(Lec 10) Technology Mapping

X 'What you know: Synthesis--all there is

» 2-level ESPRESSO style

» Multi-level style
> Structural modifications to Boolean Logic Network
> Subexpression extraction: cube & kernel extraction
> Vertex simplification via multi-level don’t cares

» Clever representation schemes to make these doable
> PCN inside ESPRESSO
> BDDs everywhere else

N What you don’t know

» How a synthesized multi-level logic network gets turned into real, live,
usable gates in your implementation

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

Copyright Notice

© Rob A. Rutenbar 2001
All rights reserved.

You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Page 1

Where Are We?

N Afterlogic synthesis--how to map to reallibrary of gates?

M T W Th F

Aug27 28 129 30 [31 || Introduction
Sep[3 [4 [5 [6 J7 |2 Advanced Boolean algebra
o Tir iz 13 [i4 |3 JAVA Review
M7 _T18 19 20 21 |4 Formal verification
24 25 [26 [27 [28 |5 2-Level logic synthesis
Octi 2 [3 [4 [5 6 Multi-level logic synthesis
(8 [9 fro it _[12 |7 Technology mapping
Midsem [i5 [i6 [17 [FEENEIM 8
breal\pFRl23 |24 5 D26 |9 Flacement
29 B0 B [1_[2 Jio LouE .
Nov[s [6 [7 [8 [9 |11 Statlc.tlmlr:ng :analysns .
2 13 [14 [15 [16 |12 Electrical timing analysis

Thnxgive[19_[20 PINIFYIIFE 13 Geometric data structs & apps
26 [27 [28 [29 [30] 14
Dec[3 [4 [5 [6 [7 |15
(o Jir 12 13 Ji4 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

N De Micheli

» Chapter 10 is all about is all about technology mapping, which he calls
“cell library binding”

» Read 10.1, 10.2, 10.3 (but only 10.3.1 here) and also 10.6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Page 2

Tech Mapping: The Problem

N Multi-level model is still a little abstract
» Structure of the Boolean logic network is fixed
» ESPRESSO-style 2-level simplification done on each node of network...
» But that still doesn’t say what the actual gate-level netlist should be

N Trivial example

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Tech Mapping: Problem

N Suppose we have these gates in our “library”

» This is referred to as the ‘“technology’” we are allowed to use to actually
build this optimized network

:-;‘l D2 Iaaz :,-_OA21

» OAZ2l is in OR-AND, a so-called complex gate in our library

How do we build

a >
_" the 2 functions specified in
b :_> our Boolean Logic Network

d »C Z=Xd)—> using ONL.Y these gates
from our library?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Page 3

Tech Mapping: Simple Example
-, W, -,

Trivial,
obvious

< mappin
: Y= > Prme

Alternative
un-obvious

mapping

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Tech Mapping: Simple Example

N Why choose a non-obvious mapping?

» Answer |: Cost. Suppose each gate in lib has a cost associated with it.
Think of this as, say, the silicon area of the gate

:-;mz :’aaz :,-_OAM

cost=4 cost=4 cost=5

a a__
- f—
Trivial, _, Alternative
. c
d

obvious b un-obvious

B s

d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Page 4

Tech Mapping

X Why choose a non-obvious mapping?

» Answer 2: obvious parts not in your library
» Example: your library is only NOR and OR-AND-INVERT gates

»- -
NOR2 —, OAI22
cost=4 cost=6

» Even if you wanted to think about mapping your network into nice,
vanilla ANDS and ORs and NOTs, you can’t, because they are not
in your library.

» Examples: in some Gallium Arsenide (GaAs) IC technologies, you only
get NOR gates, period. In some dynamic CMOS logic styles, NORs are
also the only thing you can do easily.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Tech Mapping: What Multilevel Synthesis Does

N Helpful model to use: Multi-level synthesis does tAis...
» Structures the multiple-vertex Boolean logic network “well”
» Minimizes guts of each vertex in the network “well”, ie, min literals

» But this is not real logic gates. This is “uncommitted” logic, or
‘“technology independent” logic

» Think of it like this: it’s only NANDs and NOTSs, nothing else

£
—

C =)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Page 5

What “Technology Mapping” Does

N Model

» So, synthesis gives you a network with the right overall structure...

