
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

(Lec 10) Technology Mapping(Lec 10) Technology Mapping

What you know: Synthesis--all there is
2-level ESPRESSO style

Multi-level style

Structural modifications to Boolean Logic Network

Subexpression extraction: cube & kernel extraction

Vertex simplification via multi-level don’t cares

Clever representation schemes to make these doable

PCN inside ESPRESSO

BDDs everywhere else

What you don’t know
How a synthesized multi-level logic network gets turned into real, live,
usable gates in your implementation

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Where Are We?Where Are We?

After logic synthesis--how to map to real library of gates?

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

Midsem
break

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

ReadingsReadings

De Micheli
Chapter 10 is all about is all about technology mapping, which he calls
“cell library binding”

Read 10.1, 10.2, 10.3 (but only 10.3.1 here) and also 10.6

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Tech Mapping: The ProblemTech Mapping: The Problem

Multi-level model is still a little abstract
Structure of the Boolean logic network is fixed

ESPRESSO-style 2-level simplification done on each node of network...

But that still doesn’t say what the actual gate-level netlist should be

Trivial example

X = b + c

Y = aX

Z = Xd

a

b
c
d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Tech Mapping: ProblemTech Mapping: Problem

Suppose we have these gates in our “library”
This is referred to as the “technology” we are allowed to use to actually
build this optimized network

OA21 is in OR-AND, a so-called complex gate in our library

X = b + c

Y = aX

Z = Xd

a

b
c
d

AND2 OR2 OA21

How do we build
the 2 functions specified in
our Boolean Logic Network
using ONLY these gates
from our library?

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Tech Mapping: Simple ExampleTech Mapping: Simple Example

AND2 OR2 OA21

a

b
c

d

b
c
b
c

a

d

Trivial,
obvious
mapping

Alternative
un-obvious
mapping

X = b + c

Y = aX

Z = Xd

a

b
c
d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Tech Mapping: Simple ExampleTech Mapping: Simple Example

Why choose a non-obvious mapping?
Answer 1: Cost. Suppose each gate in lib has a cost associated with it.
Think of this as, say, the silicon area of the gate

AND2
cost = 4

OR2
cost=4

OA21
cost=5

a

b
c

d

b
c
b
c

a

d

Trivial,
obvious
mapping
cost =

Alternative
un-obvious
mapping
cost =

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Tech MappingTech Mapping

Why choose a non-obvious mapping?
Answer 2: obvious parts not in your library

Example: your library is only NOR and OR-AND-INVERT gates

Even if you wanted to think about mapping your network into nice,
vanilla ANDS and ORs and NOTs, you can’t, because they are not
in your library.

Examples: in some Gallium Arsenide (GaAs) IC technologies, you only
get NOR gates, period. In some dynamic CMOS logic styles, NORs are
also the only thing you can do easily.

NOR2
cost=4

OAI22
cost=6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Tech Mapping: What Multilevel Synthesis DoesTech Mapping: What Multilevel Synthesis Does

Helpful model to use: Multi-level synthesis does this...
Structures the multiple-vertex Boolean logic network “well”

Minimizes guts of each vertex in the network “well”, ie, min literals

But this is not real logic gates. This is “uncommitted” logic, or
“technology independent” logic

Think of it like this: it’s only NANDs and NOTs, nothing else

X

Y

Z

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

What “Technology Mapping” DoesWhat “Technology Mapping” Does
Model

So, synthesis gives you a network with the right overall structure...

...but not in terms of the gates you actually have to implement it with

Tech mapping
“Maps” output of synthesis, in “technology independent” form, into your
actual gate library (Also called “binding” to the technology library)

Important point: tech mapper is no longer required to respect the
boundaries of vertices in the original Boolean logic network

vertex X in Boolean
logic network

vertex Y
vertex Z

Each grouping is an actual
gate in the final library

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Technology Mapping as Tree CoveringTechnology Mapping as Tree Covering

One particularly useful, simple model of problem
Your logic network to be mapped is a tree of simple gates

Easiest to assume absolutely minimal gate types

Example: tech-independent form is 2 input NAND and NOT

Your library of actual gate types is also available in this form

Each gate can be represented as a tree of NAND2 and NOT

Each gate also has an associated cost

Problem
“Cover” the tree that represents your tech-independent logic--
called the subject tree...

