an output, say V4

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

I1

I4

I5

I2

I3

I0

Vin - R0•I0 - R1•I1 - R2•I2 - R4•I4 - V4 = 0

Vin
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
OK, so what are the currents Ii?

Trick involving KCL observation

Look at current I0, it flows into “downstream” part of tree

What flows out of this part of the tree?

Only current thru capacitors to ground

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

I1

I4

I5

I2

I3

I0

This is still like
a “node” for KCL
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Aside:  Stream AnalogyAside:  Stream Analogy
Think of current like real water, flowing in tree

From  any component of tree, if you look at what is happening back up 
toward the root, it’s UPSTREAM

Look toward leaves, its DOWNSTREAM

current in

current out

current out

current out

current out

upstream

downstream
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
I0 goes in...

...all these come out

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

t=0

V=1

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

I1

I4

I5

I2

I3

I0

“downstream” part
of RC tree

I0

thru
C0 thru

C1
thru
C2

thru
C3

thru
C4

thru
C5
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C0•dV0
dt C1•dV1

dt
C2•dV2

dt
C3•dV3

dt
C4•dV4

dt

C5•dV5
dt

RC TreesRC Trees
Can we write an equation for these currents out?

“downstream” part
of RC tree

I0

“downstream” part
of RC tree

I0

thru
C0 thru

C1
thru
C2

thru
C3

thru
C4

thru
C5
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
Suggests a change in strategy

Let’s try to express everything interesting in the circuit using only 
combinations of the currents thru these capacitors

Let’s call current thru Ck as Jk (and we know Jk = Ck•dVk/dt)

Idea
Use superposition in the form of mesh analysis

Currents add up in each branch of the circuit

+
-

Vin
J1 J2

C

What’s current thru cap C?   J1-J2

What’s KCL at top of C?        J1 - J2 - C*dV/dt

R1 R2

+
V
-
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RC Trees:  Elmore DelayRC Trees:  Elmore Delay
Let’s relabel using only Jk currents thru caps

Observe
Each current has a unique path, root to ground

Total current thru any resistor = Σ (Jk thru downstream caps )
Ex:  R1

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

V4
+

-

V5
+

-

R0 0 1

2

3

4

5J0 J1

J3

J2 J4

J5

currents = J1 + J2 +J3 +J4 +J5
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R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

V4
+

-

V5
+

-

R0 0 1

2

3

4

5J0 J1

J3

J2 J4

J5

Vin - J0•(R0) - J1•(R0+R1) - J2•(R0+R1+R2) - J3•(R0+R1)
- J4•(R0+R1+R2+R4) - J5•(R0+R1) - V4 = 0

RC Trees:  Elmore DelayRC Trees:  Elmore Delay
Let’s write KVL from Vin to V4 again

Let’s factor it over the J’s instead of the R’s

Vin - R0•(J0+J1+J2+J3+J4+J5) - R1•(J1+J2+J3+J4+J5)
- R2•(J2+J4) - R4•(J4) - V4 = 0
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RC Trees: Elmore DelayRC Trees: Elmore Delay
What are these “sums of R’s” on each J?

“Upstream” resistance on the unique path from root to V4
seen by the current Jk thru each capacitor Ck 

Define this as R0k; rewrite above as

R1
R2

R4

R3
R5

C0 C1

C3

C2

+
-

V4
+

-

V5
+

-

R0 0 1

2

3

4

5

J2

J5

Vin - Σk R0k•Jk -V4 = 0

Vin - J0•(R0) - J1•(R0+R1) - J2•(R0+R1+R2) - J3•(R0+R1)
- J4•(R0+R1+R2+R4) - J5•(R0+R1) - V4 = 0
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Swell, but we still don’t have V4(t)...
Replace Jk by Ck•dVk/dt

Assume Vin(t)  is a 1 V step applied at time = 0;  rearrange

Problems
We don’t know V4(t) -- it’s what we want to solve for

We don’t know all those C dV/dt derivatives at leaves either

We need a couple of tricks to get around these...

RC Trees: Elmore DelayRC Trees: Elmore Delay

Vin(t) - Σk R0k•Ck•dVk/dt -V4(t) = 0

1 - V4(t) =   Σk R0k•Ck•dVk/dt 
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RC Trees: Elmore DelayRC Trees: Elmore Delay
Trick:  what does V4(t) actually do, as a waveform?

Step back for a moment and think: what will V4(t) look like?

Answer: some exponential ramp rising from 0V to a 1V asymptote

Why? The 1V step input supplies current to charge capacitors in the RC 
tree; eventually they all charge up, current stops flowing, voltages 
become constant

V4

1

time t
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RC Trees: Elmore DelayRC Trees: Elmore Delay
Recall: Apply a voltage step to a circuit with a capacitor...

Current starts to flow...