» ...but not in terms of the gates you actually have to implement it with

N Tech mapping

» “Maps”’ output of synthesis, in “technology independent” form, into your
actual gate library (Also called “binding” to the technology library)

» Important point: tech mapper is no longer required to respect the
boundaries of vertices in the original Boolean logic network

vertex X in Boolean

logic network

Each grouping is an actual / ________

gate in the final library
© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Technology Mapping as Tree Covering

N One particularly useful, simple model of problem
» Your logic network to be mapped is a tree of simple gates
> Easiest to assume absolutely minimal gate types
> Example: tech-independent form is 2 input NAND and NOT
» Your library of actual gate types is also available in this form
> Each gate can be represented as a tree of NAND2 and NOT

> Each gate also has an associated cost

N Problem

» “Cover” the tree that represents your tech-independent logic--
called the subject tree...

» ...with minimum cost set of gates (each a pattern tree) from lib

» Reduces tech mapping to: matching problem + a minimization problem

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Page 6

Tree Covering Example

N Here is your subject tree to be matched

» Assume it pops out of synthesis as only NAND2 and NOT
f

We get tired of drawing
the gates all the time, so
adopt a simpler set of

symbols: .

@ input
o NAND2
@ inverter

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Tree Covering: Your Technology Library

N And, here is your library--at least, in 7deal form

NOT NAND2 AND2 NOR2
AOI21 AOI22
© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Page 7

Tree Covering: Representing Your Libnrary

X Oops!

» To use tree covering, must represent your library using same gates as
your synthesis tool -- here, NAND2 + NOT

NOT NAND2 AND2 NOR2 OR2
AOI21 AOI22
© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Tree Covering: Pattern Trees

N Represent each gate as a pattern tree, using notation

NOT NAND2 AND2 NOR2 OR2

§

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Page 8

Tree Covering: Pattern Trees

N Symmetries matter! AOI21 AOI22

2 pattern trees for
AOI2] since there

are 2 ways we could N N b
match thIS' gate S (D oX~ NYIN
against a
target tree (i) (@ (n) i (D @) (in) Gn) () ()
©R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Tree Covering Example

N Notice in this form it’s a very clean covering problem
» Every “blob” is one gate in our lib, matching somewhere on subject tree

» Note that a grey ‘“‘in” input node allowed to match anything in tree

Not very clever tree cover Clever tree cover
=3 NAND2s + 2 NOTs =1 AOI21 + | NAND2
©R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Page 9

TechMap via Tree Covering

N What do we need?

N Tree-ifying the input netlist

» Few assumptions need mentioning

N Tree matching

» For every node in your subject tree, need to know all the target pattern
trees in your library that can match here

N Minimum cost covering

» Given you know what can match at each node of subject tree, which
ones do you pick for a minimum cost cover?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Tree-ifying the Netlist

N These algorithms only work on trees, not DAGs

Must split this DAG with fanouts into 3 separate trees, map each separately
This entails some clear loss of optimality, since cannot map across trees

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Page 10

Tree-ifying Netlist

N Our algorithms mandate trees, not DAGs
» Every place there is fanout from gate output > |, you have to cut

» Clearly loses some optimizations
» There are ways around this, but we won’t look at them here...

i

CMU 18-760, Fall 2001 21

© R. Rutenbar 2001,

Aside: How Restrictive is “Tree” Assumption?

N Subject graph and each pattern graph must be trees
N Subject tree: must tree-ify it

X 'What about pattern trees?
» Are there any well-behaved ‘gates’ you would like in lib, but != trees?

» Unfortunately, yeah...

EXOR gate 2:1 MUX

Pt

Boolean eqn:

Boolean eqn:

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Page 11

Tree Matching

N There are several approaches
» Elegant, complicated approach: FSM matching
> Treat subject tree like a special “string” of characters
> Turn the pattern library into a Finite State Machine (FSM)

> Run the subject “string” thru the FSM, it tells you each place in
subject tree that ANY tree in library matches

> Fast, cool, hard to describe quickly (see book)

» Straightforward, not-so-fast, easy approach: Recursive matching
> Inputs: subject tree (root), a specific target pattern tree (root)
> Outputs: each node in subject tree marked if pattern matches