...with minimum cost set of gates (each a pattern tree) from lib

Reduces tech mapping to: matching problem + a minimization problem

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Tree Covering ExampleTree Covering Example

Here is your subject tree to be matched
Assume it pops out of synthesis as only NAND2 and NOT

a

b c

d
x

y z

w

f

We get tired of drawing
the gates all the time, so
adopt a simpler set of
symbols:

!

N

i

N!

N i

i i

inverter

NAND2

input

in input

N NAND2

! inverter

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Tree Covering: Your Technology LibraryTree Covering: Your Technology Library

And, here is your library--at least, in ideal form

NOT NAND2 AND2 NOR2 OR2

AOI21 AOI22

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Tree Covering: Representing Your LibnraryTree Covering: Representing Your Libnrary

Oops!
To use tree covering, must represent your library using same gates as
your synthesis tool -- here, NAND2 + NOT

NOT NAND2 AND2 NOR2 OR2

AOI21 AOI22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Tree Covering: Pattern TreesTree Covering: Pattern Trees

Represent each gate as a pattern tree, using notation

NOT NAND2 AND2 NOR2 OR2

N

in

!

in in
N

in in

!

N

in in

!

! !

N

in in

! !

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Tree Covering: Pattern TreesTree Covering: Pattern Trees

Symmetries matter!

N

in

!

!

N

in in

AOI21 AOI22

N

inin

N

in

!

! N

in in

!

NN

in in

2 pattern trees for
AOI21 since there

are 2 ways we could
match this gate

against a
target tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Tree Covering ExampleTree Covering Example

Notice in this form it’s a very clean covering problem
Every “blob” is one gate in our lib, matching somewhere on subject tree

Note that a grey “in” input node allowed to match anything in tree

!

N

in

N!

N in

in in

!

N

N!

N

Not very clever tree cover
= 3 NAND2s + 2 NOTs

Clever tree cover
= 1 AOI21 + 1 NAND2

in in

inin

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

TechMap via Tree CoveringTechMap via Tree Covering

What do we need?

Tree-ifying the input netlist
Few assumptions need mentioning

Tree matching
For every node in your subject tree, need to know all the target pattern
trees in your library that can match here

Minimum cost covering
Given you know what can match at each node of subject tree, which
ones do you pick for a minimum cost cover?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Tree-ifying the NetlistTree-ifying the Netlist

These algorithms only work on trees, not DAGs

X X

Must split this DAG with fanouts into 3 separate trees, map each separately
This entails some clear loss of optimality, since cannot map across trees

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Tree-ifying NetlistTree-ifying Netlist

Our algorithms mandate trees, not DAGs
Every place there is fanout from gate output > 1, you have to cut

Clearly loses some optimizations

There are ways around this, but we won’t look at them here...

X X

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Aside: How Restrictive is “Tree” Assumption?Aside: How Restrictive is “Tree” Assumption?

Subject graph and each pattern graph must be trees

Subject tree: must tree-ify it

What about pattern trees?
Are there any well-behaved ‘gates’ you would like in lib, but != trees?

Unfortunately, yeah...

N

i

N

!

N

i

!

EXOR gate

d0 d1
s

2:1 MUX

Boolean eqn: Boolean eqn:

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Tree MatchingTree Matching

There are several approaches
Elegant, complicated approach: FSM matching

Treat subject tree like a special “string” of characters

Turn the pattern library into a Finite State Machine (FSM)

Run the subject “string” thru the FSM, it tells you each place in
subject tree that ANY tree in library matches

Fast, cool, hard to describe quickly (see book)

Straightforward, not-so-fast, easy approach: Recursive matching

Inputs: subject tree (root), a specific target pattern tree (root)

Outputs: each node in subject tree marked if pattern matches

Note: need to run this algorithm for every target tree in library

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Recursive Tree MatchingRecursive Tree Matching
Ideas

Start with subject tree root SUBroot, pattern tree root PATroot

Do a tree walk on subject tree, visit every node--sub--of subject tree

At each node of sub in walk, you call MATCH(sub, PATroot)

The pattern tree matches here at sub if

sub node type same as PATroot node type, AND

...each child of sub node recursively matches approp. child of PATroot

pattern tree

sub node matches
pattern root

left subtree of sub
matches left subtree
of pattern

ditto for right
(not shown)

subject tree

SUBroot PATroot

sub
PATroot

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Tree MatchingTree Matching
Well, it’s slightly messier than that

Inverters have only one child

Node types

NAND matches NAND

NOT matches NOT

INPUT matches anything

To handle asymmetric targets, must try BOTH these child matchings:

match (left(sub), left(pat)) && match (right(sub), right (pat))

match (left(sub), right (pat)) && match (right(sub), left (pat))

N

in

!