Eventually the cap charges up, and current stops flowing

Cap charges up to V0 here

Current  I eventually goes to 0

+
-

R

V
+

-
CV0

KVL:                    V0 - R•C•dV/dt - V = 0

Solve diff. eq:     V(t) = V0 ( 1 - e -t / RC ) 

V(t)

V0

time t
RC

V0 (1-e-1)
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∞ ∞

RC Trees: Elmore DelayRC Trees: Elmore Delay
OK, but we have a whole tree of Rs and Cs…

Trick:  let’s integrate both sides to get rid of those derivatives
Look at our expression for 1 - V4(t)

Integrate it, from 0 to ∞

1 - V4(t)  =   Σk R0k•Ck•dVk(t)/dt

∫ (1 - V4(t))dt = ∫ Σk R0k•Ck•dVk/dt

“area above curve” = Σk R0k•Ck•Vk       = Σk R0k•Ck•1  - 0

V4(t)

1

time t

0 0
∞

0

Vk -> 1 as t -> ∞

Vk starts uncharged
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RC Trees: Elmore DelayRC Trees: Elmore Delay
Are we getting anywhere?  Yes...

1 - V4(t)  =   Σk R0k•Ck•dVk(t)/dt

∫ (1 - V4(t))dt = ∫ Σk R0k•Ck•dVk/dt

= Σk R0k•Ck•Vk       = Σk R0k•Ck

∞

0

∞

0
∞

0

V4(t)

1

time t

Aha! This is what
we need, a simple
expression for this
integral involving only
quantities we know.
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RC Trees: Elmore DelayRC Trees: Elmore Delay
Turns out this is enough for our needs

Let’s assume that V4(t) follows an exponential rise, just like a circuit 

with a single R and a single C;  let τ = R•C here.

So, we shall assume that

..but we don’t know τ.  But we do know the area above V4(τ)!

V4(t) = 1 - e - t/τ

V4(t)

1

time t

∫ (1 - V4(t))dt = ∫ [1 -(1 - e - t/τ )]dt   = Σk R0k•Ck
∞

0

∞

0

Σk R0k•Ck  = τ

Solve
for τ
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RC Trees:  The Elmore DelayRC Trees:  The Elmore Delay
This is the magic formula that we want

τ  is “the Elmore Delay”; recall:
We asked this:   what does this RC tree leaf voltage Vi(t) look like?
We assumed this:  apply 1V step at t=0

We also assumed:   can model voltage Vi(t) as 1 time constant,  1 - e - t/τ

We derived this: τ = Σk R0k•Ck 

Note
A general formula for the time constant for the response at any leaf
(Nothing in top eqn is really specific to node 4, except which resistors)

Assume one time constant τ  is a good approx for the actual delay

V4(t) = 1 - e - t/τ τ = Σk R0k•Ck
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ObservationsObservations
Note

Basically says we can model the output at 1 leaf of an RC tree with an 
“equivalent circuit” that looks like 1 equivalent R, 1 eqv. C

We don’t really know the R or the C though, just that RC = τ
Called a “one time constant” model  (makes sense, eh?)

Analysis
PRO:  Easy to compute (can do it recursively by walking tree)

PRO:  Gives you a unique delay for each output of the tree

PRO:  Accounts for all the parasitics Rs, Cs of the interconnect

CON:  It’s still only a one time constant model; sometimes need > 1

© R. Rutenbar 2001,                       CMU 18-760, Fall01  88

Elmore Delay:  Circuits AsideElmore Delay:  Circuits Aside
That magic τ is actually derivable several other ways

Recall that for any linear system (circuit) you can characterize it by it’s 
impulse response, denoted h(t), which is what comes out when you put 
in a Dirac δ(τ)

R
R

R

R
R

C C

C

C C

C

+
-

t=0

V=1

V4
+

-

h(t)

t
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Elmore Delay:  Circuits AsideElmore Delay:  Circuits Aside
Turns out you can see more in frequency domain

Use the Laplace transform, which turns differential eqns into plain, old 
algebraic equations

F(s)  = ∫ f(t) e -st dt 
∞

0

H(s)  = ∫ h(t) e -st dt =   ∫ h(t) [1 + (-st)/1! + (-st)2 /2! + ...] dt  
∞

0

∞

0

=   ∫ h(t)dt + (-s) ∫ t•h(t) dt + (-s)2 ∫ t2•h(t) dt  + ... 
∞

0

∞

0

∞

0

0th moment
of h(t)

1st moment
of h(t)

2nd moment
of h(t)

= Elmore delay Σk R0k•Ck 

© R. Rutenbar 2001,                       CMU 18-760, Fall01  90

Elmore Delay: Circuits AsideElmore Delay: Circuits Aside
Elmore delay uses the 1st moment of h(t) to approximate the 
response of the circuit to a voltage step applied at t=0

1 moment gives you 1 time constant, so you follow 1 exp rise

What happens if you want more accuracy?
You need to use more of these moments in your approximation

Technique called “moment matching”

Assumes you can get ‘em, then “curve fit” a response waveform

Best known algorithms for doing it?

AWE: Asymptotic Waveform Eval., [Rohrer & Pillage TCAD90]

Lots of follow-on work to this

You need to use some subtle circuits ideas to get more than the 
first moment, stuff beyond our self-imposed I=C•dV/dt limit
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Circuit Aside:  AWE ExampleCircuit Aside:  AWE Example
Evaluation of clock signal network on DEC Alpha

1st generation ALPHA chip, clock analyzed using AWE techniques

This allows us to get a more accurate delay than Elmore, using more 
than one time constant

Arrival time of clock (ps)
as function of position on chip;

Note clock driver is in chip center