> Note: need to run this algorithm for every target tree in library

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Recursive Tree Matching

N Ideas
» Start with subject tree root SUBroot, pattern tree root PATroot

» Do a tree walk on subject tree, visit every node--sub--of subject tree
» At each node of sub in walk, you call MATCH(sub, PATroot)
» The pattern tree matches here at sub if

> sub node type same as PATroot node type, AND

> ...each child of sub node recursively matches approp. child of PATroot

SUBroot @ PATroot
sub node matches

pattern root ATroot

sub,
pattern tree ‘

An

subject tree
left subtree of sub

matches left subtree ditto for right
of pattern (not shown)
©R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Page 12

Tree Matching

N Well, it’s slightly messier than that

» Inverters have only one child

» Node types
> NAND matches NAND
> NOT matches NOT
> INPUT matches anything

» To handle asymmetric targets, must try BOTH these child matchings:
> match (left(sub), left(pat)) && match (right(sub), right (pat))
> match (left(sub), right (pat)) && match (right(sub), left (pat))

0
?
AOI21 has 2 patterns, /_—mL\
can deal with this pat ‘Ub
just by cross-matching /
as shown above QXN left(sub) right(sub)
i @ @
© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Asymmetry: In More Gruesome Detail

@b

left(sub) right(sub)

match?

OR...

match?

pat

match? ‘ub

right(pat)() @ left(pat) left(sub) right(sub)

match?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Page 13

Tree Matching

W Algorithm outline

MATCH(sub, pat) {
if (nodetype(pat) == INPUT)
then return (true); // input matches anything

if (sub is a leaf of subject graph)
then return (false); // cannot be a match

if (nodetype(pat) != nodetype(sub))
then return (false) ; // cannot be a match

if (nodetype(pat) == NOT) { // only | child to recurse on
then return(MATCH(child(sub), child(pat));

Il it must be NAND2, so 2 children to recurse on
Il just do the case where we assume pattern is asymmetric
return(MATCH(left(sub), left(pat)) && MATCH(right(sub),right(pat))
|| MATCH(left(sub), right(pat)) && MATCH(right(sub),left(pat)));

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Minimum Cost Tree Covering

X Where are we?
» We tree-ified subject tree
» For each pattern tree in our library...

» ...we walked the nodes of the subject tree,
root to leaves, recursively

» ...and at each node visited, we asked: N
MATCH(sub node, pat node)?

» Result: each node of subject now labeled (1) N
with which pattern trees match it

O N NG
N Next problem:
(in)~(in
» What is the best cover of the subject tree

with patterns from target lib? One candida'te
cover of a subject

tree with 5 patterns
from target library

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Page 14

Minimum Cost Covering of Subject Tree

X Key insight
» If pattern P is min cost match at some node of subject tree...

» ...then it must be that each leaf of pattern tree is also the root of some
min cost matching pattern

» Leads to a recursive algorithm

» (A dynamic programming algorithm, if you know that terminology...)

N Pick an illustrative example to see how this works

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Min Cost Tree Covering

N Assume 3 different patterns match at root of subject
» Pattern Pl has 2 leaf nodes: a b
» Pattern P2 has 3 leaf nodes: xy z
» Pattern P3 has 4 leaf nodes: jkim

» Which is cheapest pattern if we know cost of each pattern?

subject tree &

subject tree subject tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Page 15

Min Cost Tree Cover

00 A&

subject tree subject tree subject tree

N Cheapest cover of root of subject is mincost(roo?) =
min (patterncost(P1) +| |+| I,

patterncost(P2) +| I + I I"' I I,

patterncost(P3) +|:] +| I "‘I I +| I

)

X Each box above means we must recurse on mincost(node)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

Min Cost Tree Cover

N Naive Algorithm

mincost(treenode) {
cost = 00
foreach(pattern P matching at subject treenode) {

let L = {nodes in subject tree corresponding to leaf nodes in P
when P is placed with its root at treenode }

newcost = patterncost(P)
foreach(node nin L} {

newcost = newcost + mincost(n);
}
if (newcost < cost)
then {

cost = newcost;

treenode.selected = P;

subject tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Page 16

Min Cost Tree Cover

N 'What’s wrong with this?
» Will revisit same treenode many times during recursions...

» ...and it will recompute the min cost cover for that node each time.