!N

inin

N

in

!

! N

in in

AOI21 has 2 patterns,
can deal with this

just by cross-matching
as shown above

match?
sub

left(sub) right(sub)

pat

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Asymmetry: In More Gruesome DetailAsymmetry: In More Gruesome Detail

N

in

!

!N

inin

match?

sub

left(sub) right(sub)

pat

in

! N

in in

left(pat) right(pat)

N

! match?

sub

left(sub) right(sub)

pat

left(pat)right(pat)

match?

match?

match?

match?

OR…

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Tree MatchingTree Matching

Algorithm outline

MATCH(sub, pat) {
if (nodetype(pat) == INPUT)
then return (true); // input matches anything

if (sub is a leaf of subject graph)
then return (false); // cannot be a match

if (nodetype(pat) != nodetype(sub))
then return (false) ; // cannot be a match

if (nodetype(pat) == NOT) { // only 1 child to recurse on
then return(MATCH(child(sub), child(pat));

// it must be NAND2, so 2 children to recurse on
// just do the case where we assume pattern is asymmetric
return(MATCH(left(sub), left(pat)) && MATCH(right(sub),right(pat))

|| MATCH(left(sub), right(pat)) && MATCH(right(sub),left(pat)));

}

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Minimum Cost Tree CoveringMinimum Cost Tree Covering

Where are we?
We tree-ified subject tree

For each pattern tree in our library...

...we walked the nodes of the subject tree,
root to leaves, recursively

...and at each node visited, we asked:
MATCH(sub node, pat node)?

Result: each node of subject now labeled
with which pattern trees match it

Next problem:
What is the best cover of the subject tree
with patterns from target lib?

!

N

in

N!

N in

in in

One candidate
cover of a subject

tree with 5 patterns
from target library

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Minimum Cost Covering of Subject TreeMinimum Cost Covering of Subject Tree

Key insight
If pattern P is min cost match at some node of subject tree...

...then it must be that each leaf of pattern tree is also the root of some
min cost matching pattern

Leads to a recursive algorithm

(A dynamic programming algorithm, if you know that terminology...)

Pick an illustrative example to see how this works

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Min Cost Tree CoveringMin Cost Tree Covering

Assume 3 different patterns match at root of subject
Pattern P1 has 2 leaf nodes: a b

Pattern P2 has 3 leaf nodes: x y z

Pattern P3 has 4 leaf nodes: j k l m

Which is cheapest pattern if we know cost of each pattern?

P1 P2 P3

a b

x y
z

j k

l

m
subject tree subject tree subject tree

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

Min Cost Tree CoverMin Cost Tree Cover

Cheapest cover of root of subject is mincost(root) =
min (patterncost(P1) + mincost(a) + mincost(b) ,

patterncost(P2) + mincost(x) + mincost(y) + mincost(z) ,

patterncost(P3) + mincost(j) + mincost(k) + mincost(k) + mincost(l)
)

Each box above means we must recurse on mincost(node)

P1 P2 P3

a b

x y
z

j k

l

m
subject tree subject tree subject tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Min Cost Tree CoverMin Cost Tree Cover

Naive Algorithm

mincost(treenode) {
cost = ∞
foreach(pattern P matching at subject treenode) {

let L = {nodes in subject tree corresponding to leaf nodes in P
when P is placed with its root at treenode }

newcost = patterncost(P)
foreach(node n in L } {

newcost = newcost + mincost(n);
}
if (newcost < cost)
then {

cost = newcost;
treenode.selected = P;

}

P2

x y
z

subject tree

subject
tree
nodes
“under”
x, y, z

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

Min Cost Tree CoverMin Cost Tree Cover

What’s wrong with this?
Will revisit same treenode many times during recursions...

...and it will recompute the min cost cover for that node each time.

Can we do better...?
Sure, just keep a table with min cost for each node

Starts with value ∞ and then when the node’s cost get computed, this
value gets updated

Check first to see if the node has already been visited before computing
it--saves computing it multiple times.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

IllustrationIllustration

Node “y” in this subject tree
Will get its mincost cover computed (mincost(y)) when we put P2 at
the root of the subject tree...

...and again when we put P3 at the root

Why not just compute it once, first time, save it, and look it up later?