X Can we do better...?
» Sure, just keep a table with min cost for each node

» Starts with value c and then when the node’s cost get computed, this
value gets updated

» Check first to see if the node has already been visited before computing
it--saves computing it multiple times.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

N Node “y” in this subject tree

» Will get its mincost cover computed (mincost(y)) when we put P2 at
the root of the subject tree...

» ...and again when we put P3 at the root

» Why not just compute it once, first time, save it, and look it up later?

subject tree subject tree

subject tree

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

Page 17

Min Cost Tree Cover

N Improved

» Assume table[] gets set up so table[node] = « for all nodes at start

mincost(treenode) {
if (table[treenode]) <
then return(table[treenode]);

cost = 00
foreach(pattern P matching at subject treenode) {

let L = {nodes in subject tree corresponding to leaf nodes in P
when P is placed with its root at treenode }

newcost = patterncost(P)
foreach(nodeninL}{
newcost = newcost + mincost(n);
}
if (newcost < cost)
then {
cost = newcost; table[treenode] = newcost
treenode.selected = P;

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

Min Cost Tree Cover Example

Subject tree At treenode Can Match With min cost
f
fQ)
w @
y (U D z
w
a(*@ G d

All our pattern trees

b@ @ c not nand2 and2 nor2 or2 aoi2l aoi22
:g éﬂs ﬁ) o o
N N
¥2 %3 & OX N Pe
$4 oXORT v (» W
$6 $6
© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Page 18

Min Cost Tree Cover Example, cont

Subject tree

Yo At treenode Can Match With min cost
y
w Q!
z
y (U ') z
X
a(n) X [d
d All our pattern trees
b c not nand2 andZ nor2 or2 aoi2l ao0i22
2 ﬁ éé
$4 O @ﬂhﬂ? ¢m®®®®®®
© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

Min Cost Tree Cover

N Example
» If costs for NOT, NAND2, AND2, AOI2I are as shown...
» Best cover is to use one AOI21 and one NAND2

N Turns out to be several nice extensions possible

» Can tweak algorithm a little to minimize delay instead of cost

» Need to deal with some messy issues associated with capacitive loads
for driven gates, but some simple discrete loads can be modeled and
handled.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

Page 19

X Pro

» Easy, simple algorithm
» Works great for trees

X Con
» Not everything is a tree

» Most subject netlists are NOT trees, need to chop up into trees
» Some patterns cannot be trees (EXOR, MUX)

X Comments

» Heuristic tricks for dealing with most of these

» Also, other tech mapping approaches

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Polarity Assignment

N One cool trick worth mentioning

» What if you can’t match a pattern just because you don’t have the right
polarities (true / complemented form) on internal nodes of subject tree?

» Just don’t use that good pattern? No -- fix the polarity

N Do this to netlist

» At every internal wire in netlist (from a gate output to a gate input)
where there is no inverter, replace with back-to-back inverters

» At every input, add one more zero-cost-inverter

N Do this to pattern library

» Add back-to-back inverter pattern with cost = 0, on every internal wire
(from a gate output to a gate input) in your pattern trees

» Add zero-cost-inverter pattern, only matches at inputs, cost=0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

Page 20

Inverter Trick

f

. . . w Modified subject tree
Original subject tree

|z

w $0-cost back-to-back
a inverter pair
v |z

a I
d

bc $0-cost

input

inverters

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

Inverter Trick

X Why do this?? £
This is
» Can get different covers! a NOR2
w
» Notice here, if you had to target
create a’, b’, ¢’, d’, or if you 2 pattern

already have each of a,b,c,d

in both formes.... B «—Look close...

2 patterns
4

» ...you can get a nice cover
made up of 3 NOR2s and
one extra inverter

now cover
this “wire”
&

» Of course, this inverter is
really bogus -- can really get
away with nuking it and just
inputting ‘a’ to the NOR2...

» ...but do need different polarity
now on these inputs

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Page 21

N Technology mapping ...

» Synthesis gives you ‘“‘uncommitted” or “technology independent”
design, eg, NAND2 and NOT

» Mapping turns this into real gates in your own library
» Can determine difference between good implementation and a bad one
» Still a very hot problem

N Tree covering

» One nice, simple, elegant approach to the problem
» 3 parts: tree-ify input, match all lib patterns, find min cost cover
N Tricks
» Adding extra inverters (with cost) can get you out of nasty problems

where a nice pattern does’t match because of wrong polarity at inputs

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

Page 22