P2 P3

x y
z

a y

b

c
subject tree subject tree

y

subject tree

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

Min Cost Tree CoverMin Cost Tree Cover
Improved

Assume table[] gets set up so table[node] = ∞ for all nodes at start

mincost(treenode) {
if (table[treenode]) < ∞
then return(table[treenode]);

cost = ∞
foreach(pattern P matching at subject treenode) {

let L = {nodes in subject tree corresponding to leaf nodes in P
when P is placed with its root at treenode }

newcost = patterncost(P)
foreach(node n in L } {

newcost = newcost + mincost(n);
}
if (newcost < cost)
then {

cost = newcost; table[treenode] = newcost
treenode.selected = P;

}

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Min Cost Tree Cover ExampleMin Cost Tree Cover Example

!

N

in

N!

N in

in in

f

w

y z

a x d

b c

At treenode Can Match With min cost
f

w

Subject tree

All our pattern trees

N

in

!

in in
N

in in

!

N

in in

!

! !

N

in in

! !
N

in

!

!

N

in in
N

inin

N

in

!

! N

in in

!

NN

in in

not nand2 and2 nor2 or2 aoi21 aoi22

$2 $3

$4
$6

$4

$6 $6 $6

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

N

in

!

in in
N

in in

!

N

in in

!

! !

N

in in

! !
N

in

!

!

N

in in
N

inin

N

in

!

! N

in in

!

NN

in in

Min Cost Tree Cover Example, contMin Cost Tree Cover Example, cont

At treenode Can Match With min cost
y

z

x

All our pattern trees

not nand2 and2 nor2 or2 aoi21 aoi22

$2 $3

$4
$6

$4

$6 $6 $6

!

N

in

N!

N in

in in

f

w

y z

a x d

b c

Subject tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

Min Cost Tree CoverMin Cost Tree Cover

Example
If costs for NOT, NAND2, AND2, AOI21 are as shown...

Best cover is to use one AOI21 and one NAND2

Turns out to be several nice extensions possible
Can tweak algorithm a little to minimize delay instead of cost

Need to deal with some messy issues associated with capacitive loads
for driven gates, but some simple discrete loads can be modeled and
handled.

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

IssuesIssues

Pro
Easy, simple algorithm

Works great for trees

Con
Not everything is a tree

Most subject netlists are NOT trees, need to chop up into trees

Some patterns cannot be trees (EXOR, MUX)

Comments
Heuristic tricks for dealing with most of these

Also, other tech mapping approaches

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

Polarity AssignmentPolarity Assignment

One cool trick worth mentioning
What if you can’t match a pattern just because you don’t have the right
polarities (true / complemented form) on internal nodes of subject tree?

Just don’t use that good pattern? No -- fix the polarity

Do this to netlist
At every internal wire in netlist (from a gate output to a gate input)
where there is no inverter, replace with back-to-back inverters

At every input, add one more zero-cost-inverter

Do this to pattern library
Add back-to-back inverter pattern with cost = 0, on every internal wire
(from a gate output to a gate input) in your pattern trees

Add zero-cost-inverter pattern, only matches at inputs, cost=0

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

Inverter TrickInverter Trick

a

b c

d
x

y z

w

f

a

b c

dx

y z

w

f

b’ c’

d’

a’

$0-cost
input

inverters

$0-cost back-to-back
inverter pair

Original subject tree
Modified subject tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Inverter TrickInverter Trick

Why do this??
Can get different covers!

Notice here, if you had to
create a’, b’, c’, d’, or if you
already have each of a,b,c,d
in both forms....

...you can get a nice cover
made up of 3 NOR2s and
one extra inverter

Of course, this inverter is
really bogus -- can really get
away with nuking it and just
inputting ‘a’ to the NOR2...

...but do need different polarity
now on these inputs

This is
a NOR2
target
pattern

Look close...
2 patterns
now cover

this “wire”

a

b c

dx

y z

w

f

b’ c’

d’

a’

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

SummarySummary

Technology mapping ...

Synthesis gives you “uncommitted” or “technology independent”
design, eg, NAND2 and NOT

Mapping turns this into real gates in your own library

Can determine difference between good implementation and a bad one

Still a very hot problem

Tree covering

One nice, simple, elegant approach to the problem

3 parts: tree-ify input, match all lib patterns, find min cost cover

Tricks

Adding extra inverters (with cost) can get you out of nasty problems
where a nice pattern does’t match because of wrong polarity at inputs

